The Arc Tree: An Approximation Scheme

To Represent Arbitrary Curved Shapes

iver Giinther Eugene Wong
Department of Computer Science Department of EECS
University of California University of California
Santa Barbara, CA 93106 Berkeley, CA 94720
Abstract

This paper introduces the arc free, 2 hierarchical data soructure to represent arbiary curved shapes, The
arc tree is a balanced binary tree that represents a curve of length [ such that any subtree whose root is
on the k-th mee level is representing a subcurve of length [/2%, Each tree level is associated with an
approximation of the curve; lower levels comespond to approximations of higher resolution. Based on
this hierarchy of detail, queries such as point search or intersection detection and computation can be
solved in a hierarchical manner. We compare the arc tree to several related schemes and present the
results of a practical performance analysis for various kinds of set and search operators. We also discuss
several options to embed arc trees as complex objects in an extensible database management system and
argue that the embedding as an abstract data type is most promising.

1. Introduction

The exact representation of curved geometric objects in finite machines is only possible if the
objects can be described by finite mathematical expressions. Typical examples for such objects are para-
boloids or ellipses, which can be described by functional equations such as x¥a?+y¥bI=1. Many appli-
cations, however, especially in computer vision and robotics, do not fit this pattem. The objects 1o be
represented are rather arbitrary in shape, and some approximation scheme has to be emploved 1o
represent the data. Any finite machine can only store an approximate representation of the data with
limited accuracy. In particular, the answer to any query is based on this approximate representation and
may therefore be approximate as well.

Of course, the initial description of a curved object, coming from a camera, a tactile sensor, &
mouse, or a digitizer may already be an approximate description of the real object. In most practical
applications, this description will be a sequence of curve points or a spline, i.¢. a piecewise polynomial
function that is smooth and continuous. To support set, search, and recognition operators, however, it is
more efficient to represent the data by a hierarchy of detail [Same84, Hope87], ie. 2 hierarchy of
approximations, where higher levels in the hierarchy correspond 1o coarser approximations of the curve.
Geometric operators can then be computed in a hierarchical manner: algorithms start out near the root of
the hicrarchy and try to answer the given query at a very coarse resolution. If that is not possible, the
resolution is increased where necessary. In other words, algorithms “zoom in’" on those parts of the
curve that are relevant for the given query.

In this paper, we develop this theme of hierarchy of detail, focusing on the arc tree, a balanced
binary tree that serves as an approximation scheme to represent arbitrary curved shapes, Section 2 gives
a definition of the arc tree and shows how to obtain the arc tree representation of a given curve. Section
3 generalizes the concept of the arc tree to include other hierarchical curve representation schemes such
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as Ballard’s strip trees [Ball®1] and Bezier curves [Bezi74, Pavi82]. Sections 4 and 5 show how to per-
form point querics and set operations, such as union or intersection. Both sections also discuss the per-
formance of our arc tree implementation. Section 6 outlines how to embed arc ees into an extensible
database systern such as POSTGRES [Ston86a], and section 7 contains a summary and our conclusions,

2. Definition

A curve is a one-dimensional continuons point set in d -dimensional Euclidean space E4. For sim-
plicity, this presentation is restricted to the case d=2. The generalization o arbitrary & (with the curve
remaining one-dimensional) is straightforward. A curve is open if it has two distinct endpoints, other-
wise it is called closed; see figure 1 for some examples. As mentioned in the inroduction, in practical
applications, curves are usually given as a polygonal path, i.e. a sequence of curve points, or as a spline,
i.e. a piecewise polynomial function that is smooth and continuous.

5O (2

Figure 1: A closed and two open curves.

The arc tree scheme parametrizes a given curve according to its arc length and approximates it by a
sequence of polygonal paths. Let the curve C have length ! and be defined by a function
C (r):[0,1]1=EZ, such that the length of the curve from C (D) to C (1) is rgf. The k-th approximation Cy
(k=0,1,2...) of C is a polygonal path consisting of 2% line segments e;; (i=1..2*), such that e, ; con-

nects the two points O l‘_iﬁ?-] and C {EI;‘_}' See figure 2 for an example.

Figure 2: A (th, 1st and 2nd approximation of a curve

Each edge e, ; can be associated with an arc ag; of length {/2%, which is a continuous subset of C.
c {‘_;*L) and C{E‘F] are the common endpoints of ey ; and a; ;. For k21, each k-th approximation is a
refinement of the corresponding (k—1)-th approximation: the vertex set of the (k—1)-th approximation is
a true subset of the vertex set of the k-th approximation.

