Robust and Secure Iris Recognition

Vishal M. Patel

University of Maryland, UMIACS
pvishalm@umiacs.umd.edu

IJCB 2011 Tutorial
“Sparse Representation and Low-Rank Representation for
Biometrics™

Q
IRyLES



Outline

Iris image selection and recognition

0 Bayesian fusion-based image selection and recognition

0 Iris recognition from video
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Ir1s Recognition

= Recognize a person from the texture features on his iris image.
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= Components of an iris recognition system ([Daugman 93])
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= Existing algorithms ([Daugman 93]) give high recognition rates on
well acquired iris images.
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Unconstrained Iris Recognition

= Iris images acquired from unconstrained environments
suffer from:
0 Specular reflections
0 Segmentation error

0 Occlusion

o Blur

= Direct application of existing algorithms on these images
give poor results.

= Select the good images and then do recognition.
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Iris Image Selection and Recognition

Sparse representation-based algorithm for iris image selection
and recognition [Wright ez a/. 2009].

Assume L classes and 7 images per class in gallery.
The training images of the &% class is represented as
D = [Xg1: oo Xier
Dictionary D 1s obtained by concatenating all the training images
D= [D;... D;] e RV>(=L)

= [X11, s X1n|X21s s Xop |- 1Xr1: s XLn]

The unknown test vector can be represented as a linear combination
of the training images as

L T2
Y = E E g3 X5

i=1 =1
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Basic Formulation
In a2 more compact form

vy =Da o = [(111.,,,.(‘tlﬂ|n-31.,,,.ngn| ,,,,,, |HL1.,,,.HLH]T
The test image can approximately be written as a linear combination of
the training images of the correct class.
The coetficient vector « 1s sparse vector.

o can be recovered by Basis Pursuit as

& =argmin || @’ |1 subject to y = Da’
a..l'

A measure of sparsity 1s the Sparse Concentration Index (SCI), defined
by
L.max ||[TLi(a)fln 1

SCI o) = ”?'1 ]

Well acquired images will have high SCI.
Reject the images having low SCI value.
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Selection and Recognition Algorithm

Given the gallery, construct the dictionary D by arranging the
training images as its columns.

Using the test image, by Basis Pursuit, obtain the coefficient
vector o.

Obtain the Sparsity Concentration Index.

Compare SCI with a threshold to reject the poorly acquired
images.

Find the reconstruction error while representing the test image

with coeftficients of each class separately.

Select the class giving the minimum reconstruction error.
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Bayesian Fusion-based Image Selection and Recognition

= Different regions of the 1ris have different qualities.

Input Iris Image Sectored Iris Image Unwrapped Iris Image

Segmentation
e AN

= Recognize the different regions separately and combine the

results depending on the quality of the region.

= Let C be the set of possible class labels and M be the number of
sectors retained after rejection.

w letd,d,...dy,be the class labels of the retained sectors.

= The final class label 1s given by

M

Sl SCI(dy).0(d; = 1)

¢ =argmax » SCI(d;).6(d; = c) CSCI(c) = -
c<C S SCId;)
¢ =argmax C'SCI(c)
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Recognition from Video

The sectors of the different frames of the video can be
combined based on their quality.

Let Y= {y/,y%,...y/} be the | vectorized frames in the test video.

Let M, be the number of sectors retained by the selection scheme
in the 7 frame.

Let y; be the /” retained sector in the # frame.

The final class label is given by

J o M; . _ S ¥ ~y 1 T A

¢ =argmax C'SCI{¢c)

e [N

where &, is the class label assigned by the classifier to y.
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Unwrapped Iris Image
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Different modes of operation. Both the probe and the
gallery can be individual ir1s images or 1ris video.
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Cancelable Biometrics

Need for Secure Iris Biometric

Iris patterns are unique to each person
Iris patterns cannot be re-issued if stolen

Different patterns required for different applications

Cancelable Biometrics — Apply a revocable and non
invertible transformation on the original one.

Requirements:

Different templates should be used in different applications to prevent cross
matching.

Template computation has to be non-invertible to prevent illegal recovery of
biometric data.

Revocation and reissue should be possible in the event of compromise.

Recognition performance should not degrade when a cancelable biometric
template is used.
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‘ Johnson-Lindenstrauss L.emma

Lemma 1. (Johnson-Lindenstrauss) Let € € (0,1) be given.

For every set S of 1(S) points in RY, if n is a positive integer
3 (1] S . . .

such that n > ng = O (%—D) . there exists a Lipschitz

mapping f : RN — R™ such that
(1=e)flu—v|* < [[f(w) = fFW)]? < (A+e)|u—v]|P

for all u,v € S.

