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Compressive Sensing Theory: An Introduction

o Compressive Sensing (CS) deals with an estimation problem in underdetermined systems of
linear equations, A in general is full rank:

b= Ax where AcRY*" (d <n
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Compressive Sensing Theory: An Introduction

o Compressive Sensing (CS) deals with an estimation problem in underdetermined systems of
linear equations, A in general is full rank:

b= Ax where AcRY*" (d <n
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@ Two interpretations:

@ Compression: A as a sensing matrix.
@ Representation: A as a prior dictionary.
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Compressive Sensing Theory: An Introduction

o Compressive Sensing (CS) deals with an estimation problem in underdetermined systems of
linear equations, A in general is full rank:
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@ Two interpretations:

@ Compression: A as a sensing matrix.
@ Representation: A as a prior dictionary.

o Infinitely many solutions for x, without extra constraints
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¢y/¢1 Equivalence Relationship for Sparsest Solutions

o {p-Minimization (NP-Hard)

x* = argmin|[x|lo subj. to b= Ax.
X

|| - |lo simply counts the number of nonzero terms.

1-0 ball
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¢y/¢1 Equivalence Relationship for Sparsest Solutions

o {p-Minimization (NP-Hard)

x* = argmin|[x|lo subj. to b= Ax.
X

|| - |lo simply counts the number of nonzero terms.

1-0 ball

@ (1-Minimization (Linear Program)

x* =argmin|x|1 subj. to b= Ax.
X

lxlle = Pal+ |xef + - -+ [xal.

b=Ax

SN
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Feasibility and Uniqueness: £p-Minimization

Spark Condition

o Spark(A): smallest number of columns that are linearly dependent
@ Example I: Identity matrix / € RYX?, Spark(A) = d+1;

1 0 1 0
@ Example II: |:0 1 0 1], Spark(A) = 2;
@ Example Ill: Random matrix [vi, v, - - - ,v,] € R¥*", Spark(A) = d41 (with high probability);
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Feasibility and Uniqueness: £p-Minimization

Spark Condition

o Spark(A): smallest number of columns that are linearly dependent
@ Example I: Identity matrix / € RYX?, Spark(A) = d+1;

1 0 1 0
@ Example II: |:0 1 0 1], Spark(A) = 2;
@ Example Ill: Random matrix [vi, v, - - - ,v,] € R¥*", Spark(A) = d41 (with high probability);

o Sparse signal x can be uniquely recovered by £p-min if

Spark(A)

X|lo <
[

© Suppose x; # xp both satisfy the spark condition, and b = Ax;, b = Ax,.
Q A(x1 —x2) =Ay=b—b=0.

© But |lyllo < w + w = Spark(A). Contradiction.
O

Estimating Spark(A) is as expensive as {p-min itself! ‘ Berkele
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Feasibility and Uniqueness: ¢1-Minimization

k-Neighborliness Condition

@ Define cross polytope C and quotient polytope P such that P = AC.

o x is k-sparse < x lies on a unique (k — 1)-face of C.
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@ Define cross polytope C and quotient polytope P such that P = AC.
o x is k-sparse < x lies on a unique (k — 1)-face of C.
o Necessary and Sufficient:

@ If the (k — 1)-face where x lies maps to a face of P, then £!/£° holds for this specific x.
@ If all (k — 1)-faces of C map to the faces of P on the boundary, 21/20 holds for all k-sparse signals.
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Why #1-Minimization is still a difficult problem?

o General linear-programming toolboxes do exist: cvx, SparseLab.
However, interior-point methods are very expensive in HD space.

Average Run Time [£
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Why #1-Minimization is still a difficult problem?

o General linear-programming toolboxes do exist: cvx, SparseLab.
However, interior-point methods are very expensive in HD space.
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@ Improve speed via new numerical algorithms.

o Improve accuracy by exploiting finer (group) data structure of the problems.

b=[A1, A, - ,Ak]x +e.
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/1-Min Literature

© Primal-Dual Interior-Point

o Log-Barrier [Frisch '55, Karmarkar '84, Megiddo '89, Monteiro-Adler '89, Kojima-Megiddo-Mizuno

'93]

