Managing Text as Data®

Gordana Paviﬂﬁe-l.azetiu“ and Eugen.e Wong

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory
University of California, Berkeley, CA 94720

1. Introduction

With all their advances, databese mansgement sys-
terns of the present generation are designed to hendle only
data of primilive types. namely, numbers and character
strings. Several approaches to extending their capabilities
to handle data with higher order semantics exist. One is to
add general absiract data type suppori, so that users can
define such data types easily. In this appreach, the DBMS
mekes no attempt to understand the semantics of user-
defined dala types, and evaluation of operators on such
data are done in applications programs. As a supplement
rather than an alterpative, one can also exlend Lhe guery
lenguage and its processor so thal certain commen nen
primitive data types are directly supported by the DHMS.
Of these, fext and geometric dofo are probably the two
most prominent examples. This paper deals with the case
of text. Direct embedding of complex data in a database
management system has obvious advantages, the most
important one being performance.

To manage text as data, the first step is to handle
words satisfactorily. Words are alter all natural aloms of
text. Whereas representing texts as strings of characters
capture none of their meaning. representing Lhem as
sequences of words is a reasonable firsl order semantic
representation. Our first step, Lthen,
"words" as a data bype.

Important operations on words are lexical opi:ruf.nrs.
not string operators. They deal with how words are related
to each other and how they are used. For example, "went®
is a verb in past tense with "go" as its root. "Verb", "past
tense”, and "go” are values relurned by these distinet
operators on the word "went”. We reler to “words"
together with a class of eperalors on words as the lezical
dete type. The principal objective of this paper is to deal
with issues that arise. in implementing the lexical data

type.)
The specifie issues that we shall consider are the [ol-

lowing:
* gfficient storage of words in a relational data-

base

"Ressarch supported by Lhe National Sclence Feundnlion under

Gronl, FOS-83004E3
On Jeave frem Lhe Universily of Belgrade, Yupeslovia,

Permission le copy withow! jee all or part of this material is
gronted provided that the copies are nu.tpr::tdefur distributed far
direct commercicl advantage, the VLDE copyright notice and the
title of the publication and its date appear, ond natice is given
that eapying is by permission of the Very Lorge Data gBm
Endowment. Te copy otherwise, or to republish, requires a fee
andlor special permizsion from the Endowment.

Proceedings of the Twelfth International
Conference on Very Large Data Bases

is to inlroduce

* implementation of lexical operators .
*.resolving ambiguous words represented by the

same character strings.
The principal application that we envisage for textual
dalabases is automatic extraction of facts. We shall con-
sider some simple examples of Lthis using lexical operators.

2. Encoding Words
A natural way of storing texts in a relational databass
is to represent text by a relation:
textname(segno, word)

where "seqno” denotes the order of appearance and "word"
stands for words, punctuation and special symbols such as
"new paragraph”. As character strings, words have greatly
varying lengths, For storage in a flxed-length fleld, charae-
ter strings are grossly ineflicient. A solution to this prob-
lem is to encode words into a fixed-length representation.
Great compression can be achieved. For Exnmpéﬁ 8 4~b}rt.§
integer suffices Lo represent a voocabulary of 2% ~ 4%10
words. : .

There is a second and equally compelling reason to
encode. Very little of the lexical information is contained
in the character-string representation of a word. Clearly,
the fact that "went" has "go" as its root cannot be deduced
from the string w-e-n-t alone. If the goal is to implement
lexical operators, then words need to be represented in a
form whereby the walues returned by the operators are
explicit in the representation. Basically, the coded form of |
a word should be a composite of the values returned by Lhe
seb of all admissible operators on the word.

There is yet a third reason to encode, namely, remov-
ing ambiguity. The same chbaracter string often has
several meanings. In effect, it represents several different
words, or more precisely, different "lexieal units”. For
example, "well” has at least two unrelated meanings: "good
and proper” and "a hole in the ground”.

For these reasons we believe that encoding words is a
must in storing text in a database system, if its meaning is
to be explpited. The gquestion is; how can this encoding be
done? For compression alone, some kind of automatic
encoding can probably be devised. However, no automatic
encoding using only the character-strings as input can
achieve the other two goals, since additional information
must be supplied. To provide the lexical information, we
ghall use a dictionary. To rescive ambiguities, we shall use
an expert system.

