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1. Introduetion

One of the motivations in studying multiparameter martingales and Markov processes is to
exlend the resulls of filtering and detection problems in one dimension to the multidimensional [espe-
cially 2-dimensional) case. We Legin with a briel review of these problems as follows:

Let { &, tg= t= b, } be a stochastic process representing the observation and assume that
it lias the lorin

L= 5+N (1)

where { 5, N, } are stochastic processes with known distributions that represent signal and noise
respeclively. The (causal) Gliering problem deals with the evaluation of

S = E(s |6 0<sge) 2)

while the detection problem concerns testing (1) as a hypothesis against the alternative that £ con-
siata of noise alone. In most cases, o likelihood ratio test would be used, and this involves the evalus-
tion of the likelihood ratio

le. o<ect] ®)
o

where P is the probability measure associated with (1), and Py is the probability measure under the
hypothesis that £ consists of noise only.

Il we assume that the noise is o Gaussian white noise process, then the two preblems: Rltering
and defection, are elosely related, and one can show that the likelihood ratio can be expressed as

k

kL
LI. = exp Igrdxr_ % Iéf dr {4}
Q [:}

where X, = I & dr and we have assumed that the white noise is normalized to have a unit spectral

[
density, The first integral in (4) is an Ito integral. This formula, due to Duncan [DUN68,70] and

IKailath [KAIGO] is one of the highlights in applying martingale theory to problems in communication
and control,

If a Markovian model is assumed lor the signal §,, then the problem of evaluating 5, can be lor-
miulated as o stochastic partial differential equation, viz., the Zakai equation [ZAKG9). If §, is also
Gaussian, then the problem can be reduced drastically, to a linear stochastic differential equation that
ia the Kalman filtering equation for continuous time,

Processing signals thab depend on several parameters {space or space-time) is of considerable
practical interest. Image processing, for example, invelves signals and noise with a two dimensional
parameter. In this particular case, the additive-noise model given by (1) is again appropriate if we
take the abservation to be the logarithm of the image intensity.
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Both analytically and computationally, the problem of processing multiparameter signals is more
difficult than its one-dimensional counterpart, Thus, there is strong motivation to seek the kind of
simplification made possible by martingale theory and Markovian models in one dimension. Over the
last two decades, there has beon a significant efort in developing a theory of multiparameter mar-
tingales and Markov processes. Although this effort has met with incomplete success, the results that
have been lound are most interesting and suggest that much more is yet to come. The objective of -
this paper is to review some of these results, and to indicate some directions where luture efforts
might be uselully deployed.

2. Martingales
Lot B2 denote the positive quadrant of the plane with s partial ordering defined by

t>8 === H(>s i=1,12 (5)
Let (11, F, P) denote a probability space with a filtration {F,, t £ REY that satisfies
t>8 == F,IOF, (6)

We pssume the F-condition of Cairoli and Walsh [CAL 75), namely,
Fi, e and Fg . arcindependent given Fy o

We define a Wiener process on the plane a3 a zero-mean Gaussian process {W,, t €L} } with
EW, W, = min(t,, s,) - minfty, 54 (7
The properties of W, are most easily seen by viewing W as
W, = [¢&s)ds (8)
Ay
wher[e £(s) }ia a Caussian white noise and A, is the rectangle in Bt bound by the origin and the point
t= (&, to)

Wong and Zakai [WONT4| introduced stochastic integrals of two different types with respect to
the Wiener process and showed that processes defined by these integrals:

MU = [ 4, W(ds) . (9)
Ay

M® = [ 0 Wids) Wds') (10)
AgX Ay

were martingales, These integrals were found to form a basis for representing martingales generated
by a Wicner process. Specifically, if F| is the s-feld generated by {W,,s < t} then every square-
integrable Fe-martingale has the representation

M, = Mp+ MU 4+ MP (11)

where MM and Mg are given by (9) and (10) respectively.
The papers [WON7T4| and |CAITS] provided a [ramework within which a considerable body of
results on multi-parameter martingales has been developed. These include a Tormula of exponential

type for the likelihood ratio [WONTT)| and a set of linear recursive filtering equations for signals that
are Gaussian and Markovian with respect to rectangular boundaries [OGIS1].

