# Robust and Secure Iris Recognition

Vishal M. Patel University of Maryland, UMIACS pvishalm@umiacs.umd.edu

IJCB 2011 Tutorial "Sparse Representation and Low-Rank Representation for Biometrics"





# Outline

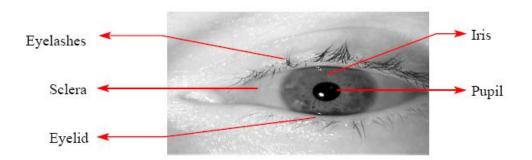
- Iris image selection and recognition
  - Bayesian fusion-based image selection and recognition
  - □ Iris recognition from video
- Secure iris biometric
  - Cancelability through random projections
- Analysis of results



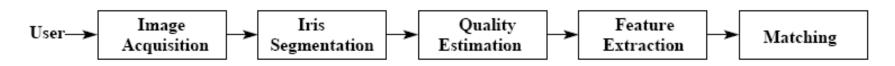


### Iris Recognition

Recognize a person from the texture features on his iris image.



Components of an iris recognition system ([Daugman 93])



 Existing algorithms ([Daugman 93]) give high recognition rates on well acquired iris images.





# Unconstrained Iris Recognition

- Iris images acquired from unconstrained environments suffer from:
  - Specular reflections
  - Segmentation error
  - Occlusion
  - 🛛 Blur



- Direct application of existing algorithms on these images give poor results.
- Select the good images and then do recognition.





### Iris Image Selection and Recognition

- Sparse representation-based algorithm for iris image selection and recognition [Wright *et al.* 2009].
- Assume *L* classes and *n* images per class in gallery.
- The training images of the  $k^{\text{th}}$  class is represented as  $\mathbf{D}_k = [\mathbf{x}_{k1}, ..., \mathbf{x}_{kn}]$
- Dictionary **D** is obtained by concatenating all the training images

$$\mathbf{D} = [\mathbf{D}_1, ..., \mathbf{D}_L] \in \mathbb{R}^{N \times (n.L)}$$
  
=  $[\mathbf{x}_{11}, ..., \mathbf{x}_{1n} | \mathbf{x}_{21}, ..., \mathbf{x}_{2n} | ..... | \mathbf{x}_{L1}, ..., \mathbf{x}_{Ln}]$ 

• The unknown test vector can be represented as a linear combination of the training images as

$$\mathbf{y} = \sum_{i=1}^{L} \sum_{j=1}^{n} \alpha_{ij} \mathbf{x}_{ij}$$





### Basic Formulation

In a more compact form

 $\mathbf{y} = \mathbf{D}\boldsymbol{\alpha} \qquad \boldsymbol{\alpha} = [\alpha_{11}, \dots, \alpha_{1n} | \alpha_{21}, \dots, \alpha_{2n} | \dots | \alpha_{L1}, \dots, \alpha_{Ln}]^T$ 

- The test image can approximately be written as a linear combination of the training images of the correct class.
- The coefficient vector  $\boldsymbol{\alpha}$  is sparse vector.
- α can be recovered by Basis Pursuit as

 $\hat{\alpha} = \arg\min_{\alpha'} \| \alpha' \|_1$  subject to  $\mathbf{y} = \mathbf{D}\alpha'$ .

• A measure of sparsity is the Sparse Concentration Index (SCI), defined by

$$SCI(\alpha) = \frac{\frac{L \cdot \max \|\Pi_i(\alpha)\|_1}{\|\alpha\|_1} - 1}{L - 1}.$$

- Well acquired images will have high SCI.
- Reject the images having low SCI value.





### Selection and Recognition Algorithm

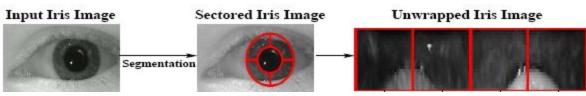
- Given the gallery, construct the dictionary **D** by arranging the training images as its columns.
- Using the test image, by Basis Pursuit, obtain the coefficient vector α.
- Obtain the Sparsity Concentration Index.
- Compare SCI with a threshold to reject the poorly acquired images.
- Find the reconstruction error while representing the test image with coefficients of each class separately.
- Select the class giving the minimum reconstruction error.





