Static Analysis of Multi-Staged Programs via Unstaging Translation

Wontae ChoiBaris Aktemur2Kwangkeun YiMakoto Tatsuta1 Seoul National University2 Ozyegin University/UIUC3 National Institute of Informatics
TurkeyKoreaTurkeyJapan

POPL 2011 @ Austin, USA

Program codes are first class objects "meta programming"

A general concept that subsumes

- C++ and Haskell templates
- web programming's runtime code generation
- macro
- Lisp's quasi-quotation
- partial evaluation

Divides a computation into stages

- stage 0 program : conventional program
- stage n+l program : code value at stage n

In presentation, we are going to use Lisp-like syntax + 2 stages

Multi-Staged Programming Examples

• code as a value

·(1+1)

• open code

'(x+1)

• code composition and intentional variable capturing let y = (x+1) in $(\lambda x, y) \rightarrow (\lambda x, x+1)$

code execution

run (1+1)

Contents

- Problem in Static Analysis
- Translation
- Projection
- Conclusion

- Program text to analyze is dynamic
- Conventional analysis may fail to handle "run"

```
let spow n = if (n=0) then 'l else '(x* ,(spow (n-1))) in let pow = '(\lambda x. ,(spow input)) in (run pow) &
```

- Program text to analyze is dynamic
- Conventional analysis may fail to handle "run"

 $\begin{cases} `1, `(x*1), `(x*x*1), \ldots \} \\ \end{cases}$ let spow n = if (n=0) then `1 else `(x* ,(spow (n-1))) in let pow = `(λx . ,(spow input)) in (run pow) 2

- Program text to analyze is dynamic
- Conventional analysis may fail to handle "run"

- Program text to analyze is dynamic
- Conventional analysis may fail to handle "run"

- Program text to analyze is dynamic
- Conventional analysis may fail to handle "run"

- Program text to analyze is dynamic
- Conventional analysis may fail to handle "run"

Our Contribution

- An unstaging translation which preserves the semantics
- An analysis framework based on the translation

Theorems

Languages

Translation Ideas (1/2)

- code expression to function expression $(1+1) \longrightarrow \lambda \rho. 1+1$
- free variable to record lookup $(x+1) \longmapsto \lambda \rho.(\rho.x)+1$
- variable capturing to record passing $(\lambda x. , ((x+1))) \longrightarrow \lambda \rho_1.\lambda x.((\lambda \rho_2.(\rho_2.x)+1)) (\rho_1\{x=x\}))$
- run expression to application expression run '(1+1) \longmapsto ($\lambda \rho$.1+1) {}

Translation Ideas (2/2)

• to preserve the evaluation order

Simulation

evaluation + translation

 \cong translation + evaluation + admin reduction

Inversion

evaluation

 \cong translation + evaluation + admin reduction + inversion

Static Analysis Framework

Requirement

 $\begin{array}{c} e \mapsto \underline{e} & \begin{bmatrix} \hat{e} \end{bmatrix} \\ \alpha \llbracket e \end{bmatrix} \sqsubseteq \hat{\pi} \llbracket \hat{\underline{e}} \rrbracket \end{array}$

Static Analysis Framework

Theorem $\begin{bmatrix} e \end{bmatrix} \sqsubseteq \pi \llbracket e \end{bmatrix} \\ \alpha \circ \pi \circ \gamma \sqsubseteq \hat{\pi} \} \Longrightarrow \alpha \llbracket e \rrbracket \sqsubseteq \hat{\pi} \llbracket \hat{e} \rrbracket$

 $e \in D$

Example : Value Analysis

Setting I) collecting analysis [e] for the staged program (uncomputable)

x has {'0, '(0+2), '(0+2+2),} (run x) has {0, 2, 4, 6,} $[\![e]\!]\in D$

 $[\underline{e}] \in \underline{D}$

Example : Value Analysis

Setting 2) collecting analysis [e] for it's translated version (uncomputable)

translated program let $x = (\lambda \rho_1.0)$ repeat $x = ((\lambda h.\lambda \rho_2.(h \rho_2)+2) x)$ until ? in $x \in \{\}$

x, hhas{ $\langle \lambda \rho_1.0, \emptyset \rangle$, $\langle \lambda \rho_2.(h \rho_2)+2, \{h \mapsto \langle \lambda \rho_1.0, \emptyset \rangle\}$ } ρ_1, ρ_2 has{ }(x {})has{ 0, 2, 4, 6, }

Example : Value Analysis

Setting 3) collecting projection π (uncomputable)

- inverse translation + removing unnecessary stuff
- intuition: " $\lambda \rho$ " $\xrightarrow{\hat{\pi}}$ "code ρ " "h ρ " $\xrightarrow{\hat{\pi}}$ "code-filling by h"
- π satisfies $\hat{\pi}$'s first safety condition : $[e] \sqsubseteq \pi [e]$

