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From Sparsity to Low Rank

Previously: Sparse representation-based classification

This lecture: Recovering low-rank matrices (many correlated vectors)
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Formulation: Robust PCA

Figure : Given Y = X + E with X low rank and E sparse, recover X and E .

Existing approaches to Robust PCA in the literature:
Multivariate trimming [Gnanadeskian & Kettering ’72]

Random sampling [Fischler & Bolles ’81]

Alternating minimization [Ke & Kanade ’03]

Influence functions [de la Torre & Black ’03]

Can we find an efficient and provably correct algorithm?
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Related Solutions: Matrix Recovery

Classical singular-value decomposition (SVD) [Hotelling ’35, Karhunen & Loeve ’72]

Given Y = X + Z , where Z represents Gaussian noise, recover X
SVD is a stable, efficient algorithm. Theoretically optimal → huge impact in practice.

Matrix completion: low rank with missing data [Candès & Recht ’08, Candès & Tao ’09, Keshevan

et al. ’09, Gross ’09, Ravikumar & Wainwright ’10]

From Y = PΩ[X ], recover X .

The problem is solvable if X is low rank and the support Ω is large enough.
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Robust PCA is a hard problem

(RPCA): Y = X + E , whereby unknowns X is low-rank and E is sparse.

Sparse matrices can be also low-rank:

Certain sparse error patterns E make exactly recovering X impossible:

Exclude these ambiguities from the possible solutions.
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Incoherence Conditions

Theorem [Candès & Recht ’08]

X can be recovered if it is incoherent with the standard basis on which E is sparse.

On X : Incoherence condition on singular vectors

1 Singular vectors of X not too spiky:

{
maxi ‖Ui‖2 ≤ µr/m
maxi ‖Vi‖2 ≤ µr/n .

2 Not too cross-correlated: ‖UV ∗‖∞ ≤
√
µr/mn.

On E : Uniform model on error support, but signs and magnitudes are arbitrary:

supp(E) ∼ uni([m]× [n], ρ).
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Convex Optimization

Exact solution is nonconvex and NP-hard

min rank(X ) + γ‖E‖0 subj. to Y = X + E .

Neither rank(X ) nor ‖E‖0 is a smooth convex function.

Convex relaxation: [Fazel et al. ’01, Recht et al. ’08]

1 Rank: rank(X ) equivalent to `0-norm of its singular values.
Nuclear norm ‖X‖∗

.
=
∑

i σi (X ) equivalent to `1-norm of its singular values.

rank(X )⇒ ‖X‖∗
2 Sparse error:

‖E‖0 ⇒ ‖E‖1 =
∑
ij

|Eij |.
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Main Result

Theorem (Principal Component Pursuit) [Candès et al. ’09]

If X0 ∈ Rm×n, assuming m ≥ n, has rank

r ≤ ρr
n

µ log2(m)

and E0 has Bernoulli support with error probability ρ ≤ ρs , then with very high probability

(X0,E0) = arg min ‖X‖∗ +
1
√
m
‖E‖1 subj. to X + E = X0 + E0,

and the minimizer is unique.

Convex optimization recovers matrices of rank O
(

n
log2 m

)
from errors corrupting O(mn) entries.
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Big Picture: Parallelism of Sparsity and Low-Rank
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Two Important Variations

Matrix completion: Y = PΩ[A0 + E0]
With conditions similar to RPCA, but the observation Y is only a random subset of entries
of size

|Ω| = mn/10.

Then with very high probability, solving the convex program

min ‖X‖∗ +
1
√
m
‖E‖1 subj. to PΩ[X + E ] = Y ,

uniquely recovers (X0,E0).

RPCA with Noise: Y = A0 + E0 + Z
With conditions similar to RPCA, but assuming ‖Z‖F ≤ η. Then with very high probability,
solving the convex program

min ‖X‖∗ +
1
√
m
‖E‖1 subj. to ‖Y − X − E‖F ≤ η,

satisfies the following bound for some constant C > 0:

‖(X∗,E∗)− (X0,E0)‖F ≤ Cη.
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Simulations

White regions are instances with perfect recovery.

Correct recovery when X is low-rank and E is sparse.
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Other Useful Regularizers in Sparse and Low-Rank Representation

There are many types of low-dimensional structures:

[Zhou et al. ’09]: Spatially contiguous sparse errors via MRF

[Bach ’10]: Structured relaxations from sub modular functions

[Negahban et al. ’10]: Geometric analysis of recovery

[Becker et al. ’10]: Algorithmic templates

[Xu et al. ’11]: Column sparse errors L2,1 norm

[Recht et al. ’11]: Compressive sensing of various structures

[Candès & Recht ’11]: Compressive sensing of decomposable structures

[McCoy & Tropp ’11]: Decomposition of sparse and low-rank structures

[Wright et al. ’12]: Superposition of decomposable structures

[Ohlsson et al. ’13]: Quadratic basis pursuit

Take-Home Message

Let the data tell you the right structure: geometry, statistics, learning algorithms, computation.
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Removing varying illumination from face images
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Background subtraction from video

http://www.eecs.berkeley.edu/~yang Sparse and Low-Rank Representation

http://www.eecs.berkeley.edu/~yang


Introduction Robust PCA Applications Conclusion

Repairing low-rank textures
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Repairing low-rank textures
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Minimize Image Rank Under Transformation

Most symmetric image patterns (if treated as matrices) are low-rank

Camera projection and pose variation distort/destroy the low-rank representation

Recover camera projection and pose

Minimizing the rank of texture images may recover the hidden information about the orientation
of the pattens in 3-D space.
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Transform Invariant Low-rank Texture (TILT)

Objective function [Zhang et al. ’10]

min
A,E ,τ

‖A‖∗ + λ‖E‖1 subj. to I ◦ τ = A + E ,

where A is low-rank and E is sparse, τ parametrizes an image transformation.

More Examples
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Repair Distorted Low-rank Textures
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Robust Alignment via Low-rank and Sparse Decomposition (RASL)

Reference: Peng, Ganesh, Wright, Ma, ’10.
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RASL Example: Face Alignment
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Detected Faces
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After RASL Alignment

http://www.eecs.berkeley.edu/~yang Sparse and Low-Rank Representation

http://www.eecs.berkeley.edu/~yang


Introduction Robust PCA Applications Conclusion

Sparse error of the face image
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Aligning hand-written digits using RASL
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Repair Street Panorama

Reference: Zhou, Min, & Ma ’12.
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Example
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Compare to AutoStitch and PhotoShop
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Compare to AutoStitch and PhotoShop
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Informative feature selection via Sparse PCA

Reference: Naikal, AY, Sastry. Informative feature selection for object recognition via Sparse PCA. ICCV 2011.
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More Applications in Sparse and Low-Rank Representation:

Target Tracking [Mei & Ling 2009, Liu et al. 2010, Li et al. 2011]

Superresolution [Yang et al. 2009]

Sparse dictionary learning [Aharon et al. 2006, Mairal et al. 2008, Duarte-Carvajalino & Sapiro 2009]
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Take-Home Messages

1 (Transformed) low-rank and sparse structures are central to visual data modeling,
processing, and analyzing.

2 Such structures can now be extracted robustly and efficiently from raw image pixels.

3 Low-rank and sparse representation capable of capturing local or global information from
high-resolution images, surpassing human perception.

4 The new algorithms have exhibited tremendous impact to board applications in image
processing, pattern recognition, and biometrics.
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