The definition of martingale and the ensuing results depend on the choice of partial ordering
given by [15). In this sense mullipsrameter martingale theory is not "geometric. The partial order-
ing should be viewed as an artifact intreduced to lacilitate computation. In this respect, the situation
is nob significantly different [rom Ito’s definition of stochastic integral in one dimension, It too is
dependent on the choice of a "forward™ direction and as such is not “geometric,”
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In one dimension the [to diferentiation formula provides much of the manipulative power of sto-

chastic calealus, and its simplest version can be stated as follows. Let X, be an [to process, i.e., a pro-
cess of the form

] ]
X, = Xo+ [ds+ [,dW, (12)
] ]

where the last integral is a stochastic integral with respect to the one-parameter Wiener process W,
Let [: I — I be a twice continuously-differentiable function. Then, Y, = [(X,) is given by

[} 13
Y, = (X + j;r':jx,}dx.+ %{ FI(X,) d<X>, (13)
where
dX¥, = 8, dt 4+ o, dW, (14)
and
d<X>, = $dde (15)

It s worth noting that both dX, and d<X>, can be computed from X directly, and are not
dependent on its representation (12).
The diferentiation formula (13) has several interpretations. First, it is a statement of the clo-
sure of Ito processes under C? transformations. As such, the most appropriate form of it is:
11

MX) = (X)) + { I (X) 6, + %F‘{K.} v |ds

+ JP(X) 6, aw, (18)
L]

Additionally, it is also a statement of how diferentiation of functions of an Ito process must be
modified from ordinary calculus. The most appropriate expression of this statement is:

dr(X,) = f(X)dX, + %f“{]q}dﬂ:x}; )

where the fact that the dilerential is intrinsic, ie., independent of the representation (12), is of con-
siderable importance.

In higher dimensional parameter spaces, these statements are no longer the same. The counter-
part to the “closure” statement is the following: [WONT6| Let weak senu-martingale be a process of
the form

X, = Xo+ [ 4W(ds) + [v o W(ds) W(ds')
A A
+ [bds + [ ¢Wds)ds' + [ 8, y ds W(ds') (18)
A Af A

Let I: IR — It be lour times continuously differentiable. Then [{X,) is again of the form (18). The
explicit expression for [[X;) that is the counterpart to (16) 5 complicated, and the complexity
increases with dimensionality as one attempts to generalize to processes with higher dimensional
parameters. A major reason for this is that the stochastic integrals (9) and (10) are integrals over
“volumes" in ", and are not the inverse to diferentials in dimensions higher than one.

Unlike (16), the differential form (17) of Ito's formula should admit a simple generalization that
in its appearance i both coordinate and dimension independent. Te do this, we need to develop an
exterior caleulus, but one in which the martingale property is reflected. This is one of the motivations
in the development of stochastic diferential forms to be discussed in section 4.
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3. Markov Procesacs

Lévy [LEV56| defined a multiparameter Markov process as follows: Let 8D be a simply con-
nected (n —1) surface dividing IR" into a bounded part D_ and an unbounded part D, . A process
{X,, t€R"} is said to be Markov il X, t € D, and Xy, t' €Dy are conditionally independent
given {X,, s £8D}. Forn = I, this is a rather restrictive condition, and it was shown in [WONGS,
69] that no Gaussian, Markov, homogeneous and isotropic process could be Markov, unless the
definition was relaxed Lo allow X to be a generalized process, In Lhat case, a Gaussian generalized
proceas with a covariance bilinear form given by

EX(H) ) = [ 2MTW ,, (19)
e 1+ |l-"]
is Markov, In (19), ¥ and & denote Fourier transforma. Indeed, except for scaling differences, this is
the only example of isolropic-homogeneous Gauss-Markoy process, and is widely known as the free
Euclidean ficld [NELT3].

Ceneralized processes are usually defined as random lunctions parameterized by testing func-
tions. As such, lo define surlace data: {X,, 5 € 8D} is dillicult, though possible. A natural alterna-
tive i Lo introduce processes parameterized by k-dimensional sets, with k < n, in =", and study Mar-
kovian properties for such processes. This is another motivation for introducing stochastic diferential
forms.

4. Stochastic Differential Forma [WON 87

Intuitively, we want to deline in a consistent way processes parameterized by k-dimensional sets
in R". We begin by considering oriented k-reclangles in ™ defined as follows: Let a; denote an inter-
val (left cpen, right closed} on the 4 axis of R® Let o= a MNa, N\... /\ a5 de;ote a rectangle
with sides a; , a, , ..., 8. The orientation of o is positive if i = (i}, iz, ..., iy} can be put into
increasing order by an cven permutation, and negative otherwise. We shall call i the direction of o.
A rectangular k-chain A is an algebraic sum

i
A= % a0 (20)
B ]

where &, = £ 1 and o, ate oriented k-rectangles, We note that the boundary A = T, 8o, is a
(k —1}-chain. A rendom k-cochain X is & random lunction defined on all fchains such that

X(-A) = =X(A) {21)
X(A+ B) = X{A)+ X(B)
We note that a k-cochain is determined by its values on k-rectangles.