### Bayesian Fusion-based Image Selection and Recognition

#### Different regions of the iris have different qualities.



- Recognize the different regions separately and combine the results depending on the quality of the region.
- Let C be the set of possible class labels and M be the number of sectors retained after rejection.
- Let  $d_1, d_2, \ldots, d_M$  be the class labels of the retained sectors.
- The final class label is given by

$$\tilde{c} = \arg \max_{c \in \mathbb{C}} \sum_{j=1}^{M} SCI(d_j) . \delta(d_j = c) \qquad CSCI(c_l) = \frac{\sum_{j=1}^{M} SCI(d_j) . \delta(d_j = c_l)}{\sum_{j=1}^{M} SCI(d_j)}$$
$$\tilde{c} = \arg \max_{c \in \mathbb{C}} CSCI(c)$$





### Recognition from Video

- The sectors of the different frames of the video can be combined based on their quality.
- Let  $Y = \{y^1, y^2, \dots, y^J\}$  be the *J* vectorized frames in the test video.
- Let  $M_i$  be the number of sectors retained by the selection scheme in the  $i^{th}$  frame.
- Let  $y_{j}^{i}$  be the  $j^{ih}$  retained sector in the  $i^{ih}$  frame.
- The final class label is given by

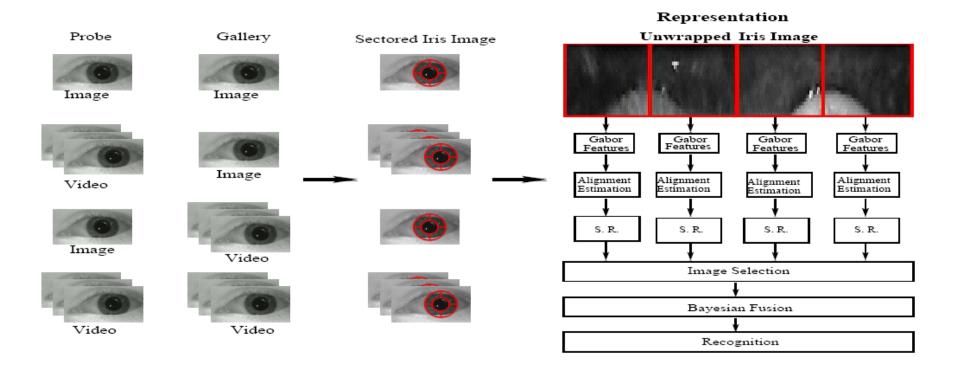
$$\begin{split} \tilde{c} &= \arg \max_{c \in \mathbb{C}} \sum_{i=1}^{J} \sum_{j=1}^{M_i} SCI(d_j^i) . \delta(c = d_j^i) \qquad CSCI(c_l) = \frac{\sum_{i=1}^{J} \sum_{j=1}^{M_i} SCI(d_j^i) . \delta(d_j^i = c_l)}{\sum_{i=1}^{J} \sum_{j=1}^{M_i} SCI(d_j^i)} \\ \tilde{c} &= \arg \max_{c \in \mathbb{C}} CSCI(c) \end{split}$$

where  $d_{j}^{i}$  is the class label assigned by the classifier to  $y_{j}^{i}$ .





## Iris Recognition



Different modes of operation. Both the probe and the gallery can be individual iris images or iris video.





## Cancelable Biometrics

#### Need for Secure Iris Biometric

- Iris patterns are unique to each person
- Iris patterns cannot be re-issued if stolen
- Different patterns required for different applications
- Cancelable Biometrics Apply a revocable and non invertible transformation on the original one.

#### Requirements:

- Different templates should be used in different applications to prevent cross matching.
- Template computation has to be non-invertible to prevent illegal recovery of biometric data.
- **Revocation and reissue should be possible in the event of compromise.**
- Recognition performance should not degrade when a cancelable biometric template is used.

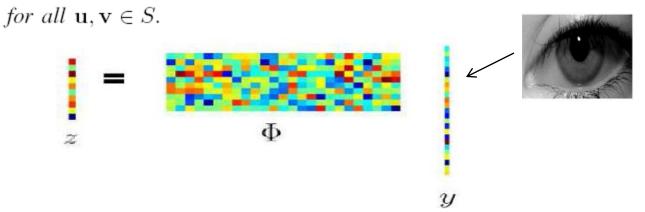




#### Johnson-Lindenstrauss Lemma

**Lemma 1.** (Johnson-Lindenstrauss) Let  $\epsilon \in (0, 1)$  be given. For every set S of  $\sharp(S)$  points in  $\mathbb{I}\!\mathbb{R}^N$ , if n is a positive integer such that  $n > n_0 = O\left(\frac{\ln(\sharp(S))}{\epsilon^2}\right)$ , there exists a Lipschitz mapping  $f : \mathbb{R}^N \to \mathbb{R}^n$  such that

$$(1-\epsilon)\|\mathbf{u}-\mathbf{v}\|^2 \le \|f(\mathbf{u})-f(\mathbf{v})\|^2 \le (1+\epsilon)\|\mathbf{u}-\mathbf{v}\|^2$$



 J-L Lemma - A set of points in a high-dimensional space can be embedded into a space of much lower dimension in such a way that distances between the points are nearly preserved.





