Proceedings of 24th Conference
on Decision and Control

Ft. Lauderdale, FL - December 1985

WP4 - 4:45

A STATE MODEL FOR THE CONCURRENCY CONTROL PROBLEM
IN DATABASE MANAGEMENT SYSTEMS*

Stéphane Lafortune end Eugene Wong

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720,

1. INTRODUCTION

This paper congiders the concurrency control problem in
database management systems from a control-theoretic
approach. Its main purpose iz to propose a dynamical system
mode]l for the concurrent actions of many users on a database,
Concurrency control is the task of scheduling these users in
order to satisfy a criterion specified below.

Despite the extensive amount of work that has been done
on concurrency control, this problem had never been formu-
lated in the framework of dynamical systems, This was the
motivation for our work, and we have used such an approach
to characterize what can and what cannot be achieved by
existing concurrency control technigues, and, in addition, to
suggest ways of improving these techniques. We have
analyzed in detail the well-known Two-Phase Locking Protocol
introduced in [1] and the recently proposed Declare-Before-
Unlock Protocol [4], In particular. cur model shows explicitly
how the two features declare and must-precede graph intro-
duced in [4] are useful in improving the performance of the
widely used two-phase locking protocol.

Thizs summary is confined to a description of the main
concepts involved in this work. Section 2 introduces some
background necessary for the description of our model given
in section 3. Control by locking, an important concurrency
control technique, is presented in section 4. Finally, section 5
is an outline of the results we have derived using our model.
The complete details can be found in [5].

2. THE CONCURRENCY CONTROL PROBLEM

We begin with a simple model of concurrency control.
Suppose that a b .o, ... denote atomic units of data that we call
abjects . A tramsaction is a description of the actions of one
user on the database. It consists of a finite sequence of reads
and writes, each action touching a single object. We denote a
transgaction T; by Ti=7;{o)r;{og) - - 'Tj(a,lj] where T;(o,)
means that I; acts on object o,. For simplicity, we do not
distinguish between actlons of différent types. nor do we
assume that the objects for the same transaction are distinct.

A complete execution of a (finite) set of transactions is an
interleaved sequence of all the actions from the transactions,
i.e.. it regpects the ordering within each transaction. An execu-
tior, denoted F, iz a prefix of a complete execution. An

execution is said 1o be seriol if there is mo interleaving
between the transactions.

We say that transaction T precedes T in E if there
exist some object b and actions 7;(b) and 7,;(#) such that

7;{k) comes before 7, (b) in E. In such a case, (r; (& }.1’;1:5 0
is called a conjflicting pair. An execution E is is said to be
(conflict) serializable if and only if precedes in E is a partial
ordering, i.e.. if and only if all the conflicting pairs in £ are
consistently ordered ([1-3]). A serializable execution produces
the same effect on the database as some serial execution.

* Research sponsored by A R.Q. contract DAAGI®-32-K-0091,
N.5F. grant EC5-8300463, and in the case of the first author, & sche-
larship from N.S.ER.C. (Canada).

441

The dynamics of this problem correspond to the genera-
tion ef a complete execution [rom the actions of all the tran-
sactions. The concurrency control problem consists in
scheduling the transactions to produce only serializable com-
plete executions. Serializability is widely accepted as the
appropriate criterion for concurrency control. Nen-serjalizble
execulions are nol acceplable, because they result in possible
violations of the consistency of the database; the lost-update
problem ([2]) is an example of such undesirable situations.
(bserve that, in general. the set of objects touched by each
transaction is not known beforehand.

3. STATE MODEL FOR CONCURRENCY CONTROL

In this section. we give a brief description of the model
that we propose for the analysis of concurrency control. Con-
sider the situation where N transactions are to be executed
concurrently. Given an (incomplete) execution, we can deter-
mine if it is serializable by examining the ordering of its
conflicting pairs. But we cannot determine if thizs execution
has a serializable completion unless we know for each transac-
tion the objects that remain to be acted on.

Thiz justifies the following construction for the state of
this system. The initial state, denoted g, is 2 graph with N
nodes representing the N transactions and one undirected
dashed arc (between the appropriate nodes) for each conflicting
pair among the N transactions. The transition function is as
follows. In response to an input action 7;(e). all the
conflicting pairs in which this action is involved are deter-
mined. In those pairs for which the other action in the pair
has not sccurred yet, a direction Is put out of node j on the
corresponding dashed arc. Otherwise, the corresponding
dashed arc into node j is replaced by a solid are with the same
direction. . ;

The state space consists of all such state graphs (SG) that
can be generated by all possible executions of the N transac-
tions. Let £ be the set of all the actions from the N transac-
tions. We define the following (strictly nested) sets of input

strings w from the elements of I (without repetition):

E, = {w :w is an execution |

L. = |w :w is a serializable execution |

L., =iw 1w isa prefix of a complete serializable execution }

and the corresponding (also strictly nested) ssts of states , .
., and (., generated by the elements of these sets. The state
space is the set {J,. Finally, we define the (partial) transition
function ¢, L ®x 0, — 0, according to the above description.
Then, given an input action from E. the current SG and ¢,
completely and uniquely determine the new SG.

Example: Az a gimple example. consider the non-serializable
complete execution:

E* = 7y(a Jrolb drala Jr b)

E® bas two conflicting pairs: (1;(a },72(a J) and (7,(8)ra(B)).
The initial 3G and the 8G after each action of E° are given in
the figure below.

CH2245-9/85/0000-0441 51.00 © 1985 [EEE

i I]
A ~ ,
a a¥ 1 L ! b & \
il : R
ke ' '
i 3 2]

ll-'-'-.p.l‘
T
-
o

O

Our input-state dynamical model can be interpreted as a
deterministic = automaton or generator (cf. [6]):
G =(0..Z.¢,.90. O). where (J,, can be taken as the set of
slates corresponding to the complete serializable executions.
The above sets E, . E,, and E_, are languages, and in particu-
lar, I, is the language generated by the uncontrolled genera-
tor.

The control problem is. ideally, the construction of a
controller. such that the language generated by the controlled
generator will be E.,. Equivalently. we want the state not
only 1o remain within (., at all times. but also to reach all of
Qepe . since this means achieving maximum concurrency.
Clearly, for this 1o be possible. the controller must know g,
beforehand. In such a case, since the language I, is controll-
able (as defined in [6]). the desired controller will exist. Since
this condition is rarely satisfied in practice. the concurrency
control problem i= one of control with pertial state informa-
tion. A necessary requirement is that the state remains within
2. at all times, because any execution must be serializable.
The objective is to bring the set of states reachable by the con-
trolled generator as close as possible to (., . given the infor-
mation that is available.

The state space can be characterized as follows (with
obvious terminology): (i) Q.. contains all cycle free state
graphs; (i) .0y — Q. consists of those state graphs with
dashed or mixed cycles. but with no solid cycles; (iii)
Q. — @, consisis of those state graphs with solid cycles.

4. CONTROL BY LOCKING

Locking is a widely used concurrency control technique
([1-4]). In addition to the two basic locking actions "lock”
and "unlock,” a third action "declare” was introduced in [4].
Locking actions are added to a transaction to produce an aug-
mented transaction. Each object in an augmented transaction
must be: (i) declared before it is locked. (ii) locked before it is
used, and (iii) unlocked before the end of the transaction.
Each upgrading voids the previpus state of lock. The inter-
leaving of augmented transactions is subject to the constraint
that locks are exclusive, i.e., there cannol be more than one
lock on an object at any given time. However, "declares” do
not conflict with each other, nor do they conflict with "lock.”
Hence, there can be more than one transaction holding
“declare” on an object. even if this object is locked.

Locking does not by itself prevent non-gerializable execu-
vons, since all executions in I, have an augmentation that
satisfies the above locking constraints. But a locking protocol.
by imposing constrainis on when locks can be oblained and
released, will reduce the set of admissible input strings, and in
some cases. e.g.. when “declare” is used, will enable the con-
troller to construct a better estimate of the state of the sys-
tem.

5. APFLICATION OF STATE MODEL

We now summarize the main results we have derived
using our model. The reader is referred to [5] for the complete
details.
1) The various graphs used in concurrency conirol by locking.
namely the wait-for graph (WFG), the precedence graph (PG).
and the must-precede graph (MPG), are subgraphs of the SG,
i.e., they are partial states.
2) Any controller using the PG as state estimate can do no
better than maintaining the state within @;.. On . the other
hand, the locking action "declare” permils conmstructing the
MPG. a better approximation of the G, by acting as a predic-
tive feature in the reconstruction of the unknown initial state
gg¢- Using this MPG in conjunction with a locking protocol

442

makes it possible for the controller to reduce the state transi-
lions to a set strictly smaller than (. . In the case of complete
state information, the Prior Declaration Protocol of [4] is an
example of an "ideal" controller attaining (.., exactly.

3) The Declare-Before-Unlock protocol of [4] is an interesting
compromise of a protocol which can reach all of Q. , i.e., all
gerializable complete executions, but strictly less than (...
with relative ease of implementation.

4) The state graph model permits a precise description of the
effects of the important fwo-phase condition of the two-phase
locking protocol ([1]). In particular, it explains why this pro-
tocol guarantees serializability even though it only uses the
WFG as state estimate.

5) In the case of distributed databases. it is possible to break
the complete SG into local sub-8Gs at each sub-database. This
decentralization effectively corresponds to the idea of model
aggregation in decentralized control theory ([7]).

6) Other concurrency control techniques, such as timestamping
([2]). can also be analyzed with our model.

REFERENCES

[1] K. P. Eswaran, J. N. Gray. R. A. Lorie and L L. Traiger,
"The Notions of Consistency and Predicate Locks in a
Database System,” Communicarions of the ACM, Vol. 19,
No. 11, November 1976, pp. 624-633,

[2] C. J. Date, An Introduction to Database Systems - Volume I1,
Reading, MA: Addison-Wesley, 1983.

[3] C. H. Papadimitriou, "Serialimbility of Concurrent
Updates,” Journal of the ACM, Vol. 26, No. 4, October
1979, pp. 631-653.

[4] 8. Lafortune and E. Wong. "A New Locking Protocol That
Achieves All Serializable Executions.” Memorandum No.
UCB/ERL ME4/77, Electronics Research Laboratory,
University of California. Berkeley, September 1984,

[5] 8. Lafortune and E. Wong, "A State Model for the Con-
currency Control Problem in Database Management Sys-
tems,” Memorandum No. UCB/ERL MB&5/27, Electronics
Research Laboratory, University of California, Berkeley,
April 19835.

[6] P.]. Ramadge and W. M. Wonham, "Supervisory Control
of a Class of Discrete Event Processes.” Systems Control
Group Report # 8311, Department of Electrical Engineer-
ing, University of Toronto, Canada, October 1983,

[7] N. R. Sandell, Jr., P. Varaiya. M. Athans and M. G.
Safonov, "Survey of Decentralized Control Methods for
Large Scale Systems,” JEEE Trans. on Automatic Control,
Vol. AC-23. No. 2, April 1975, pp. 105-128.