@ Homotopy

e Homotopy [Osborne-Presnell-Turlach '00, Malioutov-Cetin-Willsky '05, Donoho-Tsaig '06]

o Polytope Faces Pursuit (PFP) [Plumbley '06]

o Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani '04]
© Gradient Projection

o Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright '07]

o Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky '07]
Q Iterative Thresholding

o Soft Thresholding [Donoho '95]

o Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo '08]
© Proximal Gradient [Nesterov '83, Nesterov '07]

o FISTA [Beck-Teboulle '09]

o Nesterov's Method (NESTA) [Becker-Bobin-Candés '09]
O Augmented Lagrangian Methods [Yang-Zhang '09, AY et al '10]

o Bergman [Yin et al. '08]

o YALL1 [Yang-Zhang '09]

o SALSA [Figueiredo et al. '09]

o Primal ALM, Dual ALM [AY et al '10]

Reference: Bel‘keley

AY, et al., A review of fast £1-minimization algorithms for robust face recognition. 1CIP, 2010. ~  ‘rwwsnee
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Homotopy Methods

@ The existence of measurement errors (assume Gaussian)

x* = argmin||x||1 subj. to |le]]2 = ||b — Ax|]2 < €
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Homotopy Methods

@ The existence of measurement errors (assume Gaussian)
x* = argmin||x||1 subj. to |le]]2 = ||b — Ax|]2 < €
o Lagrangian method

1
x* =argmin F(x) = argminaHbfo||§+/\||x||1

= argminf(x) + Ag(x)
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Homotopy Methods

@ The existence of measurement errors (assume Gaussian)

x* = argmin||x||1 subj. to |le]]2 = ||b — Ax|]2 < €

o Lagrangian method

1
x* =argmin F(x) = argmin aHbfo||§+/\||x||1
= argminf(x) + Ag(x)

o Homotopy refers to the fact

When \ — +oo x* — 0;
When A - 0 x* — b = Ax.
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Homotopy Methods

@ The existence of measurement errors (assume Gaussian)

x* = argmin||x||1 subj. to |le]]2 = ||b — Ax|]2 < €

o Lagrangian method

1
x* =argmin F(x) = argmin aHbfo||§+/\||x||1
= argminf(x) + Ag(x)

o Homotopy refers to the fact

When \ — +oo x* — 0;
When A - 0 x* — b = Ax.

(x) + Ag(x) is called a composite objective function

f
f(x) = 1||lb — Ax]|3 is convex and smooth.
g(x) = ||x]|1 is convex but not smooth.
As a result, VF(x) does not exist!
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Subgradient Method

@ The anomaly of V||x||1 occurs exactly at those coefficients where x; = 0.

o Subdifferential
+1 when x; > 0
Olxi| = uj = -1 when x; < 0
[-1,1] when x; =0
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Subgradient Method

@ The anomaly of V||x||1 occurs exactly at those coefficients where x; = 0.

o Subdifferential
+1 when x; > 0
Olxi| = uj = -1 when x; < 0
[-1,1] when x; =0

Homotopy Algorithm

O Initialization: x = 0; set a large value for .

@ In kth iteration: Set OF = 0 < dg(x) = —(1/X)9f(x).
© Update x(kt1) = x(k) 4 ~Ax based on dg(x).

Q Reduce A — 0 and jump to (2).
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Augmented Lagrangian Method (ALM)

o (1-Min:
x* = argmin||x||1 subj. to b= Ax

(adding a penalty term for the equality constraint)

Lu(x) = [x]l1 + %Hb — Ax|2 subj. to b= Ax.
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Augmented Lagrangian Method (ALM)

o (1-Min:
x* = argmin||x||1 subj. to b= Ax

(adding a penalty term for the equality constraint)

Lu(x) = [x]l1 + %Hb — Ax|2 subj. to b= Ax.

o Augmented Lagrange Function [Bertsekas '03]:
I
Lu(xy) = lixll1 + {y, b — Ax) + —[lb — Ax|[3,

where y is the Lagrange multipliers for the constraint b = Ax.
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Convergence of ALM [Hestenes '69, Powell '69, Bertsekas '03]

I
LN(va) = HX”l + <y7b - AX> + EHb - AX”%,

@ When y close to y*, by Lagrange Multiplier Theory,

argmin L, (x,y") = arg min L, (x).
X X
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Convergence of ALM [Hestenes '69, Powell '69, Bertsekas '03]

I
LN(va) = HX”l + <y7b - AX> + EHb - AX”%,

@ When y close to y*, by Lagrange Multiplier Theory,

argmin L, (x,y") = arg min L, (x).
X X

@ When p is very large, high cost of infeasibility implies

Lu(x,y) = (P1).
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Convergence of ALM [Hestenes '69, Powell '69, Bertsekas '03]

I
LI»‘(X7Y) = HX”l + <y7b - AX> + EHb - AX”%,

@ When y close to y*, by Lagrange Multiplier Theory,

argmin L, (x,y") = arg min L, (x).
X X

@ When p is very large, high cost of infeasibility implies

Lu(x,y) = (P1).

