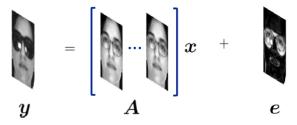
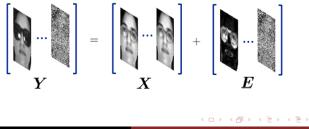
Sparse and Low-Rank Representation for Biometrics – Lecture II: Low-Rank Representation and Applications

Allen Y. Yang Department of EECS, UC Berkeley yang@eecs.berkeley.edu


with John Wright and Yi Ma

ICB 2013 Tutorial



Introduction	Robust PCA	Applications	Conclusion
● 00	0000000	00000000000000000	
From Sparsity	v to Low Rank		

• Previously: Sparse representation-based classification

• This lecture: Recovering low-rank matrices (many correlated vectors)

Ber

æ

Introduction OOO		Robust PCA	Applications	000000000	000	Conclusion
Formulation:	Robust	PCA				

 ${oldsymbol E}$

Existing approaches to Robust PCA in the literature:

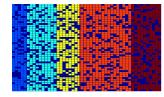
- Multivariate trimming [Gnanadeskian & Kettering '72]
- Random sampling [Fischler & Bolles '81]
- Alternating minimization [Ke & Kanade '03]
- Influence functions [de la Torre & Black '03]

Can we find an efficient and provably correct algorithm?

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	
Related Solution	ns: Matrix Recovery		

• Classical singular-value decomposition (SVD) [Hotelling '35, Karhunen & Loeve '72] Given Y = X + Z, where Z represents Gaussian noise, recover X SVD is a stable, efficient algorithm. Theoretically optimal \rightarrow huge impact in practice.

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	
Related Solut	ions: Matrix Recovery	/	


• Classical singular-value decomposition (SVD) [Hotelling '35, Karhunen & Loeve '72] Given Y = X + Z, where Z represents Gaussian noise, recover X SVD is a stable, efficient algorithm. Theoretically optimal \rightarrow huge impact in practice.

• Matrix completion: low rank with missing data [Candès & Recht '08, Candès & Tao '09, Keshevan et al. '09, Gross '09, Ravikumar & Wainwright '10]

From
$$Y = \mathcal{P}_{\Omega}[X]$$
, recover X.

The problem is solvable if X is low rank and the support Ω is large enough.

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	0
Robust PCA	is a hard problem		

(RPCA): Y = X + E, whereby unknowns X is low-rank and E is sparse.

• Sparse matrices can be also low-rank:

$$\begin{bmatrix} \bullet & \bullet \\ Y = 1_{ij} \end{bmatrix} \rightarrow \begin{bmatrix} \bullet & \bullet \\ X = 1_{ij} \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ E = 0 \end{bmatrix} \quad or \quad \begin{bmatrix} \bullet & \bullet \\ X = 0 \end{bmatrix} + \begin{bmatrix} \bullet & \bullet \\ E = 1_{ij} \end{bmatrix}$$

• Certain sparse error patterns E make exactly recovering X impossible:

$$\begin{bmatrix} \bullet & \bullet \\ X & E = e_i v^* & Y = X + E \end{bmatrix}$$

Exclude these ambiguities from the possible solutions.

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	
Incoherence (Conditions		

Theorem [Candès & Recht '08]

X can be recovered if it is **incoherent** with the standard basis on which E is sparse.

- On X: Incoherence condition on singular vectors
 - **Q** Singular vectors of X not too spiky: $\begin{cases} \max_i \|U_i\|^2 \le \mu r/m \\ \max_i \|V_i\|^2 \le \mu r/n \end{cases}$
 - **2** Not too cross-correlated: $\|UV^*\|_{\infty} \leq \sqrt{\mu r/mn}$.

(人) 医() (人) 医()

Incoherence (Conditions		
000	0000000	00000000000000000	0
Introduction	Robust PCA	Applications	Conclusion

Theorem [Candès & Recht '08]

X can be recovered if it is **incoherent** with the standard basis on which E is sparse.