The amounl of lexical information Lhat has to be sup-
plied depends on the lexical operators to be supperted.
Thus, the first step is define the lexical data type,

3. Lexical Dala Type _
We adopt Lhe following terminology: a lezical unit is

the image of & word under encoding, lerical daio sef is a

set of lexical units together with certain default values,

Kyotao, August, 1986

=111=

lezica! delo fype is a pair (X, L) where X is a lexical data
set.and L the sel of all supporlod operators. An element in
X is of the form {id, descr} where id is a [our byle inleger
that uniquely idenlifies the element {lexizal unil), and
descr a Lwo byte descriptor ihel incorporates additional
semantic infermalion,

Eneading is done ‘using a diclionary Llhat s
represented as a relation as follows:

dictionary(word, elass, lorm, root, preflx,
ending, feature, id, descr)

whare "word” denotes the character-string represenling a
word, "class" denotes the syntectic classification of the
word {i.e., verb, noun ete.), “form” denoles & specific lorm
of the word class (e.g., leminine, inflnitive, ele.), "lerture”
denoles semantic ealure Lo be specified later, The mean-
ing of “root”, "prefix", and "ending” is clear. The code {id,

descr:llis a composite made up as [ollows:
id =(code(rool)* 100 + code(prefix))* 100
+ coda{ending)
descr=code(form)*100 + code(featura)

; Codes Tor prefixes, endings and semantic [eatures are
read from tables, aod a root is encoded on the basis ol
interpolation of words density in a dictionary: starting
eodes for roots beginning with a specific letier are deter-
mined on the basis of the total number of codes available,
and proportionally to the number of pages cccupied by
that beginning letler in a sample diclicnary.

Code of a word's form is 8 number that is joined, in
the table containing an entry for every possible form of
any word class, to Lhe form of that word (e.g. 40 [or
infinitive form of anomalous verbs like “to have” or "Lo be",
41 for the first person in singular of the presenk Lense of
those verbs -as "have" or "am",46 [or participle of Lhose
verbs -as "had"” or "been”, 150 for regular nouns in singu-
lar, 151 for regular nouns in plural, 210 for comparalives of
adjectives ending on "-=r", ete.)..

Iineoding is done as follows: Given a word as a charac-
Ler string, we first search for Lhe corresponding enlry in
the dictionary and exlract the code (id, descr). If Lhere is
more Lhan one entry, then disambiguetion is necessary.

The set of operators L consists of four Lypes ol opera-
Lors: lerical operalors such as finding root, prefix, ending
or semantic feature of a lexical unit, building specific lexi:
eal forms such as plural [or nouns or pasl tense [or verbs,
concatenaling or deleting one lexical unit wilh,/[rom
anolher one; syniactic operoinrs such as (inding word class
for a given lexical unil, Lense [or a given verb, degree lor a
given adjective, kind, gender, case lor & given pronoun;
malric operators such as length of a lexieal unit in charac-
ters; frufh aperofors such es equality or order aof lexical
units based on weighls of rools, prefizes, endings, word
forms and semantic features.

Examples of Lhose operators are:

rool{went)=go; :

end{action)=lon;

tense(went}=past;

lexform{pl, daturm)=data;

lexformipasl, goj=went;

I.exfprmkpast. dalumy=null;

concat{acl, jon)=action;

concat{trans, iom)=null;

In what follows, we give a precise and [ormal

specification for the lexical data type.

3.1. lexical Data Set

LEX (lexical data set} is a union of the following sels of
pairs of integers (id, descr):

- epneoded Jfull lerical unifs - encoded lexical wunils
from Lhe dictionary, which are images of words,
-zets of pairs {id, deser) having eodes of all the entries
[rom PREFIX, ENDING and SEM-FEATURE dats rela-
Lions in the corresponding portions of id, deser, and
all the olher zeros, and ?
=“mull”.

SYNT (syntactic dala set) is a union of:
-WCL (word-class set), and

-NFORM, VFORM, AFORM and PFORM sets {scls of all
the diflerent forms corresponding to noun, verb,
adjective-adverb, and pronoun word classes, respec-

Lively, ie.

WCl=[reg.noun, reg.verb, reg.adjeclive. reg.adverb,
irreg.noun, irreg.verb, lrreg.adjective, irreg.adverb,
ancm.verb, pronoun, conjunclion, prefix, prepesition,
null];

NFORM=[sing, pl. null];

VFORM=|pres_lst_sing, pres_2nd, pres Jrd_sing, past,
part, nuall{; :
AFDORM={positive, comparative, superiative, nullj;
PFORM=|pers_[_1sl_sing, pers_m_lst sing, pers_lst_pl,
pers_[4th_sing, pers_m_d4th_ging, pers_d4lh_pl,
poss_[sing, poss_m_sing, poss_n sing, poss_pl,
show_sing, shuw_pl._nullj

- set of nurnbers.