More formally, the k -th approximation of C is defined by a piecewise linear function Cy:[0,1]=E2

i §-2% i2* ;
as follows, Here, ¢ and T denote 5 and S L respectively,
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There are various criteria in common use that measure the error between a curve © and its k-th
polygonal approximation Oy [Imai86]. In the case of the arc tree, one could use the maximum distance
berween a curve point and the corresponding point of the approximation:

fnax d{Ce(e),Clr))
Here, d denotes Euclidean distance. This criterion will be referred to as (21). Other possibilities include
the maximum distance between a line segment e, ; and the curve points on the corresponding arc a
{criterion e2);

Joax d':“'x.[ :-?] L))
or the maximum distance between the line containing e, ; (denoted by line (g; 1)) and the arc a ; (cri-
terion e3). For brevity reasons, the following theorem is presented without proof.

Theorem 1: According to any of the error criteria described above, the error between a curve © and its
k -th approximation €, is no more than [/28+1, O

Lerma 2. Using any of the above error criteria, the sequence of approximation functions (€ (1)) con-
verges uniformly towards C (1),

Progf: Tt follows from theorem | that the error converges towards zero for & —ses, which proves the
lemma. a

Moreover, for each approximation Cy, there is a well-defined area that contains the curve, We have
Lemma 3: Let Eg ; denote the cllipse whnse major axis is [/2% and whose focal points are the two end-
points of the edge &, ;, {-‘(—k—} and E'{ ). Then the arc a ; is internal o Ey ;.

FProgf: (by contradiction) Let X € a ; dannte a point external to E; ;. Then
i=1 i
d'[X-C(—zr}Hﬂ'iX =C'[EF3":' =2

Thus, the length of @, ; would be greater than [ /2% which is a contradiction. E

Corollary 4: The curve C is internal to the area formed by the union of the bounding ellipses, %Ek n
(k=0,1,..).

Sce figure 3 for an example.

The family of approximations of a given curve C can be stored efficiently in a binary tree. The
root of the ee contains the three points C (), C(1/2) and C (1) and is considered on Ievel 0. If a tree
node on level { contains point E(—%-J (x=1..2¢+1-1), then its left son contains point C {"":'T!'] and

its right son contains point C(%&E—} We call this tree the arc tree of the curve . The arc tree is an

exact representation of C; each of its subtrees represents & continous subset of . An inorder raversal
of the first k (k=0) levels of the arc tree vields the vertices of the (k+1)-th approximation, sorted by
increasing ¢. On the other hand, a breadth-first traversal of the first & levels yields these vertices in an
order such that the first 2/+1 vertices form the i -th approximation of C (i=1,2 . k+1). See figure 4 for
an example.
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Figure 4: A curve with approximations and its arc tree. For a closed curve, itis A =F.

In practice, only a finite number of levels of the arc tree is stored. An arc ee with r levels is
called an arc tree of resolution v, It is a balanced binary tree and it represents the Oth through (r+1)-th
approximation of C.

An arc tree of resolution r can be constructed in two traversals of the given corve C. In the first
round, one determines the length ! of C. If C is a spline (or a polygonal path), I can be computed using
the following formula for the arc length of an analytical curve. If the curve is given by y = f (x), its
length betwesen the points P y{x .y ) and Palx2.¥7) is

!=Jj‘41+f’1{x}dx
If it is given by x =x(¢), ¥ =y (¢}, its arc length is

[ =}’4x’1(:}+}-'1{:}d:

with x; =x (1) and y; = ¥(5;). One may also attach a label to each knot of C indicating the length accu-
mulated so far. This does not require any additonal computation, but it will speed up the second round.
In the second round, one picks up the curve points C(EL,} {i € [0,1.27}) and inserts them into the

appropriate tree nodes while performing an inorder traversal of the wee.

Note that arc trees can be used to represent any given curve that can be parameirized with respect
to arc length, This requirement poses no problem if the input curve is given as a polygonal path or a
spline. Nevertheless, there remain problems with some curves such as fractals, for example [Mand77],
or with curves that are distorted by high-frequency noise. In both cases the concept of arc length
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becomes somewhat meaningless and it is necessary to smooth the curve first before the parametrization
can take place.