## Random Projection (RP) Matrices

- The following are some of the matrices that can be used for cancelability.
  - $n \times N$  random matrices  $\Phi$  whose entries  $\phi_{i,j}$  are independent realizations of Gaussian random variables  $\phi_{i,j} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$ .
  - Independent realizations of  $\pm 1$  Bernoulli random variables

$$\phi_{i,j} \doteq \begin{cases} +1/\sqrt{n}, & \text{with probability } \frac{1}{2} \\ -1/\sqrt{n}, & \text{with probability } \frac{1}{2}. \end{cases}$$
(1)

• Independent realizations of related distributions such as

$$\phi_{i,j} \doteq \begin{cases} +\sqrt{3/n}, & \text{with probability } \frac{1}{6} \\ 0, & \text{with probability } \frac{2}{3} \\ -\sqrt{3/n}, & \text{with probability } \frac{1}{6}. \end{cases}$$
(2)

• Multiplication of any  $n \times N$  random matrix  $\Phi$  with a deterministic orthogonal  $N \times N$  matrix **D**, i.e.  $\Phi$ **D**.





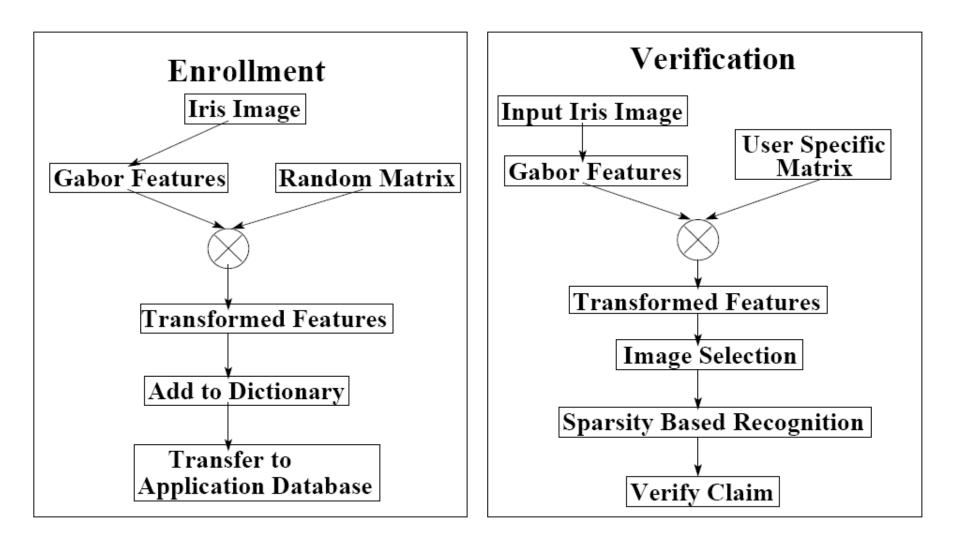
### Sectored Random Projections (SRP)

- Apply RP to different iris sectors separately.
- Advantages:
  - Bad regions cannot corrupt the whole image.
- Cancelability requirements:
  - **Performance** does not drop after applying SRP.
  - **Non-Invertibility** due to RP and dimension reduction.
  - **Revocability** Apply a new RP if the old patterns are lost.
  - **Different Applications** Assign a different matrix for each application.
  - **Compatibility** Only a single matrix multiplication stage has to be added to existing algorithms.