Theorem: Convergence of ALM [Bertsekas '03]

When optimize L, (x,y) w.r.t. a sequence K — 0o, and {y*} is bounded, then the limit point of
{xk} is the global minimum of the original problem, namely, £1-min.
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Minimize Augmented Lagrangian

o Update y**1: The Method of Multipliers [Rockafellar '73]
Assume (x¥, u¥) fixed,
Y =y VL (K yR)

with complexity O(dn).
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Minimize Augmented Lagrangian

o Update y**1: The Method of Multipliers [Rockafellar '73]
Assume (x¥, u¥) fixed,
Y =y VL (K yR)
with complexity O(dn).
o Update x¥*1: Nesterov’s Method [Nesterov '07, Becker et al. '09]
o Let f(x) = 4lb — Ax|13 + (y*,b — Ax) and g(x) = [Ix||1:
Lﬂk(xyyk) = f(x) + &(x)

o Form a second-order upper bound of L« (x, y¥) based on two step history (x*, x*~1):
= alxk + Q2Xk_1 (1)
Qx,z) = f(2)+(VF(2),x—2)+ 5llx —z|* + g(x).

o Minimize Q(x, z) via soft-thresholding: soft(x, a) = sgn(x) max(|x| — a, 0)

3 2
15

2
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Simulation: Speed of #1-Min Solvers

Table: Source signal in 1000-D: sparsity = 200; random projection = 600-D.

[ Algorithm [ Estimate [ Runtime
mH datllodiebid o1
r ‘ ‘\ V'Hv ‘l I‘V\HIH U‘f ||\
PDIPA o a we e w0 wm 63s
Il llu\“‘ \‘l bl Lty
i T ‘ f ¥ 1 ‘\ I‘HH it U‘f i
Homotopy A 1.7s
mﬂ Tlm\‘ w] “.W\”\‘wrw
ALM W W 0.16s
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Group Sparsity Minimization

o Convexification of entry-wise sparsity [Donoho & Elad '03, Donoho '05, Candés & Tao '06]

(Po): x§ =argmin]lx|lo subj. to Ax=b
(P1): x} =argmin|x||y subj. to Ax=b
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Group Sparsity Minimization

o Convexification of entry-wise sparsity [Donoho & Elad '03, Donoho '05, Candés & Tao '06]

& =argmin||x|lo subj. to Ax=b

—~
P
~

x
=}
|

(P1): x} =argmin|x||y subj. to Ax=b

o Convexification of group sparsity o p-min: Let A = [Aq,---, Ak]
K X1
(Pop): x5, =argminy I(|xill, >0), subj to Ax=[A --- Ak]|:@|=b
- '
XK

© Uniqueness and stability [Lu & Do '08, Blumensath & Davies '09]
group Spark condition, group RIP condition, etc.

@ Efficient convex surrogates [Eldar & Mishali '09, Stojnic et al. '09, Sprechmann et al. '10, Elhamifar & Vidal '11]

K

(P12): X, =argmin Z |Ixi[l2 subj. to Ax=b
i=1

Berkeley
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Application: Robust Face Recognition

@ Face subspace model [Belhumeur et al. '97, Basri & Jacobs '03]
Assume b belongs to Class i:
b= A,'X,‘

@ Sparse representation encodes membership [Wright et al. '09, '10]

b=[A1, Az, -, Ax][x1; x2; - - - xk] = Ax
= x*=[0;---;0;%;;0;---,;0]

. | |
W

01

Testinglnput  Feature Extraction .
bbbyt "
™ 0 3 El o0 a0

© In the presence of gross image corruption: Cross-and-Bouquet model

min ||x||1 + ||le|l1 subj. to b= Ax+e
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Robust Face Recognition as a Group Sparsity Recovery Problem

Can we frame robust face recognition using group sparsity?
O Negative:
b =[A1, Az, -+, Ak, I][x1i%2; - Xk €]
Standard group sparsity formulation, whereby e is treated as the (K + 1)th group, has a
trivial solution of 1-group-sparsity:

e=Db;x=0.

