Transforming Nonlinear Recursion into

Linear Recursion

by

Yannis E. Joannidis and Eugene Wong
University of Wisconsin, Madison
and University of California, Berkeley

1. Introduction

Consider a function-free and constant free Horn clause [Gall 78]

Q(x™) A Le0es Qu(x™) — P(x) (1)
where for each i, x' is a subset of some fixed set of variables
(xy, Xo,***, x,). We say the formula is recursive if at least one term

on the left hand side of (1) has the form:

Q=P andxl # x (2)
The recursion is said to be linear if (2) holds for exactly one i, and non-
linear (more precisely, multilinear) otherwise. The case of bilinearity

where (2) holds for exactly two values of 1 is also of special interest.

In [loan 86] we presented an algebraic formulation for linear recur-
sion. In this paper we generalize the algebraic formulation in several
significant ways. First, the case of several mutually dependent recursive
formulas is considered. Second, we show that all multilinear recursions

can be reduced to bilinear mutual recursions. Third, we give an alge-

401

é

402 EXPERT DATABASE SYSTEMS

braic formulation for bilinear mutual recursion, and obtain a sufficient
condition for these to be equivalent to liuea:r. ones. Finally, by suitably
embedding the structure in a linear algebra, we obtain a finite and tract-
able test for this equivalence. The bottom line to all this is a set of
usable tests to determine whether a general recursion is equivalent to a
linear recursion. Although the problem of equivalence to linear recur-
sion has been studied before [Zhan 87], our resulis are at once simpler

and more general.

2. General Recursions

A formula of the form (1) can be restated in terms of relations as

follows:

P:]f{QIJ“'JQEJ {3}
where P, Q; , - -+, Qy, are relations and f is a function. If (1) is recur-

sive, it is useful to isolate the P's on the right hand side, and write
P O {[P,Q) (4)
where Q denotes the set of terms in (Q, , - - -, Qy) distinet from P.
A natural multidimensional generalization to (4) is the following:
P,Df,[P,Q} , i=1,2,%+ m, (5]
where P = (P}, P3, -+, P,) is a set of relations that represent the

unknowns, and Q = (Q;,---,Q,) is a set of known relations. The

system of inequalities (5) is to be solved with a set of “‘initial conditions”

IDAMMNIDIS AND WONG 403

FOR , i=1,2,---.'m (6)
where R = (Ry, Ry, **+, Ry) are given. The minimal solution to (5)
and (B) is given by the minimal solution of the equation

P=fP,QQ UR , i=1,2,***,m (7)
Recursions of this form with m > 1 are sometimes referred to as mutual
recursions. There is no loss of generality in assuming that there is only

one formula for each i in (7), since il there are several, these can be

replaced by their union.

3. An Algebraic Formulation of Mutual Recursion

Let R; denote the collection of all relations having the same

domains as P;, so that P € R = i{er-l. We can define addition &
on R by
P@®P=(PhyUP, PsUPs, Pul Pa
A function ' R — R is said to be linear if it is
additive: f(P & P')=f(P) & {(P')
and

homogeneous: [(¢) = ¢
A recursive equation of the form (7) is said to be linear if for a given Q,

f(P, Q) is linear in P. If (7) is linear, we write it as

P=AQP ®R (®)

404 EXPERT DATABASE SYSTEMS

It is trivial to show that A (Q) is a matrix, i.e.,

[A@r] = Ea@p

where = denotes summation with respect to &9,

A QP = [AQ .6, .o, 0)]s
and Aj;(Q) are linear operators on R;.

