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9.1 Introduction

One of the problems that John Thomas and I first tackled concerned the
transition density of Markov processes. Through the Fokker-Planck equation we
were able to show that the polynomial expansions first noted by Barrett and
Lampard [1] could be interpreted in terms of the Sturm-Liouville problem to
which the Fokker-Planck equation gives rise. My interest in Markov processess,
kindled then, has never waned.

Over the wyears I have worked on a number of aspects of Markov

processes, but one topic, above all, has continued to both challenge and frus-
trate me. This is the topic of multiparameter Markov processess, or Markovian
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random fields. Once again, I have returned to the topic, and thanks to an
appointment as Miller Professor I am able to work on it full time this year.
Though perhaps somewhat premature, I would like to pose the guestions that
have continually challenged me, my outline and approach, and present a few
preliminary results. In the process it may also be interesting to briefly review
the history of this topic.

9.2 Markovian Random Fields.

Let {X,, t € T} be a family of random variables defined on a fixed pro-
bability space (€2, F, P) and parameterized by elements of a set T. When T
is an interval of the real line, {X,, r € T} is simply an ordinary process.
When T is a subset of a multidimensional space (say R"), then {X,, t € T}
is called a random field or multiparameter process, or a process with multi-
dimensional time.

The way to extend the definition of “Markov process” was first suggested
by Lévy [2]. A random field {X,, r € T} is said to be Markovian if when-
ever @0 is a smooth surface separating T into a bounded part D~ and a pos-
sibly unbounded part DY, then + € D" and ' € D™ imply that X, and X,
are conditionally independent given the boundary data [X,, s € aD}. If we
identify D™ as the “past”, D7 as the “future”, and 4D as the “present”, then
being Markovian means the conditional independence of “past” and “future”
given the “present”. This interpretation makes the Lévy definition consistent
with the definition in the one-dimensional case.

My original interest in random fields was to find good models for images.
From that point of view, Lévy's definition is attractive. It promises to delineate
a class of processes that would represent both tractable and realistic models.
Markovian independence gives one enough independence for computation to be
possible, but not so much as to render the sample functions too ill behaved to
be realistic.
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9.3 Brownian Motion
For the one-parameter case, a Brownian motion can be defined as a Gaus-
sian process {8,, 0 = ¢ < co} with zero mean and a covariance function

EB,B, = min(t,s). (9.1)

The parameter space can be extended to the entire real line by modifying the

covariance function to read
R(t,s) = EB,B, = (|t] + ls| — le—sl)f2 (9.2)

Lévy [2] defined a Brownian motion with T = R" as a random field
{B;, t € R"} with zero mean and covariance function

R(t,5) = (lt] + ls] = |lt—=s]})f2 (9.3)

where || now denotes not the absolute value but the Euclidean norm
12
lt] = {E :,-1} .
i

Lévy conjectured that so defined, the Brownian motion had some kind of Mar-
kovian property if the dimension of ¢t was odd, but none if the dimension was
EYEn.

Lévy's conjecture was made precise and verified by McKean [3], who
showed that for » = 2k + 1, B, has the following Markovian property:
Given the value of B, and its k41 “normal derivatives” on the boundary, 4D,
its “past™and “future™ are indeed conditionally independent. Two points in
McKean's proof are particularly important. First, the highest-order “normal
derivative” needed on the boundary is always a generalized process so that the
boundary data need to be defined with some care. Second, the source of the
Markovian property for the Brownian motion with an odd-dimensional parame-
ter appears to lie in the fact that for m = 2k + | the covariance function as
given by (9.3) satisfies the equation

AFR(1,5) = Ayi(t—s) (9.4)

where A is the Laplacian operator. Both the need to deal with generalized
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processes and the connection with the Laplacian operator are recurrent themes
in Markovian random fields.

Gangoli [4] has considered generalizations of the Brownian motion for the
cases where T is a Riemannian manifold and the covariance function is
defined by a modified version of (9.3) where |f—s| is replaced by the
Riemannian distance d(f,5). A natural question is: Does the resulting Brownian
motion have any Markovian property? The answer is almost certainly yes if the
parameter space has a Laplace-Beltrami operator, as for example in the case
of spaces with constant curvature [3].