3. Generalization

The arc tree parametrizes the given curve by arc length and localizes it by means of bounding
ellipses. At higher resolutions the number of ellipses increases, but their total area decreases, thus pro-
viding a better localization.

The arc ree can be viewed as just one instance of a large class of approximation schemes that
implement a hierarchy of detail. Higher levels in the hierarchy correspond to coarser approximations of
the curve, Associated with each approximation is a bounding area that contains the curve. Set and
scarch operators are computed in a hierarchical manner: algorithms start out near the root of the hierar-
chy and wry to solve the given problem at a very coarse resolution. If that is not possible, the resolution
is increased where necessary.

In this section we will present several approximation schemes that are based on the same principle,
but that use different parametrizations or bounding areas. For all of these schemes, it is fairly straight-
forward to obtain the representation of a given curve. Moreover, the algorithms for the computation of
sct and search operators are very similar to the corresponding arc tree algorithms, which are presented in
sections 4 and 5. It is a subject of further research to conduct a detailed practical comparison of these
schemes to find out which schemes are suited best for certain classes of curves,

The first modification of the arc wee concerns the choice of the ellipses Eg; as bounding areas.
These ellipses provide the tightest possible bound but, on the other hand, ellipses are fairly complex
objects, which has a negative impact on the performance of this scheme, For example, it is often neces-
sary to test rwo bounding areas for intersection; if the bounding areas are ellipses, this operation is rather
costly. Our implementation showed that it is in fact sometimes more efficient to replace the ellipses by
their bounding circles; see section 5.1. The circles provide a poorer localization of the curve, but they
are easier to handle computationally, which cansed the total performance to improve. Other alternatives
would be to use bounding boxes whose axes are parallel to the coordinate axes or to the axes of the
ellipses. Both of these approaches, however, proved to be less effective than the bounding circles.,

If the curves to be represented are polygonal paths with relatively few vertices, it is more efficient
to break up the polygonal paths at their vertices rather than to introduce artificial vertices CEZ—E-}

(i=1.,2%-1). If a pa]ygfmal path has n+1 vertices vy .. V¥, it can be represented exactly by a

polygon arc iree of depth | logan| as follows. The root of the polygon arc tree contains the vertices vy,

¥zl #1, 40d ¥gaq. Its left son contains the vertex v[ 4] 41, its right son the vertex v e 41, and 5o on,
until all vertices are stored. Clearly, the arc length corresponding to a node is no more implicit; it has w
be stored explicitly with each node. In particular, at each node N it is necessary to know the lengths of
the subcurves comresponding to N 's left and right subtres. An example is given in figure 5.

It is casily seen that some of this length data is redundant. Indeed, with some carc it is sufficient to
store only one arc length datum per node. For this reason, the storage requirements for a polygon arc
tree are only about 20% to 40% higher than for a regular arc tree of the same depth,

A duta structure closely related to the polygon arc wee is the Binary Searchable Polygonal
Representation {BSPR) proposed by Burton [Burt77].

There are other structures that also implement some hierarchy of detail. One of them is the strip
tree, introduced by Ballard [Ball81]. As the arc wee, the strip tree represents a given curve C by a
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Figure 5: A polygon and corresponding polygon arc wee. The numbers in italics denote arc length.

binary tree such that each subtree T represents a continuous part O of C. Cp is approximated by the
line segment connecting its endpoints (x;.¥) and (x..¥.). The root node of T stores these two end-
points and two widths wy and w,, thus defining a bounding rectangle Sp (the strip) that tightly encloses
the curve segment Cr. Sy has the same length as the line segment ((xg,¥p h.(xz.¥: ) and its sides are
parallel or perpendicular to it. See figure 6 for an example of a curve and a corresponding strip tree.
Clearly, this approach requires some extensions for closed curves and for curves that extend beyond
their endpoints (fig. 7).

Figure 6: A curve with strip, a hierarchy of strips, and a corresponding strip tree.

When a smip tree is constructed for a given curve C, a curve segment Cr is subdivided further
until the total strip width wy+w, is below a certain threshold. As it is a non-trivial operation to obtain
the strip Sy for every curve segment Cr, the construction of a strip tree for a given curve may be quite
costly. To subdivide Cr, one can choose any point of Cr that lies on the boundary of the corresponding
strip Sr. Clearly, a strip tree is not necessarily balanced, which has a negative impact on its average-
case performance. Note that arc trees are always balanced, which might give them an edge over strip
trees in terms of average performance.