Chains can be used to approximate k-dimensional sets in IR" by introducing the flat norm |A|
as follows: Let |7| denote the k-dimensional volume of o k-rectangle o. Let |A | be defined by

|Za0| = Slallel (22)
and define
A" = inf { |A =3B + |B]} (23)
where the infimum is taken over all (k + 1}-chains B, It can be shown that | Iv I8 & norm with
oAl < AT < 1Al (24)

Using the flat norm, we can approximabe continuous paths by 1-chains and smooth surfaces by 2-
chains [WHI57).

We can now define stochaslic differential k-forms as random co-chains X that are continuous in
probability with respect to the flat norm, and thus can be extended to all limits of k-chains. If 8D is
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an (n —1) surface and X is a k-Torm, with k < n —1, the surface data of X on 8D are easily defined.
An interesting problem is the study of Markovian k-forms,

We note that a natural example of stochastic differential forma is the white noise process on RY,
which can be defined as a zero-mean n-form 1 in IR® such that for n-rectangles o and o'

Enio) pie’) = £ volume (o no')
where the sign is + if @ and ¢ are similarly oriented and —otherwise. If n is Gaussian and A is the
rectangle bounded by tae origin and the peint ¢ in R}, then
W, = 1(A)

s a Wiener process, the two-dimensional version of which was yasd in section 2.

Defining stochastic differential forms as above leads to a simple definition [or exterior derivative,
For any k-form X{k < n —1), we define dX as a (k + 1)}-form such that

(dX) (o) = X(do) (25)

for all oriented rectangles o, In short, we use Stokes theorem to define the exterior derivative.

Because of (24), continuity of dX with respect to the flat norm is assured and dX is guaranteed to he
a stochastic dillerential form. Thus, differential forms are closed under exterior dilferentiation.

Square integrable stochastic differential forms are always random currents in the sense of ko
[ITC 56, bul not conversely. Thus, a stochastic diferential form admits any operation that is defined
on random currents. Iowever, such an operation may produce only a current, not diffzrential form.
The Hodge star operator on a form, lor example, will in general produce ooly a current. Take the
case of a while noise n-form 7. If 5 were & O-ferm, it must be an ordinary function such that

o) = [(en)ds (26)

Mo such function exista,

The notion of dillerential form can be combined with that of martingale in o Truitlul way. For
ease of exposilion, we reskrick our discussion to the case of % The general case is treated in
|[WONB7]. Consider a stochastic differential 1-form X. It can be evaluated on l-rectangles in two
directions, and these take the form of line segments:

oy = (b, bg) =+ (b + B, by and op = [tla‘ﬂ]'_}“'ljt'!"' a)
respectively. We say X is a f-martingale il for all o
E [X{:r.} |Fh,,, ]=o (27a)
a S-martingale i for all oy
E [:-:{a,j |FN,,;,] =0 (27b)
atd a martingale il it is both a I-martingale and a 2-martingale.

A 2form M in R? can be evaluated on a general rectangle: @ = [b;, t; + a] X [ig, by + b].
We say M is an i-martingale (i = 1, 2) il for all &

E [M{nr} |F,§ ] =0 (28)
where F{ = F o, or Fyy  for i = 1 or 2 respectively. Again, we say M is a martingale if it is both
 l-martingale and a 2-martingale. :

A Gaussian white noise  is clearly a martingale 2-form. Let W be a Wisner process s defined
in (7). Then its exterior derivative dW is a martingale I-form. The definition: for martingales given
in section 2 is equivalent Lo one of defining o martingale O-form as one whose exterior derivabive is a
martingale I-form. This is consistent with the one-dimensional case where the martingale property is
most naturally associated with the fncrements of a process rather than with the process itself,



‘ 334

One ol the most interesting ways in which martingale diferential forms can be used is in a bil-
inear operation thab is at once a generalization of stochastic integral and a generalization of the exfe-
rigr product for ordinary differential forms, Let X and Y be martingale k and r forms respectively
with respect to a fixed filtration {Fy, t EIR"}. Then we can define their exterior product X A Y
as & markingale (k + r}form. For example, suppose that m and M are 0-forms defined by two type-1
stochastic integrals:

m, = [ 8 W(ds)
Ay

M, = [ 4, W(ds)
Ay

Then, din and dM are both martingale 1-lorms, and dm /M dM is a martingale 2-form that is related
Lo a Lype-2 integral as lollows:

(am p\an Jay) = o (e =0 ) Wide) Wiae)

A natural and interesting question &= whether the representation theorem lor Wicner-martingales cited
in seckion 2 ean be re-expressed as represenbation theorems for martingale diferential forma.