- On X: Incoherence condition on singular vectors
 - Singular vectors of X not too spiky: $\begin{cases} \max_{i} ||U_i||^2 \le \mu r/m \\ \max_{i} ||V_i||^2 \le \mu r/n \end{cases}$
 - **2** Not too cross-correlated: $\|UV^*\|_{\infty} \leq \sqrt{\mu r/mn}$.
- On E: Uniform model on error support, but signs and magnitudes are arbitrary:

 $\operatorname{supp}(E) \sim \operatorname{uni}([m] \times [n], \rho).$

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	
Convex Optim	nization		

• Exact solution is nonconvex and NP-hard

min rank $(X) + \gamma ||E||_0$ subj. to Y = X + E.

Neither rank(X) nor $||E||_0$ is a smooth convex function.

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	
Convex Optir	nization		

• Exact solution is nonconvex and NP-hard

min rank $(X) + \gamma ||E||_0$ subj. to Y = X + E.

Neither rank(X) nor $||E||_0$ is a smooth convex function.

- Convex relaxation: [Fazel et al. '01, Recht et al. '08]
 - Q Rank: rank(X) equivalent to ℓ₀-norm of its singular values. Nuclear norm ||X||_{*} = Σ_i σ_i(X) equivalent to ℓ₁-norm of its singular values.

 $\operatorname{rank}(X) \Rightarrow \|X\|_*$

Ø Sparse error:

$$\|E\|_0 \Rightarrow \|E\|_1 = \sum_{ij} |E_{ij}|.$$

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	0
Main Result			

Theorem (Principal Component Pursuit) [Candès et al. '09]

If $X_0 \in \mathbb{R}^{m \times n}$, assuming $m \ge n$, has rank

$$r \leq \rho_r \frac{n}{\mu \log^2(m)}$$

and E_0 has Bernoulli support with error probability $\rho \leq \rho_s$, then with very high probability

$$(X_0, E_0) = rg \min \|X\|_* + rac{1}{\sqrt{m}} \|E\|_1$$
 subj. to $X + E = X_0 + E_0,$

and the minimizer is unique.

Convex optimization recovers matrices of rank $O\left(\frac{n}{\log^2 m}\right)$ from errors corrupting O(mn) entries.

Robust PCA

Applications

< □ > < 同 >

- < 문 > - < 문 >

Conclusion

Berkeley

Big Picture: Parallelism of Sparsity and Low-Rank

	Sparse Vector	Low-Rank Matrix
Degeneracy of	one signal	correlated signals
Measure	ℓ^0 norm $\ x\ _0$	$\operatorname{rank}(X)$
Convex Surrogate	ℓ^1 norm $\ x\ _1$	Nuclear norm $\ X\ _*$
Compressed Sensing	y = Ax	Y = A(X)
Error Correction	y = Ax + e	Y = A(X) + E
Domain Transform	$y\circ\tau=Ax+e$	$Y\circ\tau=A(X)+E$

Introduction	Robust PCA	Applications	Conclusion
000	00000000	00000000000000000	
Two Importar	nt Variations		

• Matrix completion: $Y = \mathcal{P}_{\Omega}[A_0 + E_0]$

With conditions similar to RPCA, but the observation \boldsymbol{Y} is only a random subset of entries of size

 $|\Omega| = mn/10.$

Then with very high probability, solving the convex program

min
$$||X||_* + \frac{1}{\sqrt{m}} ||E||_1$$
 subj. to $\mathcal{P}_{\Omega}[X+E] = Y$,

uniquely recovers (X_0, E_0) .

