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1. INTRODUCTION

A natural definition of the Markov property for multiparameter
random processes is the following. Let {X_zeR"} be a multi-
parameter random process taking values in some nice space. For any
set D in R" let &, denote the sigma-field generated by {X,,zeD}, ie.
Fp=0c{X,, zeD}. The process X, is said to be Markov (or Markov
of degree 1, ¢f [13, 15]) if for any bounded set U in R" with smooth
boundary and containing the origin z=0, %, and %, are condi-
tionally independent given #,; where U® and dU denote the com-
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plement and boundary of U respectively. The Brownian sheet on R,
[W,zeR%), is a zero mean Gaussian process with EW W, =
min(s, §)-min(t, ) where z=(s,1), z'=(5,t) and possessing con-
tinuous sample functions. Is the Brownian sheet Markov? At first
sight it seems that the answer should be positive since the Brownian
sheet is “the integral of white Gaussian noise”. More specifically,
consider a connected bounded set whose boundary is a finite number
of vertical and horizontal line segments, and containing the origin:
then obviously W, has the Markov property with respect to this
boundary. To quote Walsh [20] “..intuitively, this should be a
Markov process if any process is.” However, as shown in [20] (cf.
also p. 161 of [19]), the Brownian sheet is not Markov in the sense
of the above definition. A proof of this fact is as follows. Let U be
the triangle with cormers (0,0), (0,1), (1,0), then Fop=0{Wy -5
0=f=1}. Note that

E(W, {|Fg)=W(U)= E dW,,

and assuming, temporarily, that W is Markov with respect to the set
U then it follows that

E(W,,,|#F)=W(U).

Since, in any case,

E(Wy,,|Fou) = E(W(U)| #Fy),
the assumption that W is Markov with respect to U implies that

E(W(U) - E(W(U)|Fo))* =0. (1)
Now, since {W,,_, 02851, W(U)} are zero mean and jointly
Gaussian, E(W(U)|Fyy) is linear in {W} ,_,0=60<1} and is charac-
terized by the orthogonality condition

E{(W(U)—E(W(U)|#3)) Wy, 1 g} =0 (2)

for all @ in (0, 1). A direct calculation shows that setting

1
E{W(U}|§au}=2£ Wy,1 -t
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satisfies (2) but not (1) therefore the Brownian sheet is not Markov
in the sense of the above definition.

In order that the class of multiparameter Markov processes not be
too small it is customary to modify the definition of the Markov
property and instead of conditioning on the sigma fields penerated
by the values of the process on to the boundary, to condition on
richer sigma fields (cf. [14], appendix A of [1], [19]). A (very) rich
sigma field is obtained as follows, define the germ field Ly as-
sociated with the boundary D of a set D by

Eip=na{X, 10}

where the intersection is over all the open subsets O,y that contain
dD. Now replace &, by I,; as the splitting field in the definition of
the Markov property, namely: the random process IX,teR"} has
the germ field Markov property if for every bounded set with
smooth boundary and containing the origin, %, and 5 are
conditionally independent given I, (cf. [14] for equivalent defi-
nitions). Obviously, the Brownian sheet has the germ field Markov
property. Note that the germ-field Markov concept is easily extended
to generalized processes [10].

In order to point out the difference between the Markov and
germ-field Markov properties, consider a continuous one parameter
Markov process X,, t=0. Let ¥,=|}, X,ds then Y] is not Markov but
it is germ-field Markov and the germ-field is I, =ofY,dY/di}.
Another example is the following, let £ denote the class of functions
{X,, —oo<t<oo} that are the restriction to the real line of functions
that are entire functions on the complex plane; then, for any
probability law on &, the process {X, —so<r<oo] is germ-field
Markov.