5. Markovian Handom Currents

The notion of a random current was introduced in [ITO 56). Let 57 denote the space of [ordi-
nary) differential r-forms in B® with coeflicients in the Schwartz space of funetions of rapid descent.
Then, & random k-current X is defined as a continuous linear map of 5% into L2 ({01, F, P}).
ltoughly speaking, & random k-current is & dilferential k-form with coeflicients that are generalized n-
parameber processes.

The space of random currents (of all arder) is elosed under both the exterior derivative

(@X)(é) = (-1)* X (d¢)
and the Hodge star operator

(+X) (8) = (-1 "NX(+¢)

If €5 and X is a random k-current, then the esterior product X M 4 can be defined as a (k + r}
currenl by

(X A¥) () = X(¥ N\9)

All stochastic k-lorms, as defined in section 4, are random k-currents. Conversely, i § € % ¢
and X is a k-current, then X /\ ¢ is a stochastic n-form. However, in general, for 1 < n =k ,
X MAvis oot a(k + r)-lorm.

We say a k-current is localizable if for all ¥ € 5* =7 and ¢ € 5% ! both X Mo oand #X ¢
are (n —1}-lorms. Given a (n —1)-surface 0, we take

(X A9 (@D) , (X A\¢)(aD) ; vES" !, g5t

to be the surface dala of X on 0, and denote it by the abbreviated notation X{8D). A localizable k-
current X (k < n —1) is said o be Markou if given an (n —1) surface 3D that separates IR® into a
bounded part D7 and an unbounded part D X{a), ¢ C D* and X(¢'), o C D™ are independent
given X{4D). This identifies an appropriste class of random funetions for which the (simple) Markov
property can be studied. The [ree Euclidean feld, for example, s a Markov O-current under our
definition.

One of the simplest, yet interesting, classes of random currents is the class of isotropic and
homogencous currents. Let G denote the full group of isometries on R® that preserve the Euclidean
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distance. A motion g € G induces a transformation 7, on ¢ € 5" which in turn induces a translorma-
tion T, on k-forms X:

(T,X) (9) = X(57' ¥)

A random k-current is said to be isolropic and homogeneous if for all g € G
EX(#) X(9) = E[(1,%)(9) (,%) (¢)

It was shown in [ITO 56| that every sotropic and homogencous k-current (1 < k < n—1)is
characterized by two Dorel measures Fy and F, on [0, c0). For k = 0 or o, only one such measure
sullices, A natural question is: for a Gaussmn ml.rapm and homogenecus k-current X, what must F;
and F, be in order for X to be Markov?

Thus lar, this question hias only been partially answered: What we have been able to show is the
following:
(1} For X to be Markov, F; and F, must be of the form:
-1 (] 5\
rrsa
A B
B+ al
(2] Ifa*= A then A and B must be equal in which case X is indeed Markov.

A major open problem is to find examples of non-Gaussian isotropic and homogeneous Markov
processes in L%, We think the introduction of stochastic differential forms may well aid this effort in
several ways. First, it may allow “instantanecus” nonlinear operation to be defined on localizable
currents. For example, “exterior product” would be auch an operation. However, the martingale
axterior product considered in seclion 4 is coordinate dependent and is unsuitable for the construction
of Markovian currents.

l{dh} = A

Fo(d)) = B

Another approach is to use the exterior caleulus available for currents to relate Markov processes
lo some basic elemental process such as “white noise.” This may lead Lo a way of generating Marke-
vian currents using stochastic dilferential equations of some kind.

6. Conclusions

In this paper we focus on the concepts of martingales and Markov processes as generalized Lo
processes with a mullidimensional parameter, and brielly review some of the known results on these
two topics. We then introduce the recently developed notion of atochastic differential form and indi-
cate how it can be related to martingales and Markov processes with a multidimensional paramaetaer.
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