9.4 Ornstein-Uhlenbeck Processes
A one-parameter Ornstein-Uhlenbeck process (suitably normalized) can be
defined as a Gaussian process with zero mean and a covariance function
Rit,s) = eIl | —w0 <45 < o0, (9.5)
What would be a natural generalization for T = BR"? The answer is provided
as a part of the answer to a little different question.
Consider a zero-mean random fleld {X,, ¢+ € IR"} such that

R(t,5) = EX,X, = EX, X.., -(9.6)

for all Euclidean motions = (rotations and translations). It is easy to show that
in this case R(t,s) must be a function of just |r—s|. Furthermore, if X, is
quadratic mean continuous then R(r.s) must have the form

R(t,5) = T J{n—z};z(?tll“slj

TR F(d\) (9.7)

where F is a finite Borel measure known as the spectral distribution of the
process. In the late 1960s I posed the guestion: What must F() be in order
that the process X, be Markovian? It turned out that with a strict interpreta-
tion the gquestion was not an interesting one, For m = 2 there is no finite,
measure F for which the corresponding process is Markovian, However, if we
relax the condition that F be finite then
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indeed vields a Markov process. However, (5.8) implies that

K-8t =s])

B
" Bli—s 7 Bt

Rits) = A

and X, must be considered a genecralized process for n = 2. What does it
mean then to say that X, is Markovian? The answer is roughly as follows: Let
D be a smooth (n—1) surface. Although X, is not well defined as a random
variable at each point ¢ € D, the surface integral of X, on any subset A4 of
8D is well defined as a second-order random variable X(4). {X(4), A € 3D}
then represents the boundary data. To make this argument precise, we need to
define X, as a generalized process and define X(4) by using an approximating
sequence of testing funetions [5].

In 1973, Nelson [6] independently proposed the Gaussian random field
defined by (9.8) in the context of comstructive quantum field theory, and
called it the “Euclidean free field”. One of the outstanding problems in a con-
structive quantum field theory is to construct non-Gaussian random fields that
are isotropic and homogeneous (i.e., distributions are invariant under rotations
and translations) and Markovian. To date, the success is limited.

9.5 Wiener Processes
In one dimension a Brownian motion or a Wiener process can be viewed
as a zero-mean (Gaussian process with a covariance function min(i,s5) or as the
indefinite integral of a Gaussian white noise. It is easy to define a Gaussian
white noise n, for ¢+ € R", and using it, we can define a Wiener process W
by the integral
W, = [ u, ds (9.10)
Ay
where 4, is the n-dimensional rectangle with the origin and ¢ as two of its

COTIIETS,
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Of course, (9.10) is not properly an integral but merely a symbolic expres-
sion of the fact that W is more appropriately defined as a set-parametered
process W(A) which is independent on disjoint sets. To be specific let W(4)
be a Gaussian process parameterized by Borel sets 4 with EW{4) = 0 and
EW(A)W(B) = volume (4 M B). Now a Wiener process can be defined as
WA,

For r,5 € R" define the partial ordering +t > s by

it >5 o t; =5 for all £

Then W, is a martingale with respect to this partial ordering, and as such is
the basis for a theory of stochastic integration that has been developed since
1974 [7,8]. Here we are less interested in the martingale property of W than
in any Markovian property it may possess. Thus we would be interested in sto-
chastic integration only if it has something to do with Markovian random
fields. As we shall see later, such a connection indeed exists.

Meanwhile, a natural question is: Is W, a Markov process? Surprisingly,
the answer is “no”. To see this, consider R? and a triangular domain D~
bounded by the 45-degree line 0 = {(a,1—a), 0 = « = 1} as shown in
Figure 9.1.

tak
1

1
Figure 9.1

Now W(l,1) = W(D™) + W4y, N D*)  and the second term is
independent of {W,, +t € D™}. For W to be Markovian (in the Lévy sense)
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we need
E[W(D™) | W,, t € aD] = W(D™).

By a simple projection computation, we can show that

1
EWD™) | W,, t €aD] =2 [ W, du
i}

which is definitely not equal to W{D™) [9].

It is indeed surprising that the Wiener process W, as the indefinite
integral of white noise, is not Markovian. However, once we have discovered
that it is not, it is not too difficult to conjecture as to the reason. Intuitively,
“Markov" should be one derivative away from “white.” In R", an integral of
white noise is n derivatives, not one, from it. Of course, this very vague intui-
tive mnotion needs clarification, but to do so needs mathematical machinery. To
deal with differentiation in IR" requires a theory of differential forms, and in
our case, stochastic differential forms. Put in another way: We need to be able
to integrate on r-dimensional sets in R" {r = #) and not merely on n-
dimensional sets. Thus the theory of stochastic integration associated with mar-
tingales that has been developed in recent vears is not irrelevant, but inade-

quate.