Also, a sirip wee requires about twice as much space as an arc tree of same depth: each arc tree
node stores a minimum of two real numbers and two pointers, whereas a strip tree node stores six real
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Figure 7: A curve C that extends beyond its endpoints. There is no bounding box of length { that con-
tains .

numbers and two pointers. Note, however, that strip trees can be modified 1o require less storage. First,
all subdivision points belong to more than one strip and are therefore stored in more than one node. The
redundant data may be replaced by pointers or deleted; in the latter case, the strip tree algorithms given
by Ballard would have to be somewhat modified. Second, rather than storing wy and w,, one may just
store the maximum of these two widths. The comesponding strip is potentially wider and provides a
poorer localization. In both cases, some loss in performance is likely, but it will probably be minor com-
pared to the savings in storage space.

A generalization of the strip tree to higher dimensions is possible. The prism tree of Ponce and
Faugeras, for example [PoncB7], approximates free-form solids in three dimensions by means of trun-
cated pyramides. The arc tree, on the other hand, does not have an immediate equivalent in higher
dimensions because the parametrization method (by arc length) is impractical to generalize to curved
surfaces.

A very different approach to implement a hierarchy of detail is based on curve fitting techniques
such as Bezier curves [Bezi74] or B-splines [Debo78]; see also [Pavl82] for a good survey of these and
related techniques. A Bezier curve of degree m is an m-th degree polynomial function defined by m+1
guiding poinis Py . . Py.q. The curve goes through the points Py and P, and passes near the remain-
ing guiding points P;..F,, in a well-defined manner. The points P4 through P, may be relocated
interactively to bring the Bezier curve into the desired form. See figure 8 for two examples.

Fa Py

1 Py £ Ps

Figure 8: Examples of Bezier polynomials with three and five guiding points.

It can be shown that a Bezier curve lies within the corresponding characteristic polygon, i.e. the
convex hull of its guiding points. Also, a Bezier curve B can be subdivided into two Bezier curves B
and B 5 of same degree. The characteristic polygons of B and B ; are disjoint and subsets of B 's charac-
teristic polygon. They therefore provide a better localization of B ; see figure 9.
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Figure 9: A Bezier curve B subdivided into two curves B and B ; with characteristic polygons.

Now we can derive a hierarchical representation of a given Bezier curve B as follows. The first
approximation is the edge segment connecting 8 s endpoints; its bounding area is given by B 's charac-
teristic polygon. The second approximartion is the polygonal path connecting the endpoints of B and
Bg; its bounding area is the union of the characteristic polygons of B and B, and so on. There are
various efficient subdivision algorithms 1o obtain B, and B ; from a given B ; see for example [Pav]82],
Pp- 221-230.

The main problem with this approach seems to be that not every curve can be approximated well
by a low-order Bezier curve. A high-order Bezier curve, however, is harder o subdivide and has a more
complex characteristic polygon, which has an adverse impact on the performance of this scheme. In
practice, complex curves are often approximated by several third-order Bezier curves. This would mean
that the bounding area of the first approximation is a union of convex polygons, which is already rather
complex. Further approximations are then obtained by subdivisions of each one of these polygons.
Nevertheless, this approach seems very promising and should be included in a practical comparison of
the various approaches to implement a hierarchy of detail.

We expect arc or strip trees to be superior to Bezier curves if the curves to be represented are ini-
tially described by a long sequence of curve points and can only be described by high-order splines or a
large number of simpler splines. This is often the case if curves are input from a digitizer pad or a
mouse. On the other hand, if a curve is initially given by a few simple splines, it is probably more
efficient to keep this representation and use spline subdivision algorithms as described above to imple-
ment a hierarchy of detail.

B-splines can be used in a way similar to Bezier curves to implement a hierarchy of detail. For
appropriate subdivision algorithms, see [Bohm84).

Certainly, there are many more possibilities to implement a hierarchy of detail as a tree strucmure
similar to the schemes presented above. Note that in all of these schemes it is possible to trade space
with time as follows. Rather than storing all lower level approximations explicitly, one could keep the
source description of the curve in main memory and compute finer approximations “‘on the fly"* when
needed. This approach can be viewed as a procedural arc tree as finer approximations arc defined pro-
cedurally, i.e, by means of the appropriate subdivision algorithm that computes finer approximations
from coarser ones. This approach scems particularly promising for the Bezier approach where highly
efficient subdivision algorithms are available. In the case of arc and strip trees, the computations 1o
obtain finer approximations are probably too complex to be repeated at every tree traversal.