The theory of one parameter Markov processes deals almost
exclusively with processes that are Markov in the ordinary sense and
has very little to say on processes that are Markov in a generalized
sense (such as perm-field Markov or processes that are the projec-
tion of a Markov process). On the other hand, the theory of
multiparameter processes is based mainly on the Markov property
in a generalized sense and deals mainly with Gaussian processes ([1,
197). For other definitions of the Markov property in the plane cf.
[2, 8, 12, 16].
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The purpose of this paper is to consider another definition of the
Markov property for multiparameter processes. The idea 1s as
follows, instead of considering processes that are a collection of
random variables parameterized by points in B? or B we consider
processes parameterized by smooth curves in R® The splitting
sigma-field for the Markov property is now the sigma-field generated
by curves lying in the boundary. Similarly a Markov process on
FR*(R") can be defined by considering a collection of random
variables parametrized by smooth curves and surfaces (or r-cells
where 0<rXn—1) and the splitting sigma-field for the Markov
property is that generated by points, curves, surfaces lying in the
boundary. Stochastic processes parametrized by paths (or cells) that
have a certain additivity property can be considered as stochastic
differential 1-forms (r-forms) and are discussed in [27]. It is believed
that the Markov property introduced here is a natural extension of
the one parameter Markov property and is of particular interest in
the analysis of non-Gaussian multiparameter processes.

Only the case of R? will be considered in this paper.

In the next section we introduce definitions of the Markov
property in the plane and show that the Brownian sheet is Markov
under these definitions. We also note (as was first noted in [22]) that
the free Euclidean field, which is a generalized process, can be
considered a regular process parametrized by paths, and as such
enjoys the Markov property under our definition. In Section 3 we
consider transformations of measures via multiplicative functionals
under which the Markov property is preserved. As an application to
the results of this section it is shown that the solution to the
stochastic differential equation X(dz)=g(X,)dz+ W(dz) is Markov in
the sense defined in the paper. Section 4 deals with transformations
of the state space and the parameter z preserving the Markov
property. As an application it is shown that the solution to &.X, =
—aX, ds+8,W,, (the “infinite dimensional Ornstein—Uhlenbeck
process”, cf. [18]) is Markov. Let z, =(s, t;), 2;=(s2,t;) be points in
the plane, introduce the partial order z; =z, if 5, =5, and t; =¢;. Let
D be a connected set in B% containing the origin, assume that D has
the property if z; € D and z, £z, then also z; € D, the boundary of IF
is called a separating line. Section 5 deals with the Markov property
with respect to separating lines, and it is shown that the solution to
8,X, . =g(X, )ds+8,W,, is Markov with respect to separating lines.
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The Markov property with respect to separating lines can be
considered as the stochastic version of Huygen's principle. This
section is concluded with a remark on the extension of the notion of
the Markov property with respect to separating lines to the notion
of the Markov property with respect to random separating lines, ie.
the strong Markov property.

Remark In addition to the partial ordering z, <z, defined earlier,
and z, <z, if 5, <s; and t, <t,, we will use z; A z, to denote 5, =5,
and 1, =1,.

2. PATH PARAMETERIZED MARKOV PROCESSES

Let v denote a continuous finite nondecreasing path in B3, ie 7 is
defined by the function y(6) from [0, 1] to R3,+(6) is assumed to be
bounded continuous and y={ziz=9f),0=0=1;7(f;) =7(f;) when-
ever 8, <f,}. Set y(8)=(s(), t(6)); yo=7(0), v, =7(1) are the endpoints
of v and let A(y) denote the vertical shadow of y, i.e.

Aly)={(o, 7):0=5(0), r=1(f), 0ZH=1}.
Similarly, B(y) is defined to be the horizontal shadow of y:

By)={(o,):0 Zs(6), r=1t(0), 0=0=1}.

W(AG) = [ W(dE);, W(B(y)= _F Wi(ds). (3)

Ayl

Also, let ¥ denote a finite continuous nonincreasing path defined by
y={z:iz=9(0), 0581, ¥(6,) » y(f,) whenever 8, <#,}. The endpoints
are again y,=7(0) and y,=7(1), the shadows A(y), Bly) are defined
as before and so are W(A(y)), W(B(y)); in this case W(A(y)) and
Wi{B(y)) are not independent but this will not be important to us.
Let ¥,=(W(A(y), W(B(y)), we want to consider the Markov pro-
perties of such path parametrized processes, for this purpose we first
generalize as follows, let (Q,%, P) be a probability space and let Y,
be a collection of random variables parametrized by paths in RZ
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that are continuous and either increasing or decreasing. Also, let X,
zeR% be a collection of random variables parametrized by points z
in B2. Let U denote a set in B% and let T(U) denote the collection
of all continuous paths y that are either increasing or decreasing and
yeU, U will denote the closure of U. Let ¥, denote the o-field
generated by Y, where y runs over I'(U);