Berkeley
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Robust Face Recognition as a Group Sparsity Recovery Problem

Can we frame robust face recognition using group sparsity?
O Negative:
b =[Ay, Ag, -, A, ][x15 %25 -+ Xk €]

Standard group sparsity formulation, whereby e is treated as the (K + 1)th group, has a
trivial solution of 1-group-sparsity:
e=Db;x=0.

@ Proper formulation: Mixed sparsity minimization (MSM) problem

X1

(MPg ) : {xap,ea} = ar(gm)in Lo, p(x) + vllello, subj. to [A1 AK] L= b+e
x,e
XK

Berkeley
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Robust Face Recognition as a Group Sparsity Recovery Problem

Can we frame robust face recognition using group sparsity?
O Negative:
b =[A1, Az, -+, Ax, ][x15 %25 - -+ i xk €]

Standard group sparsity formulation, whereby e is treated as the (K + 1)th group, has a
trivial solution of 1-group-sparsity:

e=Db;x=0.

@ Proper formulation: Mixed sparsity minimization (MSM) problem

X1

(MPg ) : {xap,ea‘}:argmin@o,p(x)+'y||eHo, subj. to [A1 AK] =b+e

(x.e)
XK

© How to convexify the NP-Hard problem?

o Out of all p > 1, which value should we choose to convexify (mixed) group sparsity problems?
o Does this choice make any difference in accuracy and speed?
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Convexify Mixed Sparsity Minimization via Lagrange Biduality

o Consider a generalization of entry-wise sparsity and group sparsity:

X1
K
x* = argmin Z [akZ(l|xkllp > O) + Billxkllo], subj. to [A1 -+ Agk] | =b
X k=1 XK
o Regularize ||x*||cc < M
K
X5rimal = arg;nin Z [arZ(|xkllp > 0) + Brllxkllo], subj. to Ax =b and [|x||cc <M
k=1

Berkeley
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A Mixed Integer Program

@ Introduce two sparsity indicator variables:
z € {0,1}" for entry-wise sparisty; g € {0,1}¥ for group sparsity
z

-

X

n g

} 0]
«— [*| [—>[1]

0]

o The primal problem becomes a mixed integer program:

{x},x*,z",g"}= argmin (aTg + ﬁTz) subj. to
{x+>0,x_>0,z,g}

1 1
A(x4 —x—) =b,MNg > M(X+ +x-),z2> M(X+ +x-)
where M € {0,1}"%K is a membership matrix for the group sparsity:
1 0 O 0
0 1 0 1
Nn=1[0 1 ol =nNg=|1 )
0 0 1 1
o 0 1 . Berkeley
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Sketch of the Biduality Approach

Primal (NP-Hard) Lagrangian Dual Bidual (Convex and LP)

argmin (a"g+B"2) argmin (a"g+B"z2)
{x} >0,x_ >0,2,8} = & {x>0x_>02g}
« Concave and LP P
g € {0,1}",z € {0,1}", g €[0,1]",z € [0,1]",
A(xy —x_)=b A(xy —x_)=b
Mg > 4 (x+ +x-) Mg > 4 (xs +x-)
2> (x4 +x2) 2> f(x +x-)
o

.eecs.berkeley.edu/~yang £1-Mi ization, Group Sparsity, and Parallelization
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Sketch of the Biduality Approach

Primal (NP-Hard) Lagrangian Dual

Bidual (Convex and LP)
argmin (a"g+B"2) argmin (a"g+B"z2)
{x4>0,x_ >0,2,g} = & {xp20x_>0z,8}
Concave and LP
g€ {0,1}",z € {0,1}", ge0,1%z€0,1],
A(xy —x_)=b A(xy —x_)=b
Mg > (x +x_) Mg > (x +x_)
22> g(xs +x2)

2> g(xs +x-)

Lagrangian Bidual of Mixed Sparsity Minimization Problem

K
* q 1 a
Xjidual = 2rgmin - > (aulixelloo + Bellxkll1)  subj. to (a) Ax =b and (b) [|x[|ec < M.
x k=1

@ {o-norm promotes dense signal within the groups; while £1-norm promotes sparsity.