As mentioned above, the algorithms for set and search operations for these various approximation
schemes are all essentially the same. In the following two sections, we give the algorithms for the arc
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tree scheme. In most cases, the corresponding algorithms for the other schemes are simply obtained by
replacing the ellipses Ej, ; by the corresponding bounding areas, viz., the characteristic polygons for the
curve fitting approaches or the strips for the strip tree.

4. Hierarchical Point Inclusion Test

To demonstrate the power of the arc ree representation scheme, we first show how to answer point
queries on the arc tree. Given a point A € E? and a simple (i.e. non self-intersecting) closed curve C, a
point query asks if A is internal to the point set enclosed by C, P(C'). For simplicity, we also describe
this case by stating that A is internal to C, orthat A & P(C).

The point inclusion test is performed by a hierarchical algorithm called HPOINT , which starts with
some simple approximation Cgyp of C. For each edge e ; of Cypp (i=1..2%), it checks if the replace-
ment of e, ; by the arc @, ; may affect the internal/external classification of A. If there is no such edge
e i, then A € P (Cypp ) is equivalent to A € P(C'); HPOINT uses a conventional algorithm for polygons
to solve the point query A € P (Cgpp)? and terminates with that result. Otherwise, HPOINT replaces
each edge e, ;, whose replacement by a; ; may affect A 's classification, by the two edges eg.12:-1 and
€rs1.2i. HPOINT proceeds with the resulting polygon, which is a closer approximation of C.

If the maximum resolution has been reached without obtaining a result, then the problem cannot be
decided ar that resolution. In fact, there are boundary points (such as C {—%—jj that cannot be decided at

any finite resolution. There are three ways to resolve this situation: (i) the algorithm returns wnclear , (ii)
the algorithm considers the point a boundary point, or (iii) the arc tree is extended at its leaf nodes to
include the source description of the curve; then, edges e, ; may evenmally be replaced by arcs a;; 1o
allow an exact query evaluation. For HPOINT , we choose option (ii), thus considering the boundary as
having a nonzero width. In our definition of the point inclusion test, where the given point set P(C) is
closed, HPOINT returns A € P(C), accordingly.

We are left with the problem of how to find out quickly if the replacement of e ; by a;; may
affect the internalfexternal classification of A. From lemma 3, we obtain

Lemma 5: Let Cy; denote the curve obtained from C by replacing the arc ag ; by the straight line e ;.
If A is external to Ey ; then A € P (C}is equivalent o A € P(Cy ;).

Proof: Because A is external to Ej ;, A may not lic on or between ap ¢ and e ;. Therefore, the replace-
ment of a; ; by e ; may not affect the internal/external classification of A, O

It is therefore sufficient to check if A is internal to Ej ;. If yes, the replacement of e ; by ai; may
affect the classification of A, otherwise it may not. Letting the inital approximation be Cy, HPOINT
can be described more precisely as follows.

Algorithm HPOINT

Inpur: A point A € E2, The arc ree Te of a simple closed curve C.

Output: A € P(C)?

(1} Set the approximation polygon Capy to Cg, & to 2ero, and tag the edge egy of Capp .

(2) For each tagged edge e ; (i € [1..2%)) of Cgpp, check if A is external to the ellipse E¢ ;. If yes,
UNtag &g ;.

(3) If Cgpp has no tagged edges left, use a conventional point inclusion algorithm for polygons to
determine if A € P (Cgpp ), return the result and stop.
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{(#) Otherwise, if k is less than the maximum resolution, depth (T ), replace each tagged edge eg; by
the two tagged edges g1 271 @nd €;4,2;, increase k by one and repeat from (2).

{5) Otherwise, 4 is a boundary point; return frue and stop.