Fy=0{Y,yel(0)} (4)

and
Hy=%,volX, zeU)}
=o{¥, X, X,,7eT(O)}. (5)

A boundary of @D of a set D will be said to be piecewise monotone
if 8D is the union of a finite number of paths y,, i=1,..., m<oc and
";';Er[ﬁi],

DeFvimions  (a) A path parameterized process {Y,ye[(R3)} will
be said to be y Markov if for every connected open set D with
piecewise monotone boundaries ¥, splits %, and %, ie. ¥, and
% p are conditionally independent given %,

b) The process {¥,X,,X,, ye[(R3)} will be said to be y+
Markov if for every connected set with piecewise boundaries, # 5,
splits #, and . Obviously, a y Markov process is also y+
Markov with X_=0. We prefer however, to define both concepts
since the Brownian sheet induces both a y Markov process and a y
+ Markov process and moreover certain generalized processes can
be reparametrized to become y Markov processes.

Setting ¥, = (W(A(y)), W(B(y))) we will show now that { ¥, ye T(R3)}
is y Markov (Proposition 1) and {Y, W, W, ,yel(R)} is y+
Markov (Proposition 2). Proposition 2 is actually a rewording of
Theorems 3.11 and 3.12 of Walsh [20] in the context of path
parametrized processes, and Proposition 1 is a modification of it.

Remarks (a) It will be clear from the proof of Proposition 1 that
{W(A(y),yel(R%)} alone, or {W(B(y))e(R3)} alone, is also
Markov.
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b) If y is increasing then W, =W, +W(A(y))+ W(B(y)) and if y is
decreasing then W, + W(B(y))=W, +W(A(y)). Consequently the
phrase “Y,, W, , W, " is equivalent to “Y,, W, ” etc.

Ta?
Prorosmion 1 Let D=R% be a bounded comnected set with piece-
wise monotone boundaries and Y,=(W(A(y)), W(B(y))) then %, is the
minimal splitting field for %, and %p..

Proof We will be considering subsigma fields generated by zero
mean Gaussian random variables and therefore orthogonality and
independence are equivalent. Let O denote the collection of all
bounded open subsets of B2, Set

Fh=a{W(UnD),Ue0}
note that %, and %, are independent and
Gp=8pv Gy
g_p.: = c.?n., W gﬁﬂ'
Let

o =0{W(Dn A(y)), W(D B(y)), yeT(éD)}
@50 =o{ W(D*n A(y)), W(D°nB(y)),ye I(&D)}.
Then %%, and %3 are independent and
G STip v G35

In the converse direction note that for yeI'(8D), the set {Aly)~20),
can be decomposed into a finite union of paths ¥, i=1,...,k such
that y;,eI'(éD) and {A{y}nED}AJU,-}rI and W(Dn~ A(y)) can be repre-
sented as a linear combination of Wi{A(y)) with non-random coeffi-
cients. Therefore,

in
gﬂﬂ ggdﬂ
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similarly ¥35 =%, hence,
Fp=%p v Fip-
Note that ¥, c @, and %55 = ,,, therefore (6) can be rewritten as

Bp=9, v 35
g

§‘D¢= D.:V

and %" is independent of %, and %% is independent of %
Consider a path yeT(D), then W{A(y))= W(A(y)n D)+ W{A(y) n D).
Now, W(A(y)nD) can be represented by a finite sum 3§ o, W(A(y,)
with x; non-random and y,ST(éD) therefore W(A(y)nD) is %
adapted. Turning to W(A(y)n D", it is . adapted, independent of
@, and can be decomposed into the sum of two Gaussian random
variables one being %55 adapted and the other orthogonal to %35
and to 4, hence by (7) orthogonal to %,. Therefore E(W(A(y))|%p)
is @,p adapted and equal to E[W{A[}r}}lﬁn}, this proves that %,
splits %, and %p.. In order to show that %, is the minimal splitting
field note that by (6), =% pn%p and ¥F;pS%p Since every
splitting field for %, and % includes @”Dn‘ﬁ' (Corollary 2.2 of
[157) it follows that %, is minimal.

Prorosrrion 2 ([20] Theorems 3.11, 3.12) Let D=R3 be a bounded
connected set with piecewise monotone boundaries, Y,=(W(A(y))
WI(B(y))) and X.=W. then #,; is the minimal splitting field for #
and Hp..