Equation (8) is a full generalization of the algebraic formulation
given in [loan B86] for linear recursions involving a single relation
(m = 1). In the abstract form, the general case for m = 1 is no
different, and it is straightforward to prove that the unique minimal
solution of (8) is given by

P = A"(QR

where
& ol
A= E AFQR
k=10
The powers AF are expressible in terms of a product defined by composi-
tion, Le,

(A-B)P = A(BP)
To make all this explicit, consider an example

) - - [

A.“_ Pl @ R]:
Ay Py @ ApPyp @Ry

Ay Ay

Py
Py

IOANMIDIS AND WONG 405

It is easy to see that

5 Ak ©

[An 0
Ag Agg C, AL

where Cy satisfies

Cp = A Afi™! @ AnGi_,

Since Cy = 0, we have

o =]
B, G = Apn Ay @ Ap E Gy
which yields
E-ED C = Ap Ay Aj
Henee,
o [An © l“ Al 0
k=0 |Azn Aw Ap Ay AL An

4, Bilinear Recursion

A function g: R X R —R is said to be bilinear if g(P,P') is
linear in P for each P' , and linear in P' for each P. The recursion (7) is

said to be bilinear if we can write

(P, Q) = g(P,P;Q)
where for a given Q, g is bilinear. Henceforth we shall suppress the

dependence of [on Q (since Q is a constant) and write (7) as

P=f(P) ®R (9)

406 EXPERT DATABASE SYSTEMS

A recursion consisting of only linear and bilinear terms can now be writ-

ten as

P= AP @ g(P,P) @R (10)
We note that we can always eliminate the linear term by writing
P = A"g(P,P) @& A'R

= ¢ (PP) & K
where g = A'g is once again a bilinear function. Therefore, we shall

[ocus on pure bilinear recursions of the form

P =¢gP,P) @R (11)
Bilinear recursion, in the vector form as we have defined it, is generic in
the sense that all multilinear recursions can be reduced to a vector bil

inear recursion. For example, consider a Horn clause:
P A P A ,evv, A Px™) A Q(x®) A,
CoA Q) = P()

Without loss of generality, this can always be reexpressed in relational

form as

P=Qi P" @ R
where P™ denotes the m-fold cartesian product of P with itsell, and X

denotes semijoin. We can now write

P, = Q b< 5

IDANNIDIS AND WONG 407

P2'= Pl b(P

Pno_oy = Pm—2 b(P

P=P,.; KP &R
which is bilinear. Because of its generic character, we can confine our
consideration to vector-bilinear recursion. All Horn-clause derived recur-

sions can be treated in this way.
Equation (11) can be solved by iteration as follows: Set
Prny1 = E{Pm:Pm] @ R {12}

with Pg = R. Because g is bilinear, { P, } is an increasing sequence

since

Fe.) Pm—l == E{Pl‘mpm} =) E{Pm—lnFm—l]
=== l:.‘rn-l-l =) Pm

and P,=R & g(R,R) D Py= R. It follows that limP =P

solves (11).

5. Equivalence to Linear Recursion

In this section our ohjective is to discover sufficient conditions
under which a bilinear recursion (11) is equivalent to some linear recur-

slomn.

The bilinear function g is said to be associative if

408 EXPERT DATABASE SYSTEMS

g[s{a.bl:c] - s[arsib.c}]
Associativity of g is a simple, albeit strong, condition to ensure linear
equivalence. We defer showing its sufficieney for the moment, except to
note that the most familiar example of all recursions, viz., the ancestor

example, can be expressed in bilinear form as

I=3
Ancestor = Parent @ my (Ancestor [X| Ancestor)

or equivalently in a linear form

2=3
Ancestor = Parent @ m,, (Parent [X| Ancestor)

The equivalence here is due to the associativity of the bilinear function

J=3
5(Q,R) = m, (Q IX| R)
Linear-equivalence is ensured by a condition weaker than associativity,

namely, power-associativity. A bilinear g can be viewed as a multiplica-

tion, and we can define power as follows:

1 m +

av=wy; AP el e (13)
We say g is power-subassociative if

gla™.a") C a®*? forall m,n (14)
and power-associative if (14) holds with equality. Now, if g is power-

subassociative, then (12) yields a simple formula for P, viz.,

P.= £ Rt (15)

To verify this, we need only to compute

a2l B oohia
R : = [R R
Bl k=1 i:,]-rg !