Step (2) can easily be done by computing the distances from A to the two focal points of E ;.
Step (4) can be performed by using C s arc tree in the following manner. Each edge e ; is associated

with the subtree whose root contains the point C {%—&{-}. Note that this is the curve point which

corresponds to the center point of e, ; and which ey, .2 and €g.1 % have in common, If £, ; is to be
replaced by €p4q 2 and eg,q 2, HPOINT obtains that point from the mee node and continues recur-
sively on both subtrees of this node,

Steps (2) and (4) can now be performed during a top-down waversal of the arc tree. Each subiree
can be processed independently of the others, which offers a natural way to parallelize the algorithm. If
Capp has no more tagged edges, then the partial results are collected in a bottom-up traversal of the ree
and put together to form the boundary of the final approximation polygon C . . At this point, A € P(C)
is equivalent to A & P(Capp ). Step (4) can be performed by Shameos’ algorithm, where one constructs 4
horizontal line £ through A and counts the intersections between L and the edges of Copp that lie to the
left of A. If the number of intersections is odd, then A is intemal, otherwise it is external. Shamos’
algorithm requires some special maintenance for horizontal edges; see [Prep83] for details.

We implemented this algorithm on a VAX BB00 and ran several experiments to see how
HPOINT °s time complexity correlates with the complexity of the given curve O and with the location
of A with respect to C. Cur running times should not be considered in absolute terms as we did not
make a great effort wo optimize our code. However, the figures are appropriate for comparative measure-
ments, Figures 10 and 11 show our results. Here, ¢ is CPU time in ms, and r is the resolution at which
the query was decided. The dotted polygons are the final approximations C g, , respectively.

Note that the use of alternative approximation schemes is unlikely to improve the performance of
our algorithms. To test a given point for inclusion in a given ellipse has about the same complexity as
the corresponding tests for a characteristic polygon (say, a convex quadrilateral} or a sirip. On-the other
hand, the test is somewhat easier for circles or for boxes whose axes are parallel 1o the coordinate axes.
In both cases, however, the localization of the curve that is provided by these areas is poorer than for the
bounding areas above.

Our algorithm APOINT is an application of the idea of hierarchy of densil, as described by Samet
[Samef4] or Hoperoft and Krafft [Hopc87]. It solves the point inclusion problem by starting with a
very simple representation of € and introduces more complex representations only if they are required
to solve the problem. The algorithm *‘zooms in'" on those parts of C that are interesting in the sense
that they may change the internal/external classification of the point A at a higher resolution. As our
examples demonstrate, HPOINT terminates very quickly if A is not close to C. The closer A gets o O,
the higher is the resolution required to answer the point query. Due to a quick localization of the
interesting parts of C, the algorithm does not show the quadratic growth in the complexity of C that a
worst-case analysis would predict.

5. Hierarchical Set Operations

In this section, we show how (o detect and compute intersections between curves. Cther set opera-
tions such as union or difference or set operations on areas can be computed in a similar manner
[Gunt88]. Again, the idea is to inspect approximations of the input curves by increasing resolution and
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C

(a) =2, t=4.0 (b) =3, t=5.1 (c)r=3,1=55 {d) r=06, t=8.0

Figure 10: C is a spline with 12 knots.

(a) =2, t=4.0 (b} r=4, 1=6.4 (c) r=4, 1=7.1 (d) r=56, 1=8.9

Figure 11: T is a spline with 36 knots,

to “‘zoom in"" on those parts of the boundaries that may participate in an intersection.

5.1, Curve-Curve Intersection Detection

We first show how to test two given curves C and D for intersection. The hierarchical algorithm
HCURVES starts with simple approximations Capp and Dgpp of C and D, respectively, and continues
with approximations of higher resolutions where necessary. For brevity, the following lemma is
presented without proof.

Lermma 6: The arcs ag; and by ; corresponding to the edges e ; of Copp and fi j of D gpp . respectively,
must intersect if the following three condidons are met:

(i) € interse,cts_f” '

(i} the two endpoints of e, ; are external to the ellipse Fy ; corresponding to fi ;.

(i) the rwo endpoints of £ ; are external 1o the ellipse E; ; corresponding to g ;. O

Now the algorithm HCURVES proceeds as follows. For each pair of edges, ey of Cypp and fy
of Dggy (i, € {0,1.2%)), HCURVES checks if their corresponding arcs may intersect. According to
lemma 3, this can be done by testing if the comresponding ellipses Ep; and Fy; intersect If yes,
HCURVES puts tags on eg; and fi ; and applics lemma 6 to see if the arcs must intersect. If yes,
HCURVES reports an intersection and stops. After all pairs of edges have been processed, HCURVES
checks if there are any tagged edges. If no, HCURVES reports no intersection and stops. Otherwise,
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HCURVES replaces all tagged edges by the comesponding edges of the next higher approximation,
increases & by one, and proceeds with the refined curves. If the maximum reselution has been reached
and there are still agged edges, HCURVES interprets the situation as an intersection of the boundaries
and retumns an intersection. More exactly, HCURVES can be described as follows.