Proof Note first that
. Hp~Fp v Hyp

(8)
Hp =8 v Hyp

Let R, denote the rectangle {{:0=£=z} and let

Hip=a{W(DnA(y), W(DnB(y), W(DNR,);yeT(aD), 2D}

= o{W(D" A A(y)), W(D* A B(3)), W(D* AR, 7 T(9D), z€ oD}
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then 2 and A are independent and #p=a1 v #IP.
Furthermore,
Hp= I?D v #3p
9

fm=§m\’ i.a"n

and the rest of the proof follows along the same lines as the proof of
Proposition 1.

We now turn to another Gaussian example. Let X, zeR? a two-
parameter free Euclidean field defined as a generalized Gaussian
process with zero mean and a covariance function given by: Kylr)
where K is the modified Bessel function. Equivalently, its spectral
density function is given by:

o
1+ :
where a is a positive constant [22, 17]. For a path y in R?,
Xy =[X.dl.
¥

is a Gaussian random variable with variance

2
dv,

AlE — a |
E|X(y)| HEEW :Eexp:(v, z)dl,
For a y of finite non-zero length, the variance is finite. Thus, as a
path-parametrized process, X is an ordinary process, not a gen-
eralized process. As was shown in [22], suitably interpreted, the free
Euclidean field has a Markov property in the sense of Lévy [13]. In
terms of the definition introduced in this paper, the path para-
metrized process X, is y Markov.

3. TRANSFORMATIONS OF PATH PARAMETRIZED
MARKOV PROCESSES |

The transformation of Markov processes via an absolutely cont-
inuous transformation that leaves the Markov property invariant
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([6], Chapter 10, Section 4, [7]} will be considered in this section.
The transformation of measures is induced by the exponential of
additive functionals and known results on stochastic integration in
the plane yield a large class of such functionals. This will be applied
to show that the solution to the stochastic differential equation
X(dz)=g(X,)dz+ W(dz) is y+ Markov.

Let (Y, X,,X,,7e(R3)) be a y+ Markov process and let @
denote the collection of all connected open subsets D of RY with
piecewise monotone boundaries and their complements. Let
{x(D),DeQ} be a set parametrized collection of random variables
defined for every DeQ and such that for every D, D, De@Q with
DinDy=¢:

1) &D,uD;)=a(D,)+u(D,)
2) Ef{expa(D)} <, E{fexpa(R3)} <
3) w(D)is Hy adapted.

Let

_ expa(R3)
" E{expa(R%)}’

Proposition 3 If {Y, X, X, ,vel(RY)} is y+ Markov under the
original measure P then it is also y+ Markov under P=LP.

Proof The proof follows along the same lines as in the one
parameter case or the germ-field Markov property in the multi-
parameter case ([6, 7]) and is as follows. Let E,, E, denote expecta-
tions with respect to the measures P and P respectively. Let D be a
bounded open set in B2 with piecewise monotone boundaries and
let Z be a bounded random variable adapted to #,. Then 2(R1)=
#(D)+a(D?) where «(D) is #, adapted and =(D°) is 5, adapted.
Therefore

EJLZ | Hpe)

g
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s Ey(Z exp(af D) 4 «( D)) ifpc]
Eq(exp(a(D) + (D)) prcu:'

_Eo(Zexpa(D) E
Eqlexp a(D)| #5.)

_EqZexpa(D)|#yp)
Eofexp (D) #5)

_EqZexpa(R3)| #40)
Eqlexp o(R2)| #yp)

=E1{Z|‘;ﬁﬂ]

and therefore {¥,, X, . X, ,yeI(R})} is y+ Markov under B

Similarly, consider the y Markov process {Y,,ye(R3)}. Let «(D)
and L be as defined above but with (3) replaced by: (3) w(D) is ¥
adapted. Then it follows by the same arguments (or by specializing
Proposition 3) that

Prorosttion 4 If {¥,veD(RL)} is y Markov under the original
measure P then it is also ¥ Markov under P=LP.

As an example to the application of Proposition 3, let #, denote
the o-field generated by (W £ <z). Let (f,.zeR3) be a measurable

random process adapted to #, and

E | 6idz<oo.