TF - truth values =et [T,F].

Fon]

3.2. Constants, Variables
Consiants.
' I [rom LEX;
5 fromn SYNT; .
g from@;
T,F from TF,
Variables:
.]'i from LEX;
Si from SYNTS
qi from €

Tﬂi from'TF.

3.3, Operalors

lezical ﬂperutnrs._"‘l.EH-" -> LEX" o
LEX™ X SYNT-> LEX™;

syntastic operators: LEXT X SYNT -> SYNT;
melric operators; LEX* -> &
truth operators: LEXT - TF.

The speralors on lexical data Lype:

unnry;
lexical)
'I'DDU:LIJ (in LEX):

prefix(l;) {in LEX);
End{l.l} {in LEX);
feat(L,) (in LEX):
synlactio; ’
w_:lass[Lj} (in WCL};
tensuI:Ll] [in VFORM);

number(L,} {in NFORM U PFORM);
ﬂegrEE[Lll (in AFORM);

—1]12~

kind(Ly) (in PFORM};
gender(L,;) (in NFORM U PFORM);.
caese{l,;) (in PFORM};
metric:
length(L,} (in Q).
biruary:
lexical:
lexform(S,, Ly} {in LEX):
cuneat(l..f_. Lz]I (in LEIII+}:
delete(L;,Ly) (in LEXT);
truth:
equal(L,, L) (in TF);
less_eq(Lj, L) (in TF);
gr_o(Ly, L) {in TF).

3.4. Lexical and Logical Expressions

Lexsical expression is a sequence of constants and vari-
ables from the set LEX and the sets supporting it, inter-
mixed with operators leading to LEX-type result.

Lerical predicafes are of the form btruth_op{expr.,
expr,). where 8Xpry, exprp are any lexical m:presslnni,
end u1.l1_r.=p is any 15t the Bi
above.

Logical ezpressions (and thus gualifications) are
extended to accept lexical predicates as arguments uf logi-
cal operators (not, and, or).

3.5. Procedures [or Operator Evaluation

Operators on lexical data are defined by procedures
having encoded lexical units (ie. pairs of integers) and
values [rom syntactic dats set as Lheir arguments.

The following are some examples of those prunm:iuren
written in a C-like language:

Toot;
" root(L)
int L{2];
Lo]=(L[0]/10%*4) * 10%*4;
L{1]=0;
I
lexform.

lexform(form,L)
char *[orm;

int L{2];

if{form=="sing’
singular{L);

else if (form=="pl")
plural{L});

else il {lorm=="pres_ist_sing'}
prisg(Ly

elsa if (f[orm=="pres_gnd')
pra(L): .

else if {form=="pres_Jrd_sing')
prasg{L);

else if {form=="past")
past(L}):

else if (form=="parl’)
participle(L}:

inary truth operators defined’

else if {form=="positive')
psit(L);

else If {form=="comparakive'}
compar(L};

else if {Eurrn"“"su;par]atnre]
guperl{L);

else if EIurm——’parsj_,lst_smg)
prils{L);

else if [!urm--'pera,_m_;lst._smg]I
prmls(L);)

else if (form=="pers_lst_pl'}
prip(L)

else Il (lorm==
pri4s{L);

elze If {Inrmu-'psrs_;n_-iklulng]
prmés(L);

else if (form=="pers_4Lh_pl' :I
prép(L)

elze if {form=="poss_[sing'}
psis(L);

else if (form=="poss_m_sing"}
psms(L);

elze if {form=="poss_n_sing")
psns{L);

else if ([orm=="poss_pl')
psp(L):

else if (form="show_sing') .
ss(L); :

else if (form=="show_pl'}
sp(L);

"'pers_[_dth_ging’)

else
L=NULL;
} : -
Procedure "singular” might be defined as follows:

T

if(L{1]/1000!=8 && L[1]/1000!=15)
L=NULL;
else if(L{1]/100==81 || L[1]/100==151}

]'.{l]] =1{0]-1;
1]=L{1])-100

and similarly for other procedures.

4, Text Representation

Our goal is to take a text In its natural form and
automatically convert it into a relation:

text{seqno, lex)

where segno ruprcssnts the sequential order and lex (lexi-
cal unil) is either the image of a word under encoding or a
special symbol. The process of encoding (a) reduces a
word to a fixed length representation, {b} makes explicit
the lexical properties required te suppert the desired
pperators, and {e) resolves any ambiguity that may be
present in the character string form. The automatic
gonversion of text is done using: a text scanner, a diction-
ary, and an expert system for resolving ambiguity.