$\underbrace{\underline{P}}_{\underline{\alpha}} \stackrel{i}{\underline{\alpha}} \stackrel{j}{\underline{\alpha}} \stackrel{i}{\underline{\beta}} \stackrel{i}{\underline{\beta}} \stackrel{i}{\underline{\beta}} \stackrel{i}{\underline{\beta}} \underbrace{\underline{P}}_{\underline{\beta}} \stackrel{i}{\underline{\beta}} \stackrel{i}{\underline{\beta}} \underbrace{\underline{P}}_{\underline{\beta}} \stackrel{i}{\underline{P}} \underbrace{\underline{P}}_{\underline{\beta}} \stackrel{i}{\underline{P}} \underbrace{\underline{P}}_{\underline{\beta}} \stackrel{i}{\underline{P}} \underbrace{\underline{P}}_{\underline{\beta}} \stackrel{i}{\underline{P}} \underbrace{\underline{P}}_{\underline{\beta}} \stackrel{i}{\underline{P}} \underbrace{\underline{P}} \underbrace{$

(computable) **Static** analysis $\begin{bmatrix} e \\ e \end{bmatrix}$ for the translated version

Х	has	λρ1.0
Х	has	$\lambda \rho_2$.(h ρ_2)+2
h	has	λρ1.0
h	has	λρ2.(h ρ2)+2
ρ ₁ , ρ ₂	has	{}
(x {})	has	0
(x {})	has	(h ρ₂) + 2
(h ρ ₂)	has	0
(h ρ ₂)	has	(h ρ₂) + Ձ

set-constraint style 0-CFA

$\underbrace{\underline{\ell}} \in \underline{\underline{\tilde{D}}} \xrightarrow{\underline{\tilde{T}}} \underline{\hat{D}} \Rightarrow \underbrace{\underline{\hat{\ell}}} \mathbf{Example} : Value Analysis$

(computable) **Static** analysis $[\underline{e}]$ for the translated version

	Х	has	λρ1.0
	Х	has	$\lambda \rho_2$.(h ρ_2)+2
	h	has	λρ1.0
	h	has	$\lambda \rho_2$.(h ρ_2)+2
L ,	ρ₂	has	{}
({})	has	0
({})	has	(h ρ ₂) + 2
ſ	ρ ₂)	has	0
ſ	ρ ₂)	has	(h ρ ₂) + 2

 $(x {})'s$ values in grammar : $V \rightarrow 0 | V+2$

$\underbrace{\underline{\mathscr{O}}}_{\underline{\alpha}} \stackrel{i}{\underline{\mathscr{O}}} \stackrel{i}{\underline{\mathscr{O}}} \stackrel{i}{\underline{\mathscr{O}}} \stackrel{i}{\underline{\mathscr{O}}} Example : Value Analysis$

(computable) **abstract** projection

• intuition : "
$$\lambda \rho$$
" $\xrightarrow{\hat{\pi}}$ "code ρ "
"h ρ " "code-filling by h"

• $\hat{\pi}$ satisfies the second safety condition : $\alpha \circ \pi \circ \gamma \sqsubseteq \hat{\pi}$

$\underbrace{\underline{e}}_{\underline{\alpha}} \in \underline{\underline{D}} \xrightarrow{\underline{\gamma}}_{\underline{\alpha}} : \underbrace{\underline{\hat{D}}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha} : \underline{D}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha} : \underline{D}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha} : \underline{D}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha} : \underline{D}}_{\underline{\alpha}} : \underbrace{\underline{D}}}_{\underline{\alpha} : \underline{D}}_{\underline{\alpha} : \underline{D}}}_{\underline{\alpha} : \underline{D}}_{\underline{\alpha} : \underline{D}}_{\underline$

final result for the staged program

staged program				
let				
x = 'Ø	(* indexed as ρ_1 *)			
repeat				
X = (, x+2)	(* indexed as ρ_2 *)			
until ?				
in				
run x				

translation + static analysis + projection				
х	has	$S_1 \rightarrow \rho_1$		
х	has	$S_2 \rightarrow \rho_2(S)$		
		$S \rightarrow \rho_1 \mid \rho_2(S)$		
(run x)	has	V -> 0 V+2		

"translation + static analysis + projection" is sound $\alpha[\![e]\!] \sqsubseteq \hat{\pi}[\![e]\!]$

Conclusion

- Semantics-preserving translation from staged programs to conventional programs
- Sound analysis framework using the translation

Conclusion

- Semantics-preserving translation from staged programs to conventional programs
- Sound analysis framework using the translation

Unstaging + Conventional static analysis That's sufficient!

Thank you