Bl

Jﬂ.:W{dELRHR H;Ag-widﬂ'widﬁ’hg B0, W; 3, W,
[ B:0,Wcds, [ 0 dea, Wy (E=(51)
3

denote the stochastic integrals of the first, second and mixed types
(ef. [23, 24]; [3]). Let y(-,-), i=1,...,4 denote measurable functions
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on B2 = R such that

E [ (& W)2dé <o,
Ry

Set

#(D)= [ wol&, W) d¢+£ W4, WaWids)

il

+£ W€, W) ﬂz%51%+w3{¢, Wy) 8, W, ds
+ [ Wa(E, Wy dt 8, W, (10)

Assuming now that y,(-,"), i=0,...,4 were chosen so as to satisfy
Eexpa(D)<co,a(D) as defined by (10) yields a large class transform-
ing the Brownian sheet into a (generally non-Gaussian) y+ Markov
process. If the (£ W) in (10) are replaced by non-random &,¢)
then (10) yields transformations of the Brownian sheet into y

Markov processes.
Returning to the case of y+ Markov processes, consider the

stochastic differential equation on R%:
X(dz)=glz, X.) dz + W(dz), Xo.0=0, (11

This is a special case of the equation dX_=pglz, X )dz+a(z, X)) dW,
which has been considered by several authors (e.g. [2, 97).

CoroLiLary 1 Let g(z,a), zeR?, acR' be a bounded Borel function
on R*xR' and g(z,)=0 for z outside a finite rectangle R, where
zpeR:. Further assume that g(-,) satisfies a uniform Lipshitz con-
dition in z, i.e.

|g(z, a) — glz2, @)| S K((s, —8)* +(t, — 1)) z=(s.1)
then the process

{X(AQ), X(B(y), Xy, X yeT(RL)}

is ¢+ Markov
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Proof The existence of a solution to (11) follows by standard
arguments {e.g [9]). Let W be the Brownian sheet under P, set

L =exp( - | #& X)W~ [ £(6.X)d) (12)
o] al

then EL, =1 and {X, {eR%} is Wiener under the measure P=L,P
(cf. [25], note that g(-,-) was assumed to be bounded). Consider now

a{DJ=jng{¢. X‘;}Hg—%i[gl{f, X)dE (13)

then under P we have Eexpx(R3)=1, setting L=expa(R2) and P, =
LP then L=L7", P,=P and X,—[; g(& X,)d¢ is Wiener under P.
Therefore, for L defined via (13) the assumptions of Proposition 3
are satisfied which completes the proof.

4. TRANSFORMATION OF PATH PARAMETRIZED
MARKOY PROCESSES Il

Two types of transformations are considered in this section. In the
first we consider a mapping z=f(£) of R1 onto R%; this mapping
induces a reparametrization of points and paths and the trans-
formation of the Markov property under this reparametrization is
considered. The second transformation deals with the case in which
the Markov property of the process {[ ., dF(W), [g,, dF(Wy), F(W, }
is considered. The results will be applied to show that the Ornstein—
Uhlenbeck process d.X, ,= —eX, ds+48,W,, is y+ Markov.

A mapping z=f(&) of a subset of R2 onto R will be said to be
order preserving if £, =&, implies z, =z, &, & &, implies that z, A z,
and {, #¢; implies that z; #z,. Let y be the path y={y(f),0=0=1}
then f~'(y) will denote the path {f Y, 0=8= 1}. Note that any
order preserving map is of the form z=(f,(,), f2(&;)) and therefore
it transforms horizontal (vertical) paths into horizontal (vertical)
paths. Let {Y,, X, . X, } be a y+ Markov process and z= f(¢) order
preserving. Let

X=X K=Yr-1m

then, obviously, {¥,, % . & - PET(RL)} is also y+ Markov.

Fo*
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Let {X_,zeR3} be a real valued random process, assume that &,
i5 a collection of subsigma fields satisfying the assumptions of [3]
and X, is %, adapted. Further assume that the stochastic integral in
quadratic mean [ ¢.X(d¢) with respect to the deterministic integrand
¢ is well defined, therefore the integral of X(dZ) over the horizon-
tal and vertical shadows of 7 is well defined. Set X,=
([ acy X(dE), [ 5y X (dE)), X, will be said to be the path paramttrsm:l
process induced by X.. Smce X, is defined on paths, it may be
considered analogous to the integml of a differential one-form along
paths; furthermore, as X, is induced by X, which may be considered
as a zero form, X, may I:e considered as the integral along paths of
the exterior derwatwe of X,, cf. [27]. We will use X to denote the
path parametrized process induced by the point parametrized pro-
cess { X, zeRi}.