Introduction	Robust PCA	Applications	Conclusion
000	00000000	00000000000000000	
Two Importa	nt Variations		

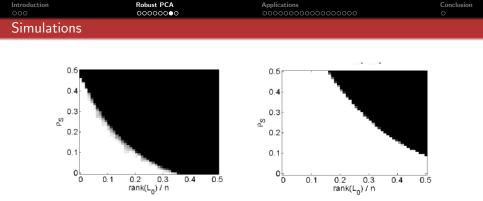
 Matrix completion: Y = P_Ω[A₀ + E₀] With conditions similar to RPCA, but the observation Y is only a random subset of entries of size

 $|\Omega| = mn/10.$

Then with very high probability, solving the convex program

$$\min \|X\|_* + \frac{1}{\sqrt{m}} \|E\|_1 \quad \text{subj. to} \quad \mathcal{P}_{\Omega}[X + E] = Y,$$

uniquely recovers (X_0, E_0) .


• **RPCA** with Noise: $Y = A_0 + E_0 + Z$ With conditions similar to RPCA, but assuming $||Z||_F \le \eta$. Then with very high probability, solving the convex program

$$\min \|X\|_* + rac{1}{\sqrt{m}} \|E\|_1$$
 subj. to $\|Y - X - E\|_F \leq \eta$

satisfies the following bound for some constant C > 0:

$$\|(X^*, E^*) - (X_0, E_0)\|_F \le C\eta.$$

(< Ξ) < Ξ)</p>

Robust PCA, Random Signs

Matrix Completion

- White regions are instances with perfect recovery.
- Correct recovery when X is low-rank and E is sparse.

-

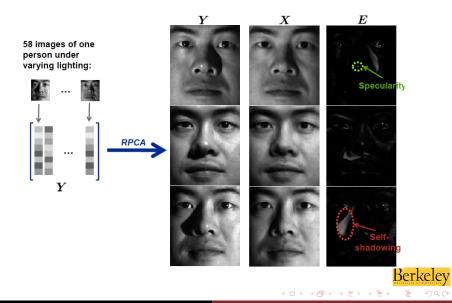
Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	

Other Useful Regularizers in Sparse and Low-Rank Representation

There are many types of low-dimensional structures:

- [Zhou et al. '09]: Spatially contiguous sparse errors via MRF
- [Bach '10]: Structured relaxations from sub modular functions
- [Negahban et al. '10]: Geometric analysis of recovery
- [Becker et al. '10]: Algorithmic templates
- [Xu et al. '11]: Column sparse errors L_{2,1} norm
- [Recht et al. '11]: Compressive sensing of various structures
- [Candès & Recht '11]: Compressive sensing of decomposable structures
- [McCoy & Tropp '11]: Decomposition of sparse and low-rank structures
- [Wright et al. '12]: Superposition of decomposable structures
- [Ohlsson et al. '13]: Quadratic basis pursuit

Take-Home Message


Let the data tell you the right structure: geometry, statistics, learning algorithms, computation.

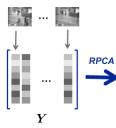
Robust PCA

 Conclusion

Removing varying illumination from face images

Robust PCA

Applications


Conclusion

Background subtraction from video

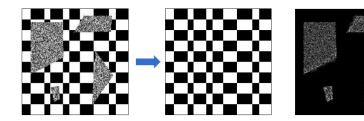
Static camera surveillance video

200 frames, 144 x 172 pixels,

Significant foreground motion

Video Y = Low-rank appx. X + Sparse error E

< 🗇 🕨

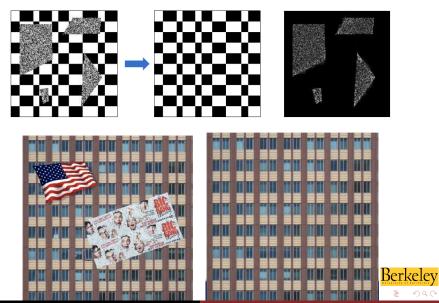


Robust PCA

Applications

Conclusion

Repairing low-rank textures



Robust PCA

Applications Conclusion

æ

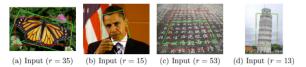
Repairing low-rank textures

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation

	e Rank Under Tran	0
Introduction	Robust PCA	Conclusion

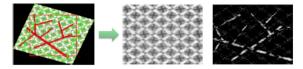
• Most symmetric image patterns (if treated as matrices) are low-rank



• Camera projection and pose variation distort/destroy the low-rank representation

Recover camera projection and pose

Minimizing the rank of texture images may recover the hidden information about the orientation of the pattens in 3-D space.