Em 2|D+1

X HE+|= _ERE

k=1 k=2

Equation (15) implies that the solution of (11) is given by
o (16)
For a fixed Q, let G(Q) be the linear operator defined by

G(QR = g(Q,R) (17)

Then, we can write R®* ! = G™(R)R and
P = G'(R)R (18)

which can be restated as [ollows:

Theorem 1. Let g be power-subassociative. Thus (11) is equivalent to

the linear recursion

P = GRP & R (19)

Corollary: (19) holds if g is associative.

proof of corollary: We shall show that associativity implies power-

associativity, whence (19) follows a fortiori. Write

g™, a") = g(g(a,a™Y) , o7

410 EXPERT DATABASE SYSTEMS

If g is associative, we have

g[g{a ,a™ 1), a"] = g [a (@™, a“}]

and power associativity now follows by induction. g.ed.

For an example consider a set of mutual recursions used in [Ceri

87
Ph=Q @ P - P; & P, (20)
P, =P - P @ Q
Py =P; - R ® Q

where all relations are binary. The operator - is defined by

2= 3
A - B=m (A [X]| B)

We can recast the example in the form of (10) by identifying

01 0 Py
AP = 00 o0 P, (Br)Q=1q - R)
0 0 B(R) Py
and
Pi - Qs
E{QJF] — Pl - Qq%

0

We can now transform (20) into the form of (11) as

P = g(P,P) ® A'(R)Q

where A" is given by

IDANNIDIS AND WONG 411

10 0
A"= o1 o
0 0 B'(R)

and g remains the same as before.

We can now compute powers as follows:

B (ag) (a))

B* (ag) (ay)
¢

g;l:a,, ak}

g, af)=¢ , j > 1
Hence, g is power-subassociative and the example is equivalent to the

linear recursion

P=P . A'Q @& Q
The Ceri-Tanca example provides a good illustration of mutual
recursion, but it is not a good example for Theorem 1. This is because
(20) is only pseudo-nonlinear and can be linearized by first solving the
last equation and then substituting the resulting Py in the first two

equations to get a pair of mutual linear recursions in (P; Pa).

For a second example, consider the following:
P1=P1 = P2 @'F1 * Pl @Qi

Po =P, « Pp, @ Py o P, @ Q

where o is defined as in the last example. This pair of equations is

412 EXPERT DATABASE SYSTEMS

already in the form of (11), and the bilinear function g can be chosen to

be

gla,b)) = a « Kb , K= 1 1]
Here,

g[a,g{h,c]]= g[g[a,b},c]— a « Kb - K¢

so that g is associative and the bilinear recursion is again equivalent to a

linear one.

6. Embedding R in a Linear Algebra

The defining condition (14) for power-subassociativity and power-
associativity is difficult to verify in general, since it has to be tested for
all m and n. Unless it is recursively verifiable as in our example (20),
the condition provides no finite test. In this section we shall find a finite
test for power-associativity (unfortunately, not for subassociativity).
This is done by embedding the operations: addition (= union) and
multiplication (= g) in a linear algebra. This embedding also has an

independent interest that has yet to be explored.

M
As before, let R = J] R, and each R, is the space of all relations
i

having the same domains. Suppose that the domains of a given R, are

Dy, Dy, ..., Dy By definition, each R € R; is a subset of
kl

D; = [ID; Assuch, R can be viewed as a function R: D; — {0, 1},
j=1

IDANNIDIS AND WONG 413

defined by
R(t)=1, ifthetupletisin R

= 0, otherwise
The reason why we want to look at R this way is to be able to embed

relations in a richer algebraic structure.