=1123=

4.1. Diclionary

The structure of the dictionary has already been
described in secticn 3. 1t contains all words except plurails
for regular nouns, Lenses [or regular verbs and compara-
tives and superiatives for regular adjeclives and adverbs.
Roots, prefixes and endings are determined by hand and

their meaning is obvious; one rule aboul roots is Lhal Lhey”

are always words themselves.

Semantic feature is @ marker that expresses seman-
tics of & word or of & specific use of & word (e.g., ACTION for
the word "work", LOCATION for the word “sbreoad”, TIME for
the word “then”, QUALITY for the word "brilliance”, bolh
MEASURE and EMOTION fer the word "conlent”). The sel of
semantic leatures we use is much like the one in [SiCh B2],
extended with a hierarchical structure. For example,
sementic feature TIME bes as its szubordinated semantic
features FUTURE, PRESENT and PAST. Our set contains
about 50 semantic [eaturas.

The dictionary enceding is done by an EQUEL-
program. For our experimental study, we heve built a die-
tionary with 1400 entries of besic words,

4.2. lexical Rules
Since different forms of regular words are not present

in the dictionary, lexiecal (ie. mm'phnlugical]l rules [or syn--
thesizing them or recognizing them is necessary in order’

for a text to be encoded.

An example of Lhose rules is the following:
- if a word from the text ends with "les” and in Lhe diction-
ary there is a noun equal to that word except lor the end-
ing being "y" instead of "ies", then the word is the noun
from the dictionary, in plural. - : e
Those rules are stored in a relalion "lexrule” which is
of the form:

word_ending | diel.entry_ending | word's class |
dict.entry's class |descr|codecfsel

Word and dict.entry endings are the letter groups that
should be deleted at the end of the word Lhat is Lo be
encoded and that should be then added Lo the end of such
a word, respectively, in order to obtain a dictionary entry
corresponding to the word being encoded (e.g., Lhe ending
. "ies" should be deleted at the end of the word "copies” and

then the ending "y” should be added to “cop” in order Lo
get a dictionary entry "copy™). :

Word and dict.entry’s classes are word classes Lhat
the word being encoded and the corresponding dictionary
entry, respectively, belengs to (e.g., noun for both in the
previous example). i

Descriptor is an explanation of the form found in the
text (the code [or "plural” in our case), and a code offset
says how to calculate the code of Lthe word being encoded
on the basis of the code of the corresponding dictionary
enkry.

The lexical rules relation crested contains about 40

rules.

4.3. An Expert System [or Resolving Ambiguity

According Lo the classification of expert systems Iin
[HaWL 83], our expert system is of the inferprelelion type.
The components of the system are:
(1) a blackboord used to record intermediale results,
(2) a knowledge bose containing facts Irom the dictionary
and rules used [or resolving ambiguity,
{3) an interprefer that applies a rule from the knowledge
base and posts chenges to the blackboerd,
(4) a scheduler that controls the order of rule processing

according as whelher the ambiguity is to be resolved syn-
tacticelly or semantically.

In most cases, ambiguity is between word clesses
{e.g.. noun and verb) and is resolved using conlext. For
example, suppose that the phrase "a set of rules” is
encountered. The word “rules” is either "verb - third per-
son singular” er “neun - plural”. In this case, the ambi-
guity is easily resoived by the rule: "prepositicn-noun”
combinalion is far more likely than “preposition-verb”
combination. As in MYCIN [DAVI 77), we use a probability
model, and our rules have Lthe form)

(antecedent, consequent, probability)

where anlecedent specifies a set of conditions under which
the rule is applicable, consequent is Lhe conclusion and
probabilily gives a weight to the coneclusion. For exampie,
we might bave:

antecedent: if x is a noun or a verb and if x [ollows a

preposition .
consequent: then x is & noun with

probability: weighl 0.9

The archilecture of the expert system was chosen on
the basiz of knowledge, data and solution space appropri-
ale to our problem. Using the terminelogy found in [STEF
B2], we find that we have a small solution space (lew possi-
ble cheices), unreliable data and knowledge (the context
used [or resolving ambiguity of a word might be ambiguous
as well, and rules, representing knowledge, are not abso-
lutely correct), and fixed (time - independent) data. For
such an environment, the [STEF B2] suggests an expert
syslem organization that applies exbaustive search end
eombines evidence from multiple sources and a probability
model.