9.6 In Search of a White Noise Connection

Consider an Ornstein-Uhlenbeck process on IR® with a covariance function
given by (9.9). The case of 3 = 0 is an acceptable case, and it gives

= A ; 9.11

R(1.5) Y| (9.11)

Now consider a vector Z, = (Z,',Z,%,Z,% of independent and identically dis-
tributed Ornstein-Uhlenbeck processes each with a covariance function

R(t,5) = (9.12)

lr—s]"

Let 5, = v'Zl be the divergence of Z, (considered as a generalized process).
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Then #, is a Gaussian white noise. This provides a way of whitening an
Ornstein-Uhlenbeck process that is not available without embedding it in a wvec-
tor of independent processes [10]. We shall reexpress this relationship in terms
of differential forms later, and use it to demonstrate explicitly the Markovian
nature of an Ornstein-Uhlenbeck process.

The vector process Z, is also related to Lévy’s Brownian motion in a sim-
ple and geometrically suggestive way. Itd [11] has shown that a genecralized
random vector field such as Z, can be uniquely decomposed into irrotational
{curl = 0) and solenoidal (gradient = 0) components. Denote the irrotational

component of £, by Z,. Then
Z, = VB, (9.13)

where B, is a Lévy’s Brownian motion. Since the divergence of the solenoidal
component is zero, we also have

V.VB, = AB, = y,. (9.14)

That is, the Laplacian of B, is a white noise.

The connection among Gaussian white noise, the O-U process and Lévy's
Brownian motion affirms our belief that Markovian random fields “come from™
white noise fields and the connection is through geometric differentiation opera-
tions. It also points a possible way to the construction of non-Gaussian Marko-
vian fields such as these needed in quantum field theory. But before such con-
struction can be developed, we need a calculus of stochastic differential forms.

9.7 In Search of a Stochastic Calculus.
Let W, be a one-parameter Wiener process, and consider a stochastic dif-
ferential equation of the Itd type
dX, = m(X,,t) dt + o(X,1) dW,. (9.15)

Under quite general conditions the solution JX, is a sample continuous Markov
process, and this provides a way of constructing a large class of Markov
processes in the one-dimensional case. To generalize the technique requires
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several things. First of all, it is not clear which process should play the role of
W,. There are at least three candidates: Lévy's Brownian motion 8, defined
in Section 9.3, the Wiener process W, defined in Section 9.5, and the
Ornstein-Uhlenbeck process defined in Section 9.4 or possibly the vector ver-
sion defined in Section 9.6. Second, it is not clear how the differential opera-
tor 4 is to be defined, and once defined how the term ¢ 4W is to be inter-
preted.

Intuitively, what I think we need is a definition for differential forms that
would simultancously deal with differentials of fields that are not strictly dif-
ferentiable and with nonlinear operations that cannot be handled by the theory
of generalized processes. This is exactly what the Itd calculus achieves in one
dimension. We need its generalization to R",

To give the basic ideas of what I think is needed, let us confine ourselves
to the two-dimensional case R®. Define oriented r-rectangles (r=1,2) as fol-
lows: A l-rectangle is a line segment parallel to one of the two axes, and each
l-rectangle has one of two orientations. A 2-rectangle is just an ordinary rec-
tangle with sides parallel to the two axes and has two possible orientations
(pointing out and pointing in, say). Finally, a (J-reciangle is just a point and
it too is given two possible orientations. If 4 is an oriented rectangle, then
—A is the same rectangle with the opposite orientation.

For 2 number of reasons we need to consider linear combinations of the
form

2 apdy

k
where «; are real numbers and 4, are oriented rectangles of the same dimen-
sion, The linear combinations satisfy certain natural axioms [12] and are known
as r-chains (r = 0,1,2). Observe that the boundary of an oriented r-rectangle
is a sum of oriented (r—1)rectangles. Hence the boundary of an r-chain is an
{r —1)-chain.