Now, each R, corresponds to the space of all functions mapping D

into {0, 1} and

R = {aﬂ functions g D — {0, 1}}

We can now extend each R; by considering all functions mapping D
into IR = {reals}. Each such function will be called an extended rela-

tion. In this way, we can extend R to
R = {all functionsp : D — R}
which is well known to be a linear vector space over the field IR.
Observe that the addition operation & defined on R can now be
interpreted as a binary operator on {0, 1} given by
a@®b=1 if max(a,b)=1,a,b, € {0, 1}

=0
For the extended relation, the appropriate addition is the ordinary addi-

tion of real numbers. If we define for real numbers a,

lal]=1,ifa>0

414 EXPERT DATABASE SYSTEMS

= 0, otherwise
Then,

la+ b| = |a] @ |b] whenever a, b >0
Applying this to relations, we can use | | to map R into R and have

the relationship:

IQ+R| = |Q] & [R| , QR €ER

Given a function : R — R, define an extension: R — R as

follows:

)= X (ML) (21)

teD

where 1; is the indicator function
Lsj= 1 if s=1t
= 0, otherwise
Note that the summation in (21) is with respect to ordinary addition.

The function T defined by (21) is linear (on the vector space R)
whether f is linear or not. (Observe that in (21) only the values of on
single tuples (i.e., 1,) are used.) However, [is recoverable from T if and

only if { is linear.

Proposition 1.

Forany A € D,let1, € R C R denote its indicator function,

ie. 14(t)=1, t € A, = 0 otherwise. Then,

ICAMMIDIS AND WONG 415

f(1) = [T(1)1 (22)

if and only if [is linear.

Proof: First, suppose f is linear. Then,

(1) = , £, (1)
while

T{IA} = i Eh ”:It.}
and (22) follows:

Conversely, suppose (22) holds. Then

f(14) = X o 23
(1) = I, (23)
= £ f(1
LEA (L)
which implies that is linear. g.e.d.
For a linear { we shall continue to write it as f(p) = Ap, and

similarly for its extension,
T{p} = Ap

We now have the following relationship between A and A.

Proposition 2.

For all integers k and allR € R
|TR| = A* |R] (23)

Proof: We use induction and first verify that the relationship is an

416 EXPERT DATABASE SYSTEMS

identity for k = 0. Next, assume the relationship to be true for k < m.

Then,

A= R| = |RA"R| = | 3 (A"R)(s) AL

-
| £ 1A"R] (s) AL,
= E (A" IR])(s) AL

=|A E (A" |R]|)(s) | = [AA™R]
s D
Ihm+1 R I
q.e.d.
Proposition 2 implies that A® can be computed from any positive

power series of A | eg.,

L 3

A" = || (24)
or

A" = |[(1—aA)!, a>0
Thus far, we have not found a way to exploit the connection to compu-
tational advant;a,ge. However, some results are more easily seen in terms
of A. For example, suppose A = B @ C where B and C commute.

Thus, A = B + C, and B and C also commute. Hence, (24)

immediately implies that

(B & C}‘ = B'C" wherever B and C commute.

Given a function g on R X R, we can extend it as lollows,

ICANMIDIS AND WONG 417

Elp, o) = Etp{ﬂ} o(t) g(1,, 1,) (25)

As in the case of (21), § is bilinear whether g is bilinear or not, but g

and § are isomorphic iff g is bilinear as is indicated as follows.

Proposition 2.
The following relationship holds if and only if g is bilinear
EI:IA:I IB] = IE{I.’\: 1]‘3-]' {Eﬁ}
The proof is similar to that of Proposition 1 and will be omitted.
The bilinear function g on the linear vector space R defines a mul-
tiplication that distributes over addition, i.e.,
g(a+ b,c) = E(a,c) + E(b,¢c) (27)
gla,b+ ¢) = ga,b) + Ela,c)
By definition, the pair (R,) is a linear algebra.