Thus, our strategy is a MYCIN-like -one [DAVI 77]. It is
designed Lo make an exhaustive search Lhrough the sebt of
rules applicable to a given situation, and stops short of
exhavstion only when ambiguity is resolved with certainty.

Backward chaining control strategy is used. The
search is hypothesis driven: from possible solutions to
related antecedent conditions and to their required data.

Our expert system was built using EQUEL [INGR 81],
which is QUEL (QUEry Language for INGRES) coupled with
general purpose programming language "C' [KeRi 78],
:5]:31‘ than knowledge representation languages [HaWL
B3]. -

In our experimental system, we bave 110 rules, 50 of
which involve word cless (ye,g,. noun vs. verb), 30 involve
semonlic feafure (e.g., time or place), and 30 are word
specific (e.g.. noun "drama” or adverb/noun “back”). Both
rules and facts as well as the dictionary are stored as rela-
tions in INGRES. Figure 1 depicts the flow of control
among the basic proeedures. All procedures have read
and write acoess to a blackboard, which is a "C” array of
structures.

4.4. Text Encoding

Texts are scanned first, and then encoded and stored
on & sentence by senlence basis. A current word is
matched against Lhe dictionary enlries, Llaking ints
account lexrule relation. It is appended to Lthe blackboard
together wilh Lhe information about its position in the text,
and, if unambiguous. with its code and deseriplor. If a
word is ambiguous, then it is marked indicating the kind
of ambiguity that iz encountered. The procedure for
resolving ambiguities in & sentence is Lhen called, which
fires the expert system procedures lor every word on the
blackboard marked az ambiguous. The contents of the
blackbeard is then written inlo an ocutput flle, and at the
end stored in a relation.

As an experiment, Albert Einstein's biography [ENCY
79] hes been used ‘as a Lext that contained 4096 words

=114-

SCHEDULET
it Pl
AULE INTERPIETER J
1 1

ENVIR

[enwitpsment Lo he searched)

1 1

BLDNE 1 BLOYVP ‘

(hwililing, neusn phrae [haildisg verh phrase
elarking from nous) stnrking from veih)

’_U_Li

e | CHIE

|eheek phruse]

Tigure 1. Basic cooperating procedures in the expert system

{including numbers, punctuations and special symbols)
within 140 sentences. The following are some numbers
that are obiained as a result of applying the system (o the
text: B2% of all the sentences (115 sentannasg
to contain ambiguous words, 251 in tolal (5% of all the
words). Out of all the ambiguous words, 147 were found to
be syntactically ambiguous and 104 semantically ambigu-
ous, In the process of resolving ambiguities, 139 out of 147
syntactic ambiguities were resolved correctly (94%), exam-
ples of incorrect resolutlien being some occurrences of the
word "after” (adverb/adjective/preposition/conjunction),
of the word "found” (regular/irregular verb) and the word
“divorce” ({noun/verb) in the phrese "was to lead to
divorce”. Semantic ambiguities were mostly on semantics
of prepositions. OQut of 104 semantic ambiguities, B2 were
resolved ecorrectly (78%), examples of incorrect being
several occurrences of the preposition "by" (TIME/
SOURCE/ INSTRUMENT) &= in the phrese “rejection of his
ideas by stalesmen"”., and the word “content”
{EMOTION /MEASURE) in the phrase "energy conlent”.

Source of incorrect resciution of ambiguities is mostly
in that we decided on a very limited and simple analysis of
context, and it would significantly improve with addition of
more complex anglysis. In order to resolve semantic ambi-
guities better, the system would also bave to be enchanced
with eontexi-dependent semantics.

As an example of what has been successfully resolvad,
the following s an exbract from the text been encoded:

Albert Einstein was born in Ulm, Germany, on
Mareh 14, 1878,

His theories of relativity were a profound
arfdvance over the old Newtonian physics and revolutionized
seientific and philosophic inquiry.

The words “on”, "advance” and “over” were recocgnized
as ambiguocus ones (first one as having more than one
semantic feature, last two as belonging Lo more than one
word-classes) end were successfully resolved(TIME, regular

noun, preposition, respeo Eively)

5. Example Applications .
Operations on Lexls thal we have experimented with

ware [ound

include: extraction of keywords and phrases, (information
retrieval application), stylistic homogensity testing (com-
puter linguistics application} and extracting precise infor-
mations from texts. We shall deseribe the lest one in
greater detail.