Limna 1 xff X induces X, z=f(£) is order preserving, and X
induces XX then X=X (and, as pointed out earlier if X is y+
Markov; so is X).

The proof is straightforward since f(£) transforms rectangles with
sides parallel to the axes into rectangles with sides parallel to the
axes.

Turning now to the second transformation, let Fis,t, x), 0 =5 <o,
0=t<on, —oo<x<oo be a real valued function of its three
variables, we want to show that if F{-,-,-) is sufficiently smooth and
under some additional conditions, the process X.=F(st, W),
z=(51), F non-random, induces a y+ Markov process. For this
purpose we prepare the following lemmas. Note, however, the
remark after the proof of Proposition 5.

Lemma 2(a) Let Fi--,-) be defined on B, xR, x and assume that F
and its partial derivatives up to the fourth order are continuous and
polvnomially bounded. Let oF/ds, 8F/6t denote the partials with
respect to the first and second variable and F', F*, F*, F™ denote the
first four derivatives, with respect to the third variable. Let X, =
Fls, t, W), z=(s, t) then, for every finite increasing path y, (£=(m, 1)k

X(AQ) = 50 0(0). 50), W) do(®
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+ _f F'(a(0), 7(8), H{:wﬂ W (A(y) I"'R:[Q}J

+4[F(0(6) 46), Wea) - dot) (14)
and
X(B(y) = j%i-dﬂﬁh [ F-8,W(B(G) A Ryp) +3 [ F"-dc(60). (15)

Remark The stochastic line integrals can also be interpreted as
stochastic surface integrals with respect to “weakly adapted” in-
tegrands (Theorem 2.3 and Section 4 of [3]).

Proof The Itd formula for two parameter processes [25] yields in
this case:

*Flo, T, Wy)

Fis,t, W)= F(0,0,0)= | 22

dé+ [ Fla, 7, WW(d®)
Rl
. a

+£’F”J[d¢}+§{F df+£'aa;}?"a,ﬁi:dcr
+jiF’drﬁ W, +4 iF"d d.

£ Ot it n[é‘ﬁr R

g -

+iJEF‘*d’:da+£JF dzd, W,

+4 [ F"oWdo+} [ F™dE (16)
R.l £

where J_ denotes

J.= J ﬁf W(dEW(dc)

and the arguments of F', F" etc. are (o,7, W), and {=(o,1).
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326
Therefore
X(A(y)= | dF= | %dﬁj} F'(o, t, WW(dé)

AlF) Aiy
L 0 pea
+ | Frrdg+t | Frdé+ 1[ —F'8,W,de
Ar]aﬂ'

Al Alr)

d &
+ | —Fded,W,+% | —F'dvde
,.'L,ﬁr ; 2.JliF:r: da

13 [ Lromdoty [ Fraco,w,

Al 0T Ay

+3% _I F"diW.do+} | F™ AL,
Aty

Aly)

(17)

Turning now to (14) and applying the one-parameter It formula
to &F/de yields for the first term in the right-hand side of (14)

&*F
f—{ﬂfﬂl (@ ;{a}]da{mﬂ jjﬁ{mr, H‘}}d:f

'r'

aF :
+ | — (o, 1, W) &, Wede
A{‘.-'? do ( ﬂ ¥

+H {JTH’E}dé (18)

Ay ©

For the second term in the right-hand side of (14) we apply Green’s

formula of [4]:
8), ©(9), Wygy) 85 W(A(¥) A Rug)) = j Flo, 7, W)W(d&)

JFia
+ [ FraJy+% | Frded,w
Aly) Al
+ | F-dué,W, (19)

Aly)
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and for the last term in (14) we have

§[ F*(0(6), 2(6), Wya) do(8)=} [ F'(a,7, W d¢

] Alyd

aF"
+4 | ——dé+4 | F" . W do
dt 1

Aiyd Alr)

+4 [ PMde. (20)

