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`1-Minimization Group Sparsity Parallelization Conclusion

Compressive Sensing Theory: An Introduction

Compressive Sensing (CS) deals with an estimation problem in underdetermined systems of
linear equations, A in general is full rank:

b = Ax where A ∈ Rd×n, (d < n)

b A x

Two interpretations:
1 Compression: A as a sensing matrix.
2 Representation: A as a prior dictionary.

Infinitely many solutions for x, without extra constraints
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`1-Minimization Group Sparsity Parallelization Conclusion

`0/`1 Equivalence Relationship for Sparsest Solutions

`0-Minimization (NP-Hard)

x∗ = arg min
x
‖x‖0 subj. to b = Ax.

‖ · ‖0 simply counts the number of nonzero terms.

b=Ax
l-0 ball

`1-Minimization (Linear Program)

x∗ = arg min
x
‖x‖1 subj. to b = Ax.

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.

b=Ax
l-0 ball

l-1 ball
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`1-Minimization Group Sparsity Parallelization Conclusion

Feasibility and Uniqueness: `0-Minimization

Spark Condition

Spark(A): smallest number of columns that are linearly dependent

1 Example I: Identity matrix I ∈ Rd×d , Spark(A) = d+1;

2 Example II:

»
1 0 1 0
0 1 0 1

–
, Spark(A) = 2;

3 Example III: Random matrix [v1, v2, · · · , vn] ∈ Rd×n, Spark(A) = d+1 (with high probability);

Sparse signal x can be uniquely recovered by `0-min if

‖x‖0 <
Spark(A)

2

Proof.

1 Suppose x1 6= x2 both satisfy the spark condition, and b = Ax1, b = Ax2.

2 A(x1 − x2)
.
= Ay = b− b = 0.

3 But ‖y‖0 <
Spark(A)

2 +
Spark(A)

2 = Spark(A). Contradiction.

Estimating Spark(A) is as expensive as `0-min itself!
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Feasibility and Uniqueness: `1-Minimization

k-Neighborliness Condition

b

Define cross polytope C and quotient polytope P such that P = AC .

x is k-sparse ⇔ x lies on a unique (k − 1)-face of C .

Necessary and Sufficient:
1 If the (k − 1)-face where x lies maps to a face of P, then `1/`0 holds for this specific x.
2 If all (k − 1)-faces of C map to the faces of P on the boundary, `1/`0 holds for all k-sparse signals.
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`1-Minimization Group Sparsity Parallelization Conclusion

Why `1-Minimization is still a difficult problem?

General linear-programming toolboxes do exist: cvx, SparseLab.
However, interior-point methods are very expensive in HD space.

Improve speed via new numerical algorithms.

Improve accuracy by exploiting finer (group) data structure of the problems.

b = [A1,A2, · · · ,AK ]x + e.

Implement `1-min and SRC on multi-core CPUs/GPUs.
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`1-Min Literature

1 Primal-Dual Interior-Point
Log-Barrier [Frisch ’55, Karmarkar ’84, Megiddo ’89, Monteiro-Adler ’89, Kojima-Megiddo-Mizuno
’93]

2 Homotopy
Homotopy [Osborne-Presnell-Turlach ’00, Malioutov-Cetin-Willsky ’05, Donoho-Tsaig ’06]
Polytope Faces Pursuit (PFP) [Plumbley ’06]
Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani ’04]

3 Gradient Projection
Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright ’07]
Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky ’07]

4 Iterative Thresholding
Soft Thresholding [Donoho ’95]
Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo ’08]

5 Proximal Gradient [Nesterov ’83, Nesterov ’07]

FISTA [Beck-Teboulle ’09]
Nesterov’s Method (NESTA) [Becker-Bobin-Candés ’09]

6 Augmented Lagrangian Methods [Yang-Zhang ’09, AY et al ’10]

Bergman [Yin et al. ’08]
YALL1 [Yang-Zhang ’09]
SALSA [Figueiredo et al. ’09]
Primal ALM, Dual ALM [AY et al ’10]

Reference:

AY, et al., A review of fast `1-minimization algorithms for robust face recognition. ICIP, 2010.
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Homotopy Methods

The existence of measurement errors (assume Gaussian)

x∗ = arg min ‖x‖1 subj. to ‖e‖2 = ‖b− Ax‖2 < ε

Lagrangian method

x∗ = arg min F (x) = arg min
1

2
‖b− Ax‖2

2 + λ‖x‖1

.
= arg min f (x) + λg(x)

Homotopy refers to the fact

When λ→ +∞ x∗ → 0;

When λ→ 0 x∗ → b = Ax.