o Biduality approach provides a rigorous and operable method to convexify an NP-hard
problem.
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Corollary I: Bidual of Group Sparsity

Lagrangian Bidual

K
* .1 .
Xpidual = arg:mnﬁ Z [ak”kaoo —I—BkakHl] subj. to (a) Ax =b and (b) [|x]|cc < M.
k=1

o Let =1 and 3 =0, then with a conservative M, the bidual of (Py ) is

K
(Proo): X oo = argminz [[xklloo subj. to Ax=b 3)
k=1
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Corollary I: Bidual of Group Sparsity

Lagrangian Bidual

K

* .1 .
Xpidual = arg:mnﬁ Z [ak”kaoo —I—BkakHl] subj. to (a) Ax =b and (b) [|x]|cc < M.
k=1

o Let =1 and 3 =0, then with a conservative M, the bidual of (Py ) is

K
(Proo): X oo = argminz [[xklloo subj. to Ax=b 3)
k=1

o Multiple Measurement Vector (MMV) problem [Eldar & Mishali '09]
Y = AX & vec(YT) = (A® I)vec(XT)
Bidual of group sparsity leads to the same MMV convex relaxation [Tropp '06]:

(MMVW,) - min || X|[row—o subj. to Y = AX
MMVi o) : min > . max; |x; ;| subj. to Y =AX
; i S 1Xij )
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Corollary Il: Bidual of Sparsity-based Classification

@ For robust face recognition, we consider MSM

x1
(MPy ) : {xé"p,ea} = argmin £o p(x) + v|lello, subj. to [A1 AK] D te= b
x,e »
Its bidual is
K
{x{,00-€1} = argmin Z [IXklloo + Yllell1  subj. to Ax+e=b.
xe} -1

@ Numerical implementation

o As an LP, available standard packages include CVX and MOSEK.
o Specialized toolboxes exist: TFOCS and iCAP.

o Other accelerated linear programming algorithms: ALM.
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Group Sparsity
O000e

Corollary Il: Bidual of Sparsity-based Classification

@ For robust face recognition, we consider MSM

x1
(MPy ) : {xé"p,ea} = argmin £o p(x) + v|lello, subj. to [A1 AK] D te= b
x,e »
Its bidual is
K
{x{,00-€1} = argmin Z [IXklloo + Yllell1  subj. to Ax+e=b.
xe} -1

@ Numerical implementation

o As an LP, available standard packages include CVX and MOSEK.
o Specialized toolboxes exist: TFOCS and iCAP.

o Other accelerated linear programming algorithms: ALM.

Question: Does the biduality result lead to improved classification in face recognition?
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Face Recognition Performance via MOSEK

(a) Unoccluded Images (b) Occluded Images

Figure: Images from one session of the AR database.

[ Group Sparsity [ 41 | hip | fi0o |
unoccluded 92% 93.6% | 94.7%
occluded 49.7% | 53.6% | 57.6%

Total 65.3% | 68.3% | 69.7%

[ Speed [ 53.7s [ 256.5s [ 60.9s ]

Table: 100-subject test set consists of 700 un-occluded images and 1200 occluded images.

Reference:
AYY, et al. On the Lagrangian biduality of sparsity minimization problems. UCB Tech Report, 2011.



http://www.eecs.berkeley.edu/~yang

Parallelization
[ Je]

Capability to implement SRC on parallel computing environments

@ Face Recognition Module [Wright et al. '09]

min |[x||1 + ||e]l1 subj. to b= Ax+e. (4)
x,e
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Parallelization
[ Je]

Capability to implement SRC on parallel computing environments

@ Face Recognition Module [Wright et al. '09]

min ||x||1 + ||le|l1 subj. to b= Ax+e.
x,e

@ Face Alignment Module [Wagner et al. '11]

edu/~yang £1-Minimization, Group Sparsity, and Parallelization
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Parallelization
[ Je]

Capability to implement SRC on parallel computing environments

@ Face Recognition Module [Wright et al. '09]

min ||x||1 + ||le|l1 subj. to b= Ax+e.
x,e

@ Face Alignment Module [Wagner et al. '11]

-

= argxngiQ llell1 subj. to bor; =Aix+e,
€T

o Local linearization
min |le||1 subj. to boT;+ J,AT = Aix+e,
x,e,ATj

where J; = V(b o 7;) is the Jacobian, and A7 is an iterative update to 7.
o Per-class alignment is equivalent to iteratively solving a linear program:

min |le]|y subj. to b; =[A;, —Jj]w +e.
w,e

(4)