Alyl

Substituting {18-20) into the right-hand side of (14) and comparing
with (17) proves (14) and (15) follows by a similar argument,

Lemma 2(b) Under the assumptions of Lemma 2(a), for every finite
decreasing path y, X(A(y)) and X{(B(y)) are given by:

X(AG) =[5 (0(6) 6), W) dof6)
+£ F(o{d), 1(8), W.:.:a:.} ﬁawiﬁiﬁ} ™ Rum. 2]
+4 F'(0(6), 460, Wi do(®) 1)

and, with i=1-8
iF
X(B(y)) =£ 77 (010, 7(0), W) dr(8)

+ [ Fi{a(4), ©(A), Wiyyy) 8. W(B(y) N R o ¢2)

¥

+4] F'(a(4), ©(2), W) de(2). (22)

¥

The proof is the same as that of Lemma 2(a) and therefore
omitted.

Prorosmion 5 Let F(-, ) satisfy the assumptions of Lemma 2a),
further assume that F'(-,-,-) does not vanish on By xR, =R and for
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§=min(s,, 5,), f=min(t,, t,), it follows by a direct calculation that

[
By Koy =715 [ 20df

Sg.07

=i{€_“|31_31:_e_t[gl +*”}.

2o

Consider now the process [207:

1
V. = il | AR
5t WE’ elar=1,¢

Then EV, , V¥, .=EX, "X, , and since the two processes are
zero mean and Gaussian they are identical in law. Setting (&, t)=
(e*=—1,1) we have

1 1
V.,= " o W,
“=Jm Tre o

Since W,, induces a y+ Markov process, by Proposition 3,
(2m)~Y3(14-¢) " 'W, , is also y+ Markov. Since (s, f) =((2x) " log(1 +
), 1) is order preserving it follows that ¥, and hence X, , are y+
Markov. We do not know whether the solution to 8,X =g(x,)ds+
d,Wis y+ Markov, a weaker Markov property of this process will
be proved in the next section (Proposition 6). '

5. THE MARKOV PROPERTY WITH RESPECT
TO SEPARATING LINES

A path L={z(f),0<f<1} in R will be said to be a separating line
if it is (a) non-increasing; (b) as 0—0 either #(6)—0 or t{f)—cc; and
(c) as B—1 either t(r)=0 or s(f)—oo. Let L={z(f),0<f<1} be
a separating line and let

(@) ={zzzz(0)}, D<=l

() ={z:z=z(f)}. =R.(H), 0<8<l.
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L+ =ﬂ{[9J{ 1 z+{B:]

- =uﬂl£=1 0

A separating line is, therefore, a non-increasing path separating R%
into “past” L~, “present” L and “future™ L.

Throughout this section, y will denote a decreasing path and I'(D)
will denote the collection of decreasing paths contained in D. A path
parametrized process {¥,, X, X, .yel(R)} is said to be Markov
with respect to separating lines if for every separating line L,
o{(¥, Xvu’xw."EﬁL}} splits o {(¥,, Xn'.;*X'anEr' ) and
(VX . X, . yel(L™)}. Obviously every process that is y+
Ma.:rkuv :IS also Markoy with respect to separating lines,

Two separating lines L, and L, will be said to satisfy the relation
Ly<l, if LynL,=¢J and L, =l;. Let L. 0=<#=1 be a one-
parameter increasing collection of separating lines, ie, L, <L,
whenever 1, <n,. Let

(23)

ar, =o{(Y, X, X, . y=L,}. (24}
Then o, 0=n=1, 0=n=1 is Markov in the sense that 9L, splits
\,f,,.c,,cr;_ and \;’P,,rcrL Conversely, if for every increasing one-
parameter collection of separating lines L, 0=4=1, O, 0=n=1is
Markov then (Y, X,,X,) 15 Markov with respect to separating
lines.

ProrosiTioN 6 Consider the process X ., zeR% defined by
a.X, ,=g(X, Jds+ 8, W, , (25)

where g(-) satisfies a global Lipshitz condition and X, , is a smooth
non-random function of t. For z=z(f), 0=8=1 set:

Y, = X(A() = 8(X s19,,u) do(6) + W(A()). (26)

Then (Y, X, , X, ) is Markov with réspecr to separating lines.
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Proof Note first that for