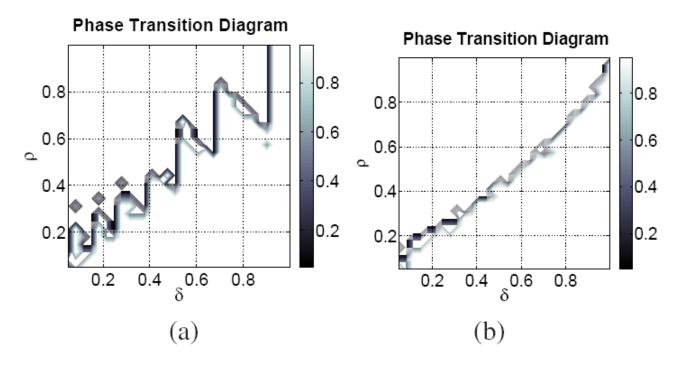
### Random Projections-based Cancelable System







#### Phase Transition Diagrams



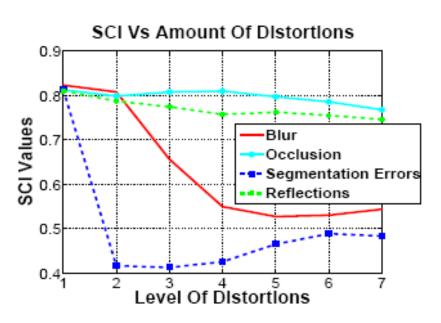
Phase transition diagrams corresponding to the case when the dictionary is (a) **GD** and (b)  $\Phi$ **GD**, where **G** is the Gabor transformation matrix and  $\Phi$  is the random projection matrix for cancelability. In both figures, we observe a phase transition from lower region where the  $\ell_0/\ell_1$  equivalence holds, to the upper region, where one must use combinatorial search to recover the sparsest solution.

$$\hat{\alpha} = \arg\min_{\alpha'} \| \alpha' \|_1$$
 subject to  $\mathbf{y} = \mathbf{D}\alpha'$ .

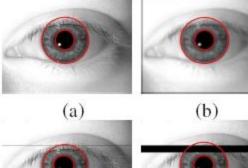


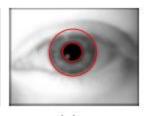


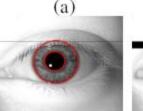
### SCI Values – ND Dataset

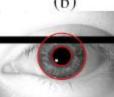


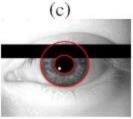
- 15 clean iris images of the left eye of 80 people.
- 12 images per person formed the gallery.
- The SCI falls with increasing levels of distortions.



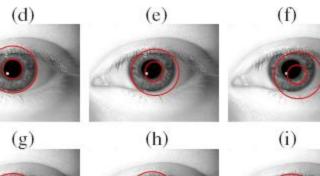


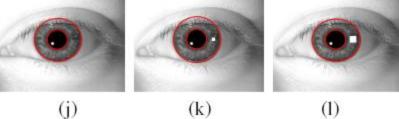










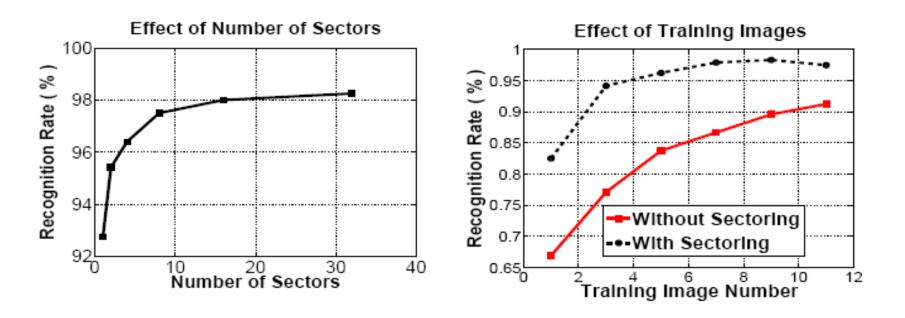


Simulated Distortions on the images from the ND dataset. The detected pupil and iris boundaries are indicated as red circles.





#### Recognition – ND Dataset



•The performance improves significantly as the number of sectors is increased.

- The recognition rate increases with the number of training images.
- Sectoring enhances the recognition performance.

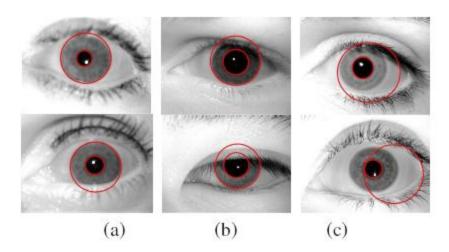




### Recognition Performance – ND Dataset

Table 1: Recognition Rate on ND Dataset

| Image Quality | NN    | Masek's Implementation | Sparsity-based |
|---------------|-------|------------------------|----------------|
| Good          | 98.33 | 97.5                   | 99.15          |
| Blured        | 95.42 | 96.01                  | 98.18          |
| Occluded      | 85.03 | 89.54                  | 90.44          |
| Seg. Error    | 78.57 | 82.09                  | 87.63          |



Iris images with low SCI values in the ND dataset. Note that the images in (a), (b) and (c) suffer from high amounts of blur, occlusion and segmentation errors respectively.