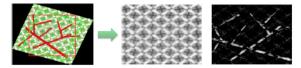


Introduction	Robust PCA	Applications	Conclusion
000	0000000	000000000000000000000000000000000000000	
Transform Invariant	Low-rank Texture	(TILT)	

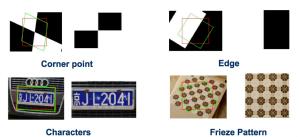
• Objective function [Zhang et al. '10]

 $\min_{A,E,\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{subj. to} \quad I \circ \tau = A + E,$

where A is low-rank and E is sparse, τ parametrizes an image transformation.



Introduction	Robust PCA	Applications	Conclusion
000	0000000	000000000000000000000000000000000000000	
Transform Invariant	: Low-rank Texture	e (TILT)	

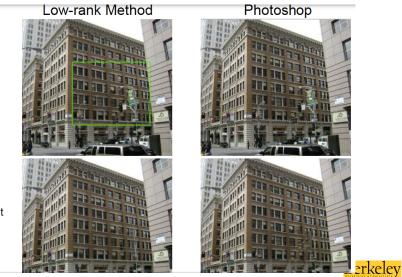

• Objective function [Zhang et al. '10]

 $\min_{A,E,\tau} \|A\|_* + \lambda \|E\|_1 \quad \text{subj. to} \quad I \circ \tau = A + E,$

where A is low-rank and E is sparse, τ parametrizes an image transformation.

More Examples

http://www.eecs.berkeley.edu/~yang

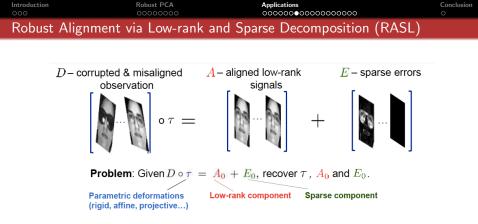

Sparse and Low-Rank Representation

Robust PCA

Applications

Conclusion

Repair Distorted Low-rank Textures



Input

Output

≺≣≯

æ

Solution: Robust Alignment via Low-rank and Sparse (RASL) Decomposition

Iteratively solving the linearized convex program:

$$\bigcap \min \|A\|_* + \lambda \|E\|_1 \quad \text{subj} \quad A + E = D \circ \tau_k + J\Delta\tau$$

(or $Q(A + E) = QD \circ \tau_k, \ QJ = 0$)

프 문 제 프 대

Reference: Peng, Ganesh, Wright, Ma, '10.

Robust PCA

Applications

Conclusion

RASL Example: Face Alignment

Introd	luction	1
000		

Detected Faces

Robust PCA

Applications

Conclusion

Input: faces detected by a face detector (D)

Average

< 1 b

< 注入 < 注入

Robust PCA

Applications

Conclusion

After RASL Alignment

Output: aligned faces ($D \circ \tau$)

Average

< 🗇 🕨

★ Ξ ► ★ Ξ ►

Robust PCA

Applications

Conclusion

Sparse error of the face image

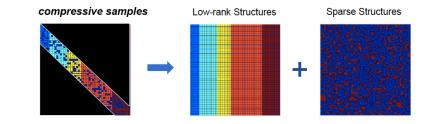
Output: sparse error images (E)

	State of					and the second
and the second	W. A				14-190	
15 20	She was		6-6-			
Criton Criton		19 20		State of the second		Ser.
			de partes Secondo	N.		(e 20)
10 41			いい		C B	14 A