F (x) = f (x) + λg(x) is called a composite objective function

1 f (x) = 1
2‖b− Ax‖2

2 is convex and smooth.
2 g(x) = ‖x‖1 is convex but not smooth.
3 As a result, ∇F (x) does not exist!
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`1-Minimization Group Sparsity Parallelization Conclusion

Subgradient Method

The anomaly of ∇‖x‖1 occurs exactly at those coefficients where xi = 0.

Subdifferential

∂|xi |
.

= ui =

8<: +1 when xi > 0
−1 when xi < 0

[−1, 1] when xi = 0

Homotopy Algorithm

1 Initialization: x = 0; set a large value for λ.

2 In kth iteration: Set ∂F = 0⇔ ∂g(x) = −(1/λ)∂f (x).

3 Update x(k+1) = x(k) + γ∆x based on ∂g(x).

4 Reduce λ→ 0 and jump to (2).
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`1-Minimization Group Sparsity Parallelization Conclusion

Augmented Lagrangian Method (ALM)

`1-Min:
x∗ = arg min ‖x‖1 subj. to b = Ax

(adding a penalty term for the equality constraint)

Lµ(x) = ‖x‖1 +
µ

2
‖b− Ax‖2

2 subj. to b = Ax.

Augmented Lagrange Function [Bertsekas ’03]:

Lµ(x, y) = ‖x‖1 + 〈y, b− Ax〉+
µ

2
‖b− Ax‖2

2,

where y is the Lagrange multipliers for the constraint b = Ax.
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Convergence of ALM [Hestenes ’69, Powell ’69, Bertsekas ’03]

Lµ(x, y) = ‖x‖1 + 〈y, b− Ax〉+
µ

2
‖b− Ax‖2

2,

1 When y close to y∗, by Lagrange Multiplier Theory,

arg min
x

Lµ(x, y∗) = arg min
x

Lµ(x).

2 When µ is very large, high cost of infeasibility implies

Lµ(x, y) ≈ (P1).

Theorem: Convergence of ALM [Bertsekas ’03]

When optimize Lµ(x, y) w.r.t. a sequence µk →∞, and {yk} is bounded, then the limit point of
{xk} is the global minimum of the original problem, namely, `1-min.
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Minimize Augmented Lagrangian

Update yk+1: The Method of Multipliers [Rockafellar ’73]

Assume (xk , µk ) fixed,
yk+1 = yk + µk∇yLµk (xk , yk )

with complexity O(dn).

Update xk+1: Nesterov’s Method [Nesterov ’07, Becker et al. ’09]

Let f (x) = µ
2 ‖b− Ax‖2

2 + 〈yk , b− Ax〉 and g(x) = ‖x‖1:

L
µk (x, yk ) = f (x) + g(x)

Form a second-order upper bound of L
µk (x, yk ) based on two step history (xk , xk−1):

zk = α1xk + α2xk−1

Q(x, z)
.
= f (z) + 〈∇f (z), x− z〉 + L

2 ‖x− z‖2 + g(x).
(1)

Minimize Q(x, z) via soft-thresholding: soft(x, a) = sgn(x) max(|x| − a, 0)
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Simulation: Speed of `1-Min Solvers

Table: Source signal in 1000-D: sparsity = 200; random projection = 600-D.

Algorithm Estimate Runtime

PDIPA 63 s

Homotopy 1.7 s

ALM 0.16 s
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Group Sparsity Minimization

Convexification of entry-wise sparsity [Donoho & Elad ’03, Donoho ’05, Candès & Tao ’06]

(P0) : x∗0 = arg min ‖x‖0 subj. to Ax = b

(P1) : x∗1 = arg min ‖x‖1 subj. to Ax = b

Convexification of group sparsity `0,p-min: Let A = [A1, · · · ,AK ]

(P0,p) : x∗0,p = argmin
x

KX
i=1

I(‖xi‖p > 0), subj. to Ax
.

=
ˆ
A1 · · · AK

˜ 264x1

...
xK

375 = b

1 Uniqueness and stability [Lu & Do ’08, Blumensath & Davies ’09]

group Spark condition, group RIP condition, etc.

2 Efficient convex surrogates [Eldar & Mishali ’09, Stojnic et al. ’09, Sprechmann et al. ’10, Elhamifar & Vidal ’11]

(P1,2) : x∗1,2 = arg min
KX

i=1

‖xi‖2 subj. to Ax = b
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Application: Robust Face Recognition

1 Face subspace model [Belhumeur et al. ’97, Basri & Jacobs ’03]

Assume b belongs to Class i :
b = Ai xi

2 Sparse representation encodes membership [Wright et al. ’09, ’10]

b = [A1,A2, · · · ,AK ][x1; x2; · · · ; xK ] = Ax
⇒ x∗ = [0; · · · ; 0; xi ; 0; · · · ; 0]

3 In the presence of gross image corruption: Cross-and-Bouquet model

min ‖x‖1 + ‖e‖1 subj. to b = Ax + e
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Robust Face Recognition as a Group Sparsity Recovery Problem

Can we frame robust face recognition using group sparsity?

