
Static Analysis of Multi-Staged Programs
via Unstaging Translation

POPL 2011 @ Austin, USA

Ozyegin University/UIUC National Institute of Informatics

Wontae Choi Baris Aktemur Kwangkeun Yi Makoto Tatsuta

Seoul National University

1 2 1 3

321

Korea Turkey Japan

Multi-Staged Programming

Program codes are first class objects
“meta programming”

2

Multi-Staged Programming

A general concept that subsumes

• C++ and Haskell templates

• web programming’s runtime code generation

• macro

• Lisp’s quasi-quotation

• partial evaluation

3

Multi-Staged Programming

Divides a computation into stages

• stage 0 program : conventional program

• stage n+1 program : code value at stage n

4

Multi-Staged Programming

e := ...
 | `e
 | ,e
 | run e

code as a data
code composition
code execution

In presentation, we are going to use Lisp-like syntax + 2 stages

5

Multi-Staged Programming Examples

`(1+1)
• code as a value

run `(1+1)
• code execution

`(x+1)
• open code

let y = `(x+1) in `(λx. ,y) ➝ `(λx.x+1)
• code composition and intentional variable capturing

6

Contents

• Problem in Static Analysis

• Translation

• Projection

• Conclusion

7

Problem in Static Analysis

8

• Program text to analyze is dynamic

• Conventional analysis may fail to handle “run”

let spow n = if (n=0) then `1 else `(x* ,(spow (n-1)))
in let pow = `(λx. ,(spow input))
in (run pow) 2

Problem in Static Analysis

9

• Program text to analyze is dynamic

• Conventional analysis may fail to handle “run”

let spow n = if (n=0) then `1 else `(x* ,(spow (n-1)))
in let pow = `(λx. ,(spow input))
in (run pow) 2

{`1, `(x*1), `(x*x*1), ...}

Problem in Static Analysis

static estimation

10

• Program text to analyze is dynamic

• Conventional analysis may fail to handle “run”

S -> 1 | x*S

let spow n = if (n=0) then `1 else `(x* ,(spow (n-1)))
in let pow = `(λx. ,(spow input))
in (run pow) 2

{`1, `(x*1), `(x*x*1), ...}

let spow n = if (n=0) then `1 else `(x* ,(spow (n-1)))
in let pow = `(λx. ,(spow input))
in (run pow) 2

Problem in Static Analysis

S -> 1 | x*S

static estimation

11

pow -> λx.S

• Program text to analyze is dynamic

• Conventional analysis may fail to handle “run”

{`1, `(x*1), `(x*x*1), ...}

let spow n = if (n=0) then `1 else `(x* ,(spow (n-1)))
in let pow = `(λx. ,(spow input))
in (run pow) 2

Problem in Static Analysis

concretization

12

• Program text to analyze is dynamic

• Conventional analysis may fail to handle “run”
static estimation

S -> 1 | x*S

pow -> λx.S

{`1, `(x*1), `(x*x*1), ...}

{λx.1, λx.x*1, λx.x*x*1,}

let spow n = if (n=0) then `1 else `(x* ,(spow (n-1)))
in let pow = `(λx. ,(spow input))
in (run pow) 2

Problem in Static Analysis

13

• Program text to analyze is dynamic

• Conventional analysis may fail to handle “run”

concretization

static estimation

S -> 1 | x*S

pow -> λx.S

{`1, `(x*1), `(x*x*1), ...}

{λx.1, λx.x*1, λx.x*x*1,}
Unrealizable!

Our Contribution

 : staged program

 : conventional program analysis result for

analysis result for

14

translation

conventional
analysis

projection

e

e ˆ[[e]]

ˆ[[e]] e

e

• An unstaging translation which preserves the semantics

• An analysis framework based on the translation

• Simulation

Theorems

15

• Inversion

• Sound Projection

Languages

16

Source Staged Language�S

e := λx.e
 | e e
 | x
 | `e
 | ,e
 | run e

Target Unstaged Language�R

e := λx.e
 | e e
 | x
 | {}
 | e{x=e}
 | e.x

• code expression to function expression

• free variable to record lookup

• variable capturing to record passing

• run expression to application expression

(̀1+1) λρ.1+1

run (̀1+1) (λρ.1+1) {}

(̀x+1) λρ.(ρ.x)+1

(̀λx. ,((̀x+1))) λρ1.λx.((λρ2.(ρ2.x)+1) (ρ1{x=x}))

Translation Ideas (1/2)

17

Translation Ideas (2/2)

18

• to preserve the evaluation order

Simulation

evaluation + translation

≅ translation + evaluation + admin reduction

e

e e’’

staged
programs

conventional
programs

e’

e’

eager
evaluation

eager
evaluation

exhaustive
admin

reduction

19

Inversion

20

evaluation
≅ translation + evaluation + admin reduction + inversion

e

e e’’

staged
programs

conventional
programs

e’

e’

eager
evaluation

eager
evaluation

exhaustive
admin

reduction

Static Analysis Framework

21

Implementation

Requirement

�̂ ˆ[[e]]ˆ[[e]]e 7! e

↵[[e]] v ⇡̂ ˆ[[e]]