Algorithm HCURVES
Input: The arc rees T and Ty of two curves C and D,
Outpur: C ~D =47
(1) Set the approximaton polygons Cypp to Cg, Dypp to Do, and & to zero,
{2) For cach pair of edges e ; of Cypp and fi j of Dy, do
{2a) Check if the two ellipses Ey ; and Fy ; intersect.
(2b) If yes, tag e ; and fi;; if conditions (i) through (iii) in lemma 6 are met or if g ; and fi
share one or two endpoints, return trie and stop. '
{3) If there are no tagged edges, return false and stop.

{4) If & is less than the maximum resolution, min{deprh (T )depth (Tp)), replace each tagged edge
ey of Cﬂﬁ, by the two edges €42, and ;47 . Similarly for each tagged edge i ; of Dggp.
Increase k by one and repeat from (2).

(5) Otherwise, the maximum resolution has been reached; return rrue and stop.

We implemented this algorithm on a VAX 8800 with a few slight modifications to speed up execu-
tion. First, the test if the two ellipses Eg ; and Fy j intersect is replaced by a test if the two circumserib-
ing circles of E ; and Fy ; intersect. If those do not intersect then the ellipses do not intersect either,
Otherwise, we assume that the ellipses may intersect and proceed accordingly. We made several experi-
ments with more accurate tests, such as o test bounding boxes of the two ellipses for intersection, or to
test the two ellipses themselves for intersection. In every case, the execution times went up between
25% and 60%. The more accurate tests required a significant amount of CPU time, but they only margi-
nally reduced the number of tagged edges.

Second, rather than performing step (2) for each pair of edges ey ; of Cap and fi; of Dggp, we
maintain a list to keep mack which pairs of ellipses (Eg ; ;) pass the intersection test in step (2a).
Then, step (2) is executed for a pair of edges (ex;fk,;) if and only if the ellipses Ey_[im) and
Fr_1[j4, which correspond to their parent edges, intersect, Otherwise, it is known in advance that E, ;
and F ; do not intersect.

Figures 12 and 13 give several examples for the performance of the algorithm. ‘Here, r denotes the
resolution at which the algorithm is able to decide the query, and ¢ denotes the CPU time in ms.

Again, it is not clear if the use of alternative approximation schemes might vield a better perfor-
mance. The crucial operation in algorithm HCURVES is the test if two bounding areas intersect. In the
case of circles, this is a trivial operation: two circles intersect if the distance between their centers is no
more than the sum of their radii. The corresponding tests for boxes or characteristic polygons (say, con-
vex quadrilaterals) are about two to three Gmes as complex.

Note that the running times do not grow quadratically with the complexity of the input curves, The
example in figure 13 (b) requires a large amount of CPU time due to the fact that the two curves are
quite interwoven but do not intersect. It is therefore necessary to get down to fairly high resolutions in
order to determine that there is no intersection. It seems that a case like this will require a lot of
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Figure 12: C is a spline with 13 knots, D a spline with 8 knots.
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Figure 13: C is a spline with 24 knots, D a spline with 23 knots.

computation with any other intersection detection algorithm as well.

5.2. Curve-Curve Intersection Computation

The intersection is actually computed by the hierarchical algorithm HCRVCRV , which is a varia-
ton of algorithm HCURVES., HCRVCRV does not test if two arcs must intersect, but continees the
refinement until one of the following two conditions is met: (i) there are no more tagged edges, or (i)
the maximum resolution has been reached. In case (i), € and D do not intersect. In case (ii), each
tagged edge of Cgyp 15 tested for intersection with each tagged edge of Dy, . If two edges intersect, the
intersection points are computed and returned.

We implemented this algorithm on a VAX 8800 with the same modifications as in the case of
HCURVES . Figures 14 and 15 give two examples for the performance of the algorithm at various max-
imum resolutions r. P is an intersection point, 4 is the distance berween P and its approximation, Cgp
and Dy, are C's and D ’s final approximations, and ¢ is CPU time required to compute all intersec-
tions.