1 Negative:
b = [A1,A2, · · · ,AK , I ][x1; x2; · · · ; xK ; e]

Standard group sparsity formulation, whereby e is treated as the (K + 1)th group, has a
trivial solution of 1-group-sparsity:

e = b; x = 0.

2 Proper formulation: Mixed sparsity minimization (MSM) problem

(MP0,p) : {x∗0,p , e∗0} = argmin
(x,e)

`0,p(x) + γ‖e‖0, subj. to
ˆ
A1 · · · AK

˜ 264x1

...
xK

375 = b + e

3 How to convexify the NP-Hard problem?
Out of all p ≥ 1, which value should we choose to convexify (mixed) group sparsity problems?
Does this choice make any difference in accuracy and speed?
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Convexify Mixed Sparsity Minimization via Lagrange Biduality

Consider a generalization of entry-wise sparsity and group sparsity:

x∗ = argmin
x

KX
k=1

ˆ
αkI(‖xk‖p > 0) + βk‖xk‖0

˜
, subj. to

ˆ
A1 · · · AK

˜ 264x1

...
xK

375 = b

Regularize ‖x∗‖∞ ≤ M

x∗primal = argmin
x

KX
k=1

ˆ
αkI(‖xk‖p > 0) + βk‖xk‖0

˜
, subj. to Ax = b and ‖x‖∞ ≤ M
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A Mixed Integer Program

Introduce two sparsity indicator variables:
z ∈ {0, 1}n for entry-wise sparisty; g ∈ {0, 1}K for group sparsity

The primal problem becomes a mixed integer program:

{x∗+, x∗−, z∗, g∗}= argmin
{x+≥0,x−≥0,z,g}

`
αT g + βT z

´
subj. to

A(x+ − x−) = b,Πg ≥
1

M
(x+ + x−), z ≥

1

M
(x+ + x−)

where Π ∈ {0, 1}n×K is a membership matrix for the group sparsity:

Π =

26664
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

37775⇒ Πg =

26664
0
1
1
1
1

37775 (2)
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Sketch of the Biduality Approach

Primal (NP-Hard)

argmin
{x+≥0,x−≥0,z,g}

`
αT g + βT z

´
g ∈ {0, 1}K , z ∈ {0, 1}n,

A(x+ − x−) = b

Πg ≥ 1
M (x+ + x−)

z ≥ 1
M (x+ + x−)

⇒

Lagrangian Dual

Concave and LP
⇔

Bidual (Convex and LP)

argmin
{x+≥0,x−≥0,z,g}

`
αT g + βT z

´
g ∈ [0, 1]K , z ∈ [0, 1]n,

A(x+ − x−) = b

Πg ≥ 1
M (x+ + x−)

z ≥ 1
M (x+ + x−)

Lagrangian Bidual of Mixed Sparsity Minimization Problem

x∗bidual = argmin
x

1

M

KX
k=1

`
αk‖xk‖∞ + βk‖xk‖1

´
subj. to (a) Ax = b and (b) ‖x‖∞ ≤ M.

`∞-norm promotes dense signal within the groups; while `1-norm promotes sparsity.

Biduality approach provides a rigorous and operable method to convexify an NP-hard
problem.
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Corollary I: Bidual of Group Sparsity

Lagrangian Bidual

x∗bidual = argmin
x

1

M

KX
k=1

ˆ
αk‖xk‖∞ + βk‖xk‖1

˜
subj. to (a) Ax = b and (b) ‖x‖∞ ≤ M.

Let α = 1 and β = 0, then with a conservative M, the bidual of (P0,p) is

(P1,∞) : x∗1,∞ = argmin
x

KX
k=1

‖xk‖∞ subj. to Ax = b (3)

Multiple Measurement Vector (MMV) problem [Eldar & Mishali ’09]

Y = AX ⇔ vec(Y T ) = (A⊗ I )vec(XT )

Bidual of group sparsity leads to the same MMV convex relaxation [Tropp ’06]:

(MMV0) : min ‖X‖row−0 subj. to Y = AX

(MMV1,∞) : min
P

i maxj |xi,j | subj. to Y = AX
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Corollary II: Bidual of Sparsity-based Classification

1 For robust face recognition, we consider MSM

(MP0,p) : {x∗0,p , e∗0} = argmin
(x,e)

`0,p(x) + γ‖e‖0, subj. to
ˆ
A1 · · · AK

˜ 264x1

...
xK

375+ e = b

Its bidual is

{x∗1,∞, e∗1} = argmin
{x,e}

KX
k=1

‖xk‖∞ + γ‖e‖1 subj. to Ax + e = b.

2 Numerical implementation

As an LP, available standard packages include CVX and MOSEK.