Extracting precise informations from texts consists of
asking & guesticn about a fact from the text {e.g.. when a
person named "X" was born) and finding the answer (e.g.
1873).

Qur approach to extracting facts [rom Lexts is Lo view
texts as a virtual relaticnal databese corresponding to a
specific schema. The. schema defines, a priori, the
universe of all gueries that may be posed, and the answer
to a guery is found from ocne or more Lexts at execution
time. Thus, except for the enceding al load time, the texts
are not preprocessed. Query proccssing makes heavy use
of the syntactic and semantic features of words that we
have designed into the code,

We bave constructed an experimental system with a
eollection of biographies in the {virtual relational} data-
base and the following schema:

relations with attribute:domain pairs:

birth{author:person, birth-d:date, birth_pl:place);
degres{name:person, deg:degree, deg-d:date,
deg_inst:institution, field:field_of_scie nee):

education{name:person, attend.inst:institution,
field:field_pf_seience,period:(date,date)); -

emp_history{name:person, employerinstitution,
position:position, d_started:date, d_left:date);

lecation(inst_name:institution, pl:place);

research_interest{nams:person, area:field_pl_science,
period:(date,date) U {w|feat{w)= "PRT"] U (date-date));

publication{author:person, title:citation, d:date,
published:institution).

A priori, lexical information concerning some of the
relations and domains may be supplied, for example,
birth: g

root: “birth™;
peTEROTL

word class: proper phrase;

semantic feature: HUM;

E
word class: proper phrase;

gemantic feature: LOC;

As we have explained, no stored relations correspond
to the schema above. Instead, Lhe collection of texts is
stored as a relation :

cod_text({tna, sne, id, descr)

where tne (text number) identifles a particular biography,
sno identifles a sentence, and (id, deser) is the coded form
of a lexical unit. Now the question: "Where was Albert Ein-
stein born?" can be expressed s a virtual gquery:

renge of e ig birth

retrieve (e.birth_place) where

e.author="Albert Einstein"

Using the facts: code("LOCATION")=48. code{"Albert
EinELain"?: -1807030, code(root="birth"}=12636, we can
translale virtual query into 8 real guery:
.range of e is cod_ext
range of u is cod_jext
range of v is cod_Lext
retrievele.id) where 2,id<0 and feate.id, e.desor)=48
and e.sno=u.sno and e.tno=uw.loo
and root(e.id,e.deser)=(125360000,0)

=116=

and v.tno=u.Lno and v.sno=u.5n0
and v.id=-16807030

which yields the answer "Ulm, Germany".

B. Coneclusion

_ We have presented a way of handling Lexts in a rela-

tional database system so that: {4) slorage efliciency is
maintained, (b) ambiguity of words is resolved, and (e} lax-
ical (word besed) informalion, both syntactic and seman-
tie, is made explicit. These goals are achieved through
enceding, which in Lurn uses a dictionary and an expert
system [or resolving ambiguily, Once a dicticnary is built,
any machine readable text cen be automaticelly encoded
with no human inlervention.

Our long term goal is o apply what we have done Lo
the problem of extracling facls from texts. A simple and
rather primitive version of such a syslem is given as an
example. lHowever, considerable more work will be
required for a fact-extraction syslem of general utilily,
and we are in the midst of such a development.

=11G=

Relerences:

[DAV] 77] Davis,R., el al, Produetion rules as a represen-
talion lor a knowledge-based consultation pro-
gram, Artificial Intellipence, B(1377), pp.15-45;

[ENCY 78] The new Enecyclopaedia Britannica, Macro-

a5 paedia, 15th edition, Vol. 8, pp.510-514;

[HaWlL 83] Hayes-RolhF. Waterman,D.A. Lenal.D.B.(Eds.),
Building expert systems, Addizon Wesley Publ
Comp. Inc., 1883,

[INGR B1] INGRES Version 7 Reference Manual. ERL, UC
Berkeley, Memo. Mo. UCB/ERL MB1/81, Aug
1881

[KeRi 78] KernighenB.W., Ritchie,D.LM., The C program-
ming language, Prentice Hall Software series,
16878:

[SiCh B2] Simmons,RF., and Chester,D.. Relating sen-
tences and semantic networks with procedural
logle, CACM, Aug. 1082, vol. 25, No.B, pp.527-547;

[STEF BE] Stefik,M., el al, The organizalion of expert sys-
lems, A tulorlal, Artificial Intslligence,
18(1882), pp. 135-173.