-::':.a- e
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= J-L Lemma - A set of points in a high-dimensional space can
be embedded into a space of much lower dimension in such a
way that distances between the points are nearly preserved.
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Random Projection (RP) Matrices

= The following are some of the matrices that can be used for

cancelability.

e n x N random matrices ® whose entries ¢; ; are independent realiza-

tions of Gaussian random variables ¢; ; ~ A (D, %) .

e Independent realizations of =1 Bernoulli random wvariables

.} +1/y/n. with probability %

Qig = { —1/y/n, with probability %

e Independent realizations of related distributions such as

++v/3/n, with probability %
;=19 0, with probability E
—+/3/n, with probability %

(2)

e Multiplication of any n x N random matrix ¢ with a deterministic
orthogonal N x N matrix D, i.e. ®D.
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Sectored Random Projections (SRP)

Apply RP to different iris sectors separately.
Advantages:

0 Bad regions cannot corrupt the whole image.
Cancelability requirements:

0  Performance - does not drop after applying SRP.

0 Non-Invertibility - due to RP and dimension reduction.

0 Revocability — Apply a new RP if the old patterns are lost.

0  Different Applications — Assign a different matrix for each
application.

0 Compatibility — Only a single matrix multiplication stage has to be
added to existing algorithms.
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Random Projections-based Cancelable System

Enrollment
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Phase Transition Diagrams

Phase Transition Diagram

Phase Transition Diagram
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(a) (b)

Phase transition diagrams corresponding to the case when the
dictionary is (a) GD and (b) $GD. where GG is the Gabor transformation
matrix and & is the random projection matrix for cancelability. In both figures,
we observe a phase transition from lower region where the £ /#1 equivalence
holds, to the upper region, where one must use combinatorial search to recover

the sparsest solution.
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‘ SCI Values — ND Dataset

o

SCI1 Vs Amount Of DIstortlons
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* 15 clean iris images of the left eye of (h)

80 people.
* 12 images per person formed the

gallery.

S : L { b
* The SCI falls with increasing levels of i) x) M
distortions. Simulated Distortions on the images from the ND dataset. The
detected pupil and iris boundaries are indicated as red circles.
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Recognition Rate { % )
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Recognition — ND Dataset

Effect of Number of Sectors Effect of Tralning Images
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*The performance improves significantly as the number of sectors is
increased.

* The recognition rate increases with the number of training images.
* Sectoring enhances the recognition performance.
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Recognition Performance — ND Dataset

Table 1: Recognition Rate on ND Dataset

Image Quality || NN || Masek’s Implementation || Sparsity-based
Good 98.33 97.5 99.15
Blured 95.42 96.01 98.18

Occluded 85.03 89.54 90.44
Seg. Error T8.57 82.09 87.63

(a) (b)

Iris images with low SCI values in the ND dataset. Note that the
images in (a), (b) and (c) suffer from high amounts of blur, occlusion and
segmentation errors respectively .
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Recognition Performance — ICE 2005 Dataset

Table 2: Verification rate at an FAR of 0.001 on the ICE 2005 dataset

Method Verification Rate (%)
Pelco 96.8
WVU 97.9
CAS 3 97
CAS 1 97.8
CMU 99.5
SAGEM 99.8
Sparsity-based 08.13

* Experiment 1: 1425 iris images corresponding to 120 different
classes.
*10 1mages per person in gallery and remaining as the test set.
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Normalized Hamming Distance

Histograms
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* Normalized Hamming distance histogram peaks at 0.5, indicating that
the original and transformed vectors are independent.
* Itis impossible to extract original vector from the transformed ones.
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Cancelability Results

Dimension Reduction
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* The performance stays the same up to 30% of the original dimension.
* Same matrix — Apply the same random Gaussian matrix for all the users.
* Different matrix — Apply different random matrices for different users.
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Results on Iris Videos - MBGC

ROC Curve
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= Method1
Method2

=m=Method3
Method4 .

=a=Proposed Method

Verification Rate
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FAR
* Method 1 — Consider each frame of the video as a different probe.
* Method 2 — Average the intensity of the different iris images.
* Method 3 and 4 — All possible pairwise Hamming distances between the video frames
of the probe videos and the gallery videos belonging to the same class are computed.

*Method 3 uses the average of these Hamming distance as the score.
*Method 4 uses the minimum of the pairwise Hamming distance as the score.
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