Specialized toolboxes exist: TFOCS and iCAP.

Other accelerated linear programming algorithms: ALM.

Question: Does the biduality result lead to improved classification in face recognition?
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Face Recognition Performance via MOSEK

(a) Unoccluded Images (b) Occluded Images

Figure: Images from one session of the AR database.

Group Sparsity `1 `1,2 `1,∞

unoccluded 92% 93.6% 94.7%
occluded 49.7% 53.6% 57.6%

Total 65.3% 68.3% 69.7%

Speed 53.7s 256.5s 60.9s

Table: 100-subject test set consists of 700 un-occluded images and 1200 occluded images.

Reference:

AYY, et al. On the Lagrangian biduality of sparsity minimization problems. UCB Tech Report, 2011.

http://www.eecs.berkeley.edu/~yang `1-Minimization, Group Sparsity, and Parallelization

http://www.eecs.berkeley.edu/~yang


`1-Minimization Group Sparsity Parallelization Conclusion

Capability to implement SRC on parallel computing environments

1 Face Recognition Module [Wright et al. ’09]

min
x,e
‖x‖1 + ‖e‖1 subj. to b = Ax + e. (4)

2 Face Alignment Module [Wagner et al. ’11]

τ̂i = arg min
x,e,τi

‖e‖1 subj. to b ◦ τi = Ai x + e, (5)

Local linearization
min

x,e,∆τj

‖e‖1 subj. to b ◦ τj + Jj ∆τ = Ai x + e, (6)

where Jj
.
= ∇τj

(b ◦ τj ) is the Jacobian, and ∆τ is an iterative update to τ .

Per-class alignment is equivalent to iteratively solving a linear program:

min
w,e
‖e‖1 subj. to bj = [Ai ,−Jj ]w + e. (7)
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Demo: Misalignment & Corruption Correction

Alignment Demo
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Choice of `1-Min Algorithm for Parallelization

1 Primal-Dual Interior-Point
Log-Barrier [Frisch ’55, Karmarkar ’84, Megiddo ’89, Monteiro-Adler ’89, Kojima-Megiddo-Mizuno
’93]

2 Homotopy
Homotopy [Osborne-Presnell-Turlach ’00, Malioutov-Cetin-Willsky ’05, Donoho-Tsaig ’06]
Polytope Faces Pursuit (PFP) [Plumbley ’06]
Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani ’04]

3 Gradient Projection
Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright ’07]
Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky ’07]

4 Iterative Thresholding
Soft Thresholding [Donoho ’95]
Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo ’08]

5 Proximal Gradient [Nesterov ’83, Nesterov ’07]

FISTA [Beck-Teboulle ’09]
Nesterov’s Method (NESTA) [Becker-Bobin-Candés ’09]

6 Augmented Lagrangian Methods [Yang-Zhang ’09, AY et al ’10]

Bergman [Yin et al. ’08]
YALL1 [Yang-Zhang ’09]
SALSA [Figueiredo et al. ’09]
Primal ALM, Dual ALM [AY et al ’10]
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Two Choices for Parallelization

1 Multicore CPU (dual quad-core Intel E5530 processor)
CPU Speed: 2.4 GHz
Caches on dual CPU

8 MiB L3

32 KiB L1

256 KiB
L2

32 KiB L1

256 KiB
L2

32 KiB L1

256 KiB
L2

32 KiB L1

256 KiB
L2

(Too big to show)

8 MiB L3

32 KiB L1

256 KiB
L2

32 KiB L1

256 KiB
L2

32 KiB L1

256 KiB
L2

32 KiB L1

256 KiB
L2

(Too big to show)

Memory bandwidth: 25.6 GB/sec

2 Multicore GPU (single Nvidia GTX 480 with 14 SMPs)
GPU Speed: 1.4 GHz
Caches on a GTX 480

64 KiB
L1 +

shared

768 KiB L2

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

64 KiB
L1 +

shared

Memory bandwidth: 177.4 GB/sec

3 Problem size: 20 images per subject class occupy 384 KiB.
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`1-Min Simulation: Algorithm-Level Parallelism

One Problem At A Time
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Trade-off on Random Data

CPU: outperforms on small problems (faster processor speed).

GPU: outperforms on large problems (larger memory bandwidth).
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Recognition Module Benchmark on a 10-Subject Training Set

Face Recognition Always Solves A Single Problem
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Speed vs Resolution

With a small data set, CPU outperforms GPU by a wide margin (4×).

New ALM C implementation accommodates much higher image resolutions in real time.
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Alignment Module Benchmark: System-Level Parallelism

Batch Parallel Process As Many Alignments As Possible
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Speed of Alignment: Each class contains 20 training images at 64× 64 resolution

Sequential: 600 ms per subject.

Parallel: 40 ms per subject.
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Conclusion
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