A two-dimensional set in IR? can be approximated by a sequence of 2-
chains (by subdivision, for example). A one-dimensional curve in R? can also
be approximated by a sequence of l-chains (by staircase-like approximations,
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for example). Now suppose that X is a linear map of the space of r-chains
into a space of square-integrable random variables. With appropriate continuity
conditions, X can be extended to all sets that can be approximated by r-
chains. Intuitively, X(4) for an r-dimensional set 4 can be thought of as an
integral

X(4) = [ ¢
A

where £ is a random differential r-form, except that for many interesting cases
£ is only & generalized r-form (r-current). We shall call X a random r-cochain
(or equivalently a random r-form).

The exterior differential of a random r-cochain is an (r+1)-cochain
defined as follows:

(dX)A4) = X (a4) (9.16)

when 84 is the boundary of A. This is nothing but the Stoke's theorem, used
here as a definition rather than as a property. Now take a Wiener process W,.
It can be considered as a O-form. Its exterior derivative dW is a l-form, so
that dW is parameterized by one-dimensional curves. If we define 4,W and

d,W by

d W = dW  on horizontal line segments

=) on vertical line segments
and
d,W = dW  on vertical line segments (9.17)
=0 on horizontal line segments
then

dW = d\W + d,W

and ;W are both I-forms. It is easy to show that
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d(d,W) = —d(d\W) =1

is a white noise 2-form, and because of it both W and &, are Marko-
vian. We now sec that although W, is not Markovian, its exterior derivative
dW is Markovian in the sense that its horizontal and vertical components d; W
are both Markovian.

Thus far everything is lincar. To proceed further, we need to introduce
the exterior product X A Y (between r and p forms) which is a nonlinear
operation. For example, d W A d,W is a 2-form that takes the value

Widry,1y) Wir.dry)

on an ineremental rectangle dr; Adry at (f;,15). It turns out that the exterior
product is closely related to the type-2 stochastic integral introduced in [7]
and the multiple Ité integral introduced in [13].

In the theory of stochastic integration developed for two parameter mar-
tingales, one source of difficulty has been the lack of a useful calculus. For
example, the differentiation formula (expressed as a transformation of integrals
into integrals) derived in [14] is difficult to use. With the introduction of sto-
chastic differential forms, a much simpler calculus is beginning to emerge. For
example, let W be a two-parameter Wiener process. Let f be a twice continu-
ously differentiable function. Then f(W) is a O-form and its exterior derivative
is a l-form given by

df (W,) = f(WIAdW, + 1720 (W,) Ady, (9.18)
where », is just the area of 4, (the rectangle bounded by the origin and ¢), d

denotes exterior differentiation and A denotes exterior product.

The intreduction of differential forms also makes possible certain transfor-
mations that should preserve Markovian properties in a way analogous to the
It differential equations. As an example, consider an equation

dX, = X, Adt + dW, (9.19)

As a global equation, it has no solution. We can see this by noting that
ddX, = 0 {dd of any form is 0) but J(X, Adt + dW,) = dX, Adr # 0.
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However, the equation has a solution on any path if we require it to be satis-
fied only on that path. Now, suppose that we take a collection of paths
I' = [+] such that no two paths in T ever cross and collectively the paths
cover the entire space IR Then solving the differential equation on each path
yields a O-form X, on R% For example, let " be the set of radial paths, ie.,

v = {(rcosf,rsind), 0 =r =@}, 0 =4 = 2r¢
then, on ¥y (9.19) becomes
Xidr,8) = X(r.8)dr + Widrcosf,dr sind)

and the solution is
X(r.0) = "Xy + [ e """W(du cos 6, dr sin 6).
1]

This solution can be written in a coordinate-free form as

X, =e) [ Xg+ [ el dW ]
. Te
where p is a O-form defined by e(r) = exp|t| and v, is the radial path from
the origin to ¢.
I believe that equations such as (9.19), solved locally on paths, provide a
way of transforming processes that preserves Markovian properties. The extent
to which this is true is under active investigation.

9.8 Conclusion

The development of a theory of Markovian random fields faces a number
of obstacles, On the one hand, in any dimension higher than 1 the Markovian
property appears to be incompatible with sample continuity, so that one has to
deal with generalized processes. At the same time, the very nature of the Mar-
kovian property is local, so that generalized processes per se are not a suitable
medel. Furthermore, to construct non-Gaussian Markov processes requires non-
linear operations that cannot be handled by the existing theory of generalized
processes, | am convinced that what is needed is a stochastic calculus like the
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one Itd developed for one dimension, but one that is necessarily differentio-

geometric in higher dimensions.
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