• If you need additional conditions to solve a problem, please write down your assumptions.

Global Parameters:

Unless stated otherwise in the problem, use the following values for all problems:

Optical matrix element:	$ \hat{e} \cdot \vec{p} ^2 = M_b^2 = (m_0/6)E_p$, and $E_p = 24 \text{ eV}$
Bandgap energy:	$E_g = 1 \text{ eV}$
Relative dielectric constant:	$\varepsilon_r = 9$
Refractive index:	$n_r = 3$

30 pts.

1. Consider two semiconductors with the following energy band diagrams:

Both semiconductors have the same bandgap energy (1 eV) and the same optical matrix element.

- a) Which semiconductor has a larger absorption coefficient at a photon energy of 1.1 eV? Explain your answer (as quantitative as possible).
- b) Mark the relative position of the quasi-Fermi levels (F_C and F_V) with reference to the conduction band minimum and valence band maximum for Semiconductor A when it is biased at <u>transparency</u> (i.e., net gain = 0).
- c) Repeat b) for Semiconductor B.
- d) If both semiconductors are forward biased such that the electron and hole concentrations are $N = P = 5 \times 10^{18} \, \text{cm}^{-3}$, which semiconductor has a wider gain bandwidth? Explain your answer.

40 pts.

2. Consider a double heterostructure laser with the following parameters:

Optical gain: $g(N) = a \cdot (N - N_{tr})$, where $a = 10^{-16}$ cm², $N_{tr} = 10^{18}$ cm⁻³, confinement factor $\Gamma = 50\%$, intrinsic loss $\alpha_i = 10$ cm⁻¹, thickness of the active layer = 0.1 μ m, width of the laser = 1 μ m, length of the laser = 500 μ m, internal quantum efficiency $\eta_i = 90\%$, laser wavelength = 1.24 μ m, carrier lifetime = 1 nsec.

- a) Find the threshold gain of the laser if both facets are uncoated (R = 30%).
- b) Find the threshold current and external quantum efficiency. Construct the L-I curve of the laser. Please be quantitative in your plot.
- c) Find the output power (in mW) of the laser when it is biased at 200 mA.
- d) What is the total number of photons inside the laser cavity at 200 mA?

30 pts.

3. Consider a quantum well active media with a stepwise joint optical density of states shown below, where $\rho_0 = 10^{20}$ 1/(ev-cm³) and E₁ = 1 eV. To simplify calculation, we use a piecewise-linear function to approximate the Fermi-Dirac distribution. At room temperature, $k_B T = 25$ meV.

- a) Find the Fermi inversion function (i.e., inversion factor versus photon energy). You can express the function graphically with quantitative labels for all important numbers, or express it analytically by equations.
- b) Find the peak gain as a function of the separation of quasi-Fermi levels.
- Assume $m_c^* = m_h^*$, find the relation between the separation of quasi-Fermi levels and the corresponding carrier concentration.
- d) Plot peak gain versus carrier concentration using the relation in c).