Robust PCA

Applications

Conclusion


Aligning hand-written digits using RASL

D	Learned-Miller PAMI'06	Vedaldi CVPR'08
3 <th>3 3</th> <th>3 3</th>	3 3	3 3
333355333 3 3 A	3333333333	3333533333 7
		<u>1</u> 2 X X X 2 2
3 3 3 3 3	33333	2 3 8 3 8 3 3 5 6 6 4
	3333 \$ 8 3 5 8 8	2 38333 383556 383455
3 3 3 3 3 3 3 3 3 3	33333 33333 33333	2 3 8 8 8 3 3 8 9 9 8 8 9 8 8 8 9 8 8 9 8
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	33333 33333 33333 33333 33333 35553	19 11 11 12 12 13 13 12 13 1
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <th>33333 3333 3333 3333 3333 3 3 3 3 3 3</th> <th>5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</th>	33333 3333 3333 3333 3333 3 3 3 3 3 3	5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	333333 33333 33333 3333 3333 3 3 3 3 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <th>3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</th> <th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th>	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 </td <td>333333 33333 33333 33333 3333 3333 3333 3</td> <td>5 3 5 3 5 3 3 5 3 5 5 3 3 3 5 5 5 3 3 5 5 5 3 5 5 5 3 3 5</td>	333333 33333 33333 33333 3333 3333 3333 3	5 3 5 3 5 3 3 5 3 5 5 3 3 3 5 5 5 3 3 5 5 5 3 5 5 5 3 3 5

http://www.eecs.berkeley.edu/~yang

Introduction	Robust PCA	Applications	Conclusion
000	0000000	00000000000000000	
Repair Street Panor	ama		

Recover low-dimensional structures from diminishing fraction of corrupted measurements.

Reference: Zhou, Min, & Ma '12.

Robust PCA

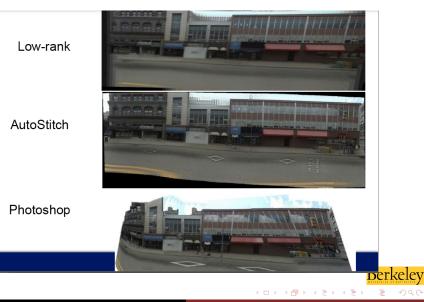
Applications

Conclusion

Example

http://www.eecs.berkeley.edu/~yang

Sparse and Low-Rank Representation

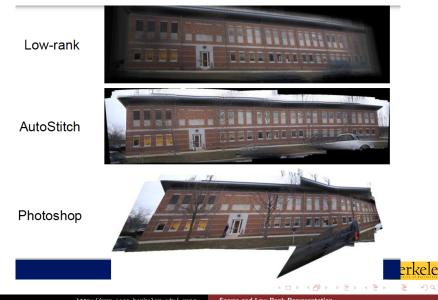


Robust PCA

Applications

Conclusion

Compare to AutoStitch and PhotoShop



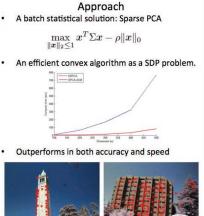
Robust PCA

Applications

Conclusion

Compare to AutoStitch and PhotoShop

Robust PCA


Applications

Conclusion

Informative feature selection via Sparse PCA

 Challenges: 1. objects lack invariant features; 2. excessive outliers; 3. pairwise matching is costly.

Reference: Naikal, AY, Sastry. Informative feature selection for object recognition via Sparse PCA. ICCV 2011.

Robust PCA

Applications

More Applications in Sparse and Low-Rank Representation:

• Target Tracking [Mei & Ling 2009, Liu et al. 2010, Li et al. 2011]

• Superresolution [Yang et al. 2009]

Neighbor Embedding

Sparse Representation

• Sparse dictionary learning [Aharon et al. 2006, Mairal et al. 2008, Duarte-Carvajalino & Sapiro 2009]

Sparse and Low-Rank Representation

Introd	uction

Robust PCA

Applications

Take-Home Messages

- (Transformed) low-rank and sparse structures are central to visual data modeling, processing, and analyzing.
- **2** Such structures can now be extracted **robustly and efficiently** from raw image pixels.
- Low-rank and sparse representation capable of capturing local or global information from high-resolution images, surpassing human perception.
- The new algorithms have exhibited tremendous impact to **board applications** in image processing, pattern recognition, and biometrics.