### Recognition Performance – ICE 2005 Dataset

Table 2: Verification rate at an FAR of 0.001 on the ICE 2005 dataset

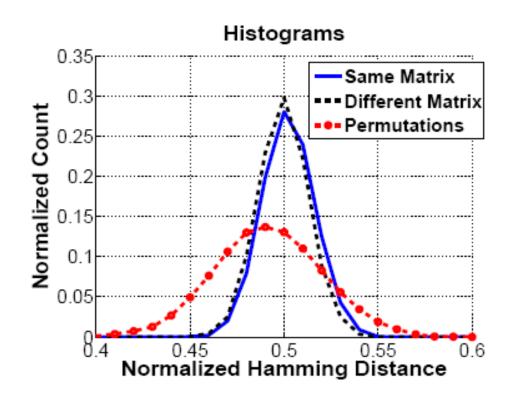
| Method         | Verification Rate (%) |  |
|----------------|-----------------------|--|
| Pelco          | 96.8                  |  |
| WVU            | 97.9                  |  |
| CAS 3          | 97                    |  |
| CAS 1          | 97.8                  |  |
| CMU            | 99.5                  |  |
| SAGEM          | 99.8                  |  |
| Sparsity-based | 98.13                 |  |

- Experiment 1: 1425 iris images corresponding to 120 different classes.
- •10 images per person in gallery and remaining as the test set.





### Normalized Hamming Distance

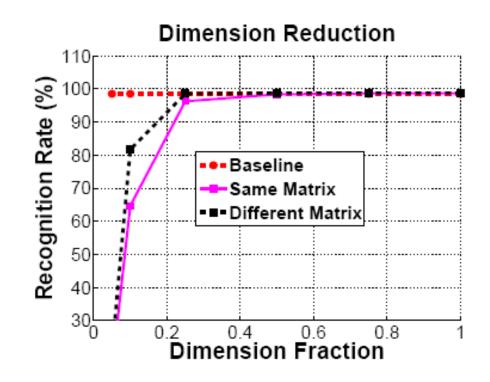


- Normalized Hamming distance histogram peaks at 0.5, indicating that the original and transformed vectors are independent.
- It is impossible to extract original vector from the transformed ones.





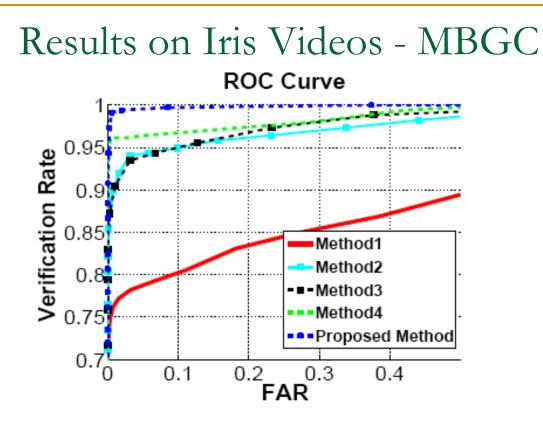
### Cancelability Results



- The performance stays the same up to 30% of the original dimension.
- Same matrix Apply the same random Gaussian matrix for all the users.
- Different matrix Apply different random matrices for different users.







- Method 1 Consider each frame of the video as a different probe.
- Method 2 Average the intensity of the different iris images.
- Method 3 and 4 All possible pairwise Hamming distances between the video frames
- of the probe videos and the gallery videos belonging to the same class are computed.
- •Method 3 uses the average of these Hamming distance as the score.
- •Method 4 uses the minimum of the pairwise Hamming distance as the score.





#### Collaborators:

- Jaishanker K. Pillai, UMD
- Prof. Rama Chellappa, UMD
- Dr. Nalini K. Ratha, IBM

#### Publications:

- J. K. Pillai, V. M. Patel, R. Chellappa and N. K. Ratha, "Secure and Robust Iris Recognition using Random Projections and Sparse Representations," *IEEE PAMI*, 2011.
- J. K. Pillai, V. M. Patel, R. Chellappa and N. K. Ratha, "Sectored Random Projections for Cancelable Iris Biometric," *ICASSP*, 2010.
- J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, "Robust face recognition via sparse representation," *IEEE PAMI*, 2009.

#### Funding support:

• ONR MURI – N00014-08-1-0638.