The functions g and § define powers on R and R respectively, as

follows:
alt) = gla, a{k‘ll) a2 = a a eR
af = g{a,a“_l} ,al = a ,aeR
Equation (27) implies that

la*| = [|a|®
The concept of power associativity can now be extended to g We say a

bilinear function g on R X R is power associative (subassociative) if

418 EXPERT DATABASE SYSTEMS

E(a", o) = o (< a*)
Proposition 3.
A bilinear function g on R X R is power associative (subassocia-
tive) if its extension § is power associative (subassociative).
Proof: Suppose E is power associative, then for a € R
g, 89) = [g(a®, 0|
= gk, &) | = |at*i] = ak+

For subassociativity, we only need to replace the next-to-last equality

by <.
q.ed.
Theorem 2. A sufficient condition for g to be power associative is the

following.

E(ak,) = a** fork+j < 4 (28)
Proof: The proof is based on the fact that §, being a bilinear func-
tion on a linear algebra with characteristic =2, is power associative if
and only if (28) holds [Scha 66]. The desired result of Theorem 2 then

follows from Proposition 3. g.ed

MNote: The important thing about (28) is that it need only be tested for
a small number of k and j. This provides an easy-to-test sufficient con-

dition for a bilinear recursion to be equivalent to a linear one.

ICANMIDIS AND WONG 419

7. Conclusion

In this paper, we continue to develop an algebraic theory of recur-
sive inference begun in [loan 86]. Here, our focus is on bilinear recur-
sions. These are of special interest for two major reasons: (1) If
extended to the vector case, bilinear recursions suffice to represent all
multilinear recursions, hence all recursions arising from Horn clauses.
(2) Under suitable conditions, bilinear recursions are equivalent to linear
recursions. Thus, a theory of linear equivalence for bilinear recursion

encompasses all multilinear recursions.

With addition defined by set union, and multiplication defined by a
bilinear function, a space of relations becomes a semiring, and the prob-
lem of linear equivalence has a simple algebraic statement which readily
yields a simple sufficient condition, viz., power subassociativity. This
condition is new, and both simpler and more general than anything pre-
viously discovered. Furthermore, by embedding relations in a richer
structure (linear algebra), we obtain a sufficient condition that is even

easier to test than power subassociativity,

In extending the algebraic formulations to vectors of relations, we
not only succeed in transforming multilinear recursions into bilinear
recursions, but also accommodate “mutual recursions” automatically in
the process. For linear mutual recursions, the algebraic formulation

results in a theory of matrix algebra that greatly facilitates manipula-

420 EXPERT DATABASE SYSTEMS

tion,

We note that, thus far, the results of the algebraic approach that
we have undertaken are theoretical, not computational. However,
efficient algorithms nearly always require both a general theory and spe-
cial properties of the problem at hand. From this point of view, the
next logical direction is to examine the details of relational operations
(e.g., projection, join, selection) in light of the algebraic theory. For
example, what properties would render a combination of joins and pro-
jections power subassociative? We are in the process of undertaking

such an investigation.

[CAMNIDIS AND WONG 421

References

[Gall 78] H. Gallaire and J. Minker, Logic and Databases, Plenum

Press, New York, 1978,

[Zhan 87] W. Zhang and C.T. Yu, “ A Necessary Condition for a
Doubly Recursive Role to be Equivalent to a Linear
Recursive Role,” Proc. ACM-SIGMOD Conference, May

1987, pp. 345-356.

[loan 86| Y E. Icannidis and E. Wong, “An Algebraic Approach to
Recursive Inference,” Proc. First International Conference
on Expert Systems, April 1986, pp. 209-223,

[Ceri 87] S. Ceri and L. Tanca, “Optimization of Systems of Alge-

n

braic Equations for Evaluating Datalog Queries,” Proe.

1987 VLDB Conference, Brighton, England, pp. 31-41.

[Scha 88] R.D. Schafer, An Introduction to Nonassociative Algebras,

Academic Press, New York, 1966,