Note that the running times do not increase quadratically with the number of edges, 27, or with the
complexity of the input curves. In fact, the increase in CPU time is about cubical in r, i.e. polyloga-
rithmic in the number of edges. The plot in figure 16 shows the increase in CPU time for both figures
and for resolutions r=2 through r=7. The broken lines indicate the distance 4 between the actual inter-
section point P and the corresponding intersection point returned by the algorithm at maximum resolu-
tion r.
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Figure 14: C is a spline with 13 knots, D a spline with & knots.
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.

Figure 15: Both C and D are splines with 20 knots,

6. Implementation in a Database System

As the previous sections have shown, the arc tree is an efficient scheme to represent curves. In
large-scale geometric applications such as geography or robotics, is is usually most efficient to have a
separate data management component and to maintain a geometric database to store a large number of
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Figure 16: CPU time r and error d of algorithm HCRVCRV at various resolutions r.

geometric objects. [n order to use the arc tree representation scheme efficiently in this context, it is
therefore necessary to embed arc trees as complex objects in the database system,

There are three major ways to implement complex objects in an extensible relational dabase sys-
tem such as POSTGRES [Ston86a], DASDES [Pauld7], or XRS [Meie87]. First, one may organize the
data of a complex object in relatonal form and represent the object as a set of tuples, each marked with
& unigue object identifier, Then the algorithms may be either programmed in an external host language
with embedded query language commands [RTI84], or within the database system by means of user-
defined data types and operators [Wong85, KempB7). These approaches have been used in earlier
attempts to extend relational database systems to applications in geography and robotics
[Kung84, GuntB7]. Second, one supports a procedural data type to store expressions in the query
language or any other programming language directly in the database, This approach is emphasized in
the POSTGRES database systern [Ston86b]. Third, one may define an abstract data type (ADT) with
corresponding operators and abstract indices; see for example [Ston83]. The importance and suitability
of ADT mechanisms for geometric data management has also been discussed by Schek [Sche86].

Although the arc tree is a useful representation scheme for the most important geometric operators,
it should not necessarily be visible to the user. On the contrary, all set and search operators should be
exccuted withowt revealing the internal representation scheme - the arc tree - to the user. The only
operator where the internal representation may be visible to the user is the rendering of approximations
of the curve. But even then, it seems preferable to offer an operator that maps an abstract object of type
curve and a resolution into an approximation of the curve. Note that for none of the common operators
the user needs to have explicit access to subtrees or to retrieve or manipulate details of the arc wee. On
the other hand, it is important to implement the algorithms for set and search operations as efficiently as
possible, The algorithms are complex, and their performance should not be impeded unnecessarily by an
insufficient runtime environment or an inadequate implementation language.

Because of these considerations we believe that an embedding of the arc tree as an abstract data
type (ADT) into an cxtensible database system is the superior solution to the problem. An ADT is an
encapsulation of a data structure (so that its implementation details are not visible to an outside client
procedure) along with a collection of related operators on this encapsulated structure. The canonical
example of an ADT is a stack with related operators new , push, pop and empty . In our case, the user is
given an ADT curve ; each curve is represented internally as an arc tree, but this fact is completely ran-

sparent to the user. For a more detailed discussion of the arc ree embedding into a database system, see
[Gunt38).
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7. Summary

We presented the arc tree, a balanced binary tree that serves as an approximation scheme for
curves. It is shown how the arc tree can be used to represent curves for efficient suppornt of common set
and search operators. The arc tree can be viewed as just one instance of a large class of approximation
schemes that implement some hierarchy of detail. We gave an overview of several other approximation
schemes that are based on the same idea, and indicated how to medify the arc tree algorithms to work
with these schemes,

Several examples are given for the performance of our algorithms to compute set and search opera-
tors such as point inclusion or area-area intersection detection and computation. The results of the prac-
tical analysis are encouraging: in most cases, the computation of boolean operators such as point inclu-
sion or intersection detection can be completed on the first four or five levels of the tree. Also, the com-
putation of non-boolean operators such as intersection computation gives fairly good results even if one
restricts the computation to the first few levels. Finally, it is described how to embed are trees as com-
plex objects in an extensible database system. It is argued that the embedding as an abstract data type is
most efficient.

It is subject of future research to conduct a more comprehensive and systematic study of the arc
tree algorithms and of the different possibilities to handle arc trees in an extensible database system.
Also, we are planning to ¢compare the arc tree to Ballard's strip tree and to Bezier curves, both theoreti-
cally and practically.
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