©)

(6)
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Demo: Misalignment & Corruption Correction

Alignment Demo
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Choice of ¢1-Min Algorithm for Parallelization

© Primal-Dual Interior-Point
o Log-Barrier [Frisch '55, Karmarkar '84, Megiddo '89, Monteiro-Adler '89, Kojima-Megiddo-Mizuno
'93]
@ Homotopy
e Homotopy [Osborne-Presnell-Turlach '00, Malioutov-Cetin-Willsky '05, Donoho-Tsaig '06]
o Polytope Faces Pursuit (PFP) [Plumbley '06]
o Least Angle Regression (LARS) [Efron-Hastie-Johnstone-Tibshirani '04]
© Gradient Projection
o Gradient Projection Sparse Representation (GPSR) [Figueiredo-Nowak-Wright '07]
o Truncated Newton Interior-Point Method (TNIPM) [Kim-Koh-Lustig-Boyd-Gorinevsky '07]
Q Iterative Thresholding
o Soft Thresholding [Donoho '95]
o Sparse Reconstruction by Separable Approximation (SpaRSA) [Wright-Nowak-Figueiredo '08]
© Proximal Gradient [Nesterov '83, Nesterov '07]
o FISTA [Beck-Teboulle '09]
o Nesterov's Method (NESTA) [Becker-Bobin-Candés '09]
O Augmented Lagrangian Methods [Yang-Zhang '09, AY et al '10]
o Bergman [Yin et al. '08]
o YALLI [Yang-Zhang '09]
o SALSA [Figueiredo et al. '09]
o Primal ALM, Dual ALM [AY et al '10]
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Two Choices for Parallelization

@ Multicore CPU (dual quad-core Intel E5530 processor)

o CPU Speed: 2.4GHz
o Caches on dual CPU

256 KiB|256 KiB|256 KiB|256 KiB| |256 KiB|256 KiB|256 KiB|256 KiB
L2 L2 L2 L2 L2 L2 L2 L2
A 1 A 8 1 3 X
* 8 MiB L3 7 MiB L
(Too big to show) (Too big to show)
o Memory bandwidth: 25.6 GB/sec
@ Multicore GPU (single Nvidia GTX 480 with 14 SMPs)

o GPU Speed: 1.4 GHz

o Caches on a GTX 480
64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB [ 64 KiB | 64 KiB | 64 KiB | 64 KiB | 64 KiB
L1+ L1+ L1+ L1+ L1+ L1+ L1+ L1+ L1+ L1+
shared | shared | shared | shared | shared | shared | shared [ shared | shared | shared | shared | shared | shared | shared | shared

768 KiB L2

o Memory bandwidth: 177.4 GB/sec
© Problem size: 20 images per subject class occupy 384 KiB.
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¢1-Min Simulation: Algorithm-Level Parallelism

One Problem At A Time

20 :
_ —— GPU
% 15| —e— cPU
£

S 10}

[0}

(2]

&

ooof

C L L L
1000 2000 3000 4000 5000
m (A is size 0.5m x m)

Trade-off on Random Data

@ CPU: outperforms on small problems (faster processor speed).

@ GPU: outperforms on large problems (larger memory bandwidth).
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Recognition Module Benchmark on a 10-Subject Training Set

Face Recognition Always Solves A Single Problem

25 : w ‘ : ‘
w2 X/<—></\</X 1
£
S 157 —*—GPU | |
8 4t —o— CPU |
<
3
oSy (Wo 1

0 1 1 1
20 40 60 80 100 120 140
Window width (pixels)

Speed vs Resolution
o With a small data set, CPU outperforms GPU by a wide margin (4x).
o New ALM C implementation accommodates much higher image resolutions in real time.
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Alignment Module Benchmark: System-Level Parallelism

Batch Parallel Process As Many Alignments As Possible

40 T w w T
—GPU

CPU, library threading - 1
— — — CPU, manual threading '

W
o
T

Elapsed time (s)
n
o

—
o
T

!

0 50 100 150 200 250
Number of training users

Speed of Alignment: Each class contains 20 training images at 64 X 64 resolution

@ Sequential: 600 ms per subject.

@ Parallel: 40 ms per subject.
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Conclusion
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