Static Analysis Framework

22

Implementation

Requirement

Theorem
↵ � ⇡ � � v ⇡̂}=)

↵[[e]] v ⇡̂ ˆ[[e]]

[[e]] v ⇡[[e]]
↵[[e]] v ⇡̂ ˆ[[e]]

�̂ ˆ[[e]]ˆ[[e]]e 7! e

Example : Value Analysis

23

let
 x = `0 (* indexed as ρ1 *)
 repeat
 x = `(,x+2) (* indexed as ρ2 *)
 until ?
in
 run x

x has {`0, `(0+2), `(0+2+2),}
(run x) has {0, 2, 4, 6,}

Setting 1) collecting analysis for the staged program (uncomputable)

staged program

[[e]]

Example : Value Analysis

24

Setting 2) collecting analysis for it’s translated version (uncomputable)

x, h has { ⟨λρ1.0, ⟩, ⟨λρ2.(h ρ2)+2,{h⟼⟨λρ1.0, ⟩}⟩, }

ρ1,ρ2 has { }

(x {}) has { 0, 2, 4, 6,}

let
 x = (λρ1.0)
 repeat
 x = ((λh.λρ2.(h ρ2)+2) x)
 until ?
in
 x {}

translated program

; ;

[[e]]

Example : Value Analysis

25

x,h has { ⟨λρ1.0, ⟩,

 ⟨λρ2.(h ρ2)+2,{h⟼⟨λρ1.0, ⟩}⟩,
 }

ρ1,ρ2 has { }

;
; x has {`0,`(0+2),

	}

⇡

projection resulttranslation + collecting analysis (part of)

Setting 3) collecting projection (uncomputable)

• inverse translation + removing unnecessary stuff

• intuition :

• satisfies ’s first safety condition : ⇡ ⇡̂

⇡

[[e]] v ⇡[[e]]

⇡̂“λρ” “code ρ”
“h ρ” “code-filling by h”

Example : Value Analysis

26

set-constraint style 0-CFA

x has λρ1.0
x has λρ2.(h ρ2)+2
h has λρ1.0
h has λρ2.(h ρ2)+2

ρ1, ρ2 has {}

translated program

(x {}) has 0

(x {}) has (h ρ2) + 2
(h ρ2) has 0

(h ρ2) has (h ρ2) + 2

let
 x = (λρ1.0)
 repeat
 x = ((λh.λρ2.(h ρ2)+2) x)
 until ?
in
 x {}

(computable) static analysis for the translated versionˆ[[e]]

Example : Value Analysis

27

set-constraint style 0-CFA

x has λρ1.0
x has λρ2.(h ρ2)+2
h has λρ1.0
h has λρ2.(h ρ2)+2

ρ1, ρ2 has {}

translated program

(x {}) has 0

(x {}) has (h ρ2) + 2
(h ρ2) has 0

(h ρ2) has (h ρ2) + 2

(x {})’s values in grammar : V -> 0 | V+2

(computable) static analysis for the translated versionˆ[[e]]

let
 x = (λρ1.0)
 repeat
 x = ((λh.λρ2.(h ρ2)+2) x)
 until ?
in
 x {}

Example : Value Analysis

28

⇡̂

static analysis for the translated program abstract projection result

x has λρ1.0

x has λρ2.(h ρ2)+2
h has λρ1.0

h has λρ2.(h ρ2)+2

x has S1 -> ρ1

x has S2 -> ρ2(S)
S -> ρ1 | ρ2(S)

↵ � ⇡ � � v ⇡̂

(x {}) has V -> 0 | V+2 (run x) has V -> 0 | V+2

(computable) abstract projection

• intuition :

• satisfies the second safety condition :

⇡̂“λρ” “code ρ”
“h ρ” “code-filling by h”

⇡̂

Example : Value Analysis

translation + static analysis + projection

x has S1 -> ρ1

x has S2 -> ρ2(S)
S -> ρ1 | ρ2(S)

 (run x) has V -> 0 | V+2

final result for the staged program

staged program

“translation + static analysis + projection” is sound
↵[[e]] v ⇡̂ ˆ[[e]]

29

let
 x = `0 (* indexed as ρ1 *)
 repeat
 x = `(,x+2) (* indexed as ρ2 *)
 until ?
in
 run x

Conclusion

• Semantics-preserving translation from staged
programs to conventional programs

• Sound analysis framework using the translation

30

Conclusion

• Semantics-preserving translation from staged
programs to conventional programs

• Sound analysis framework using the translation

Unstaging + Conventional static analysis
That’s sufficient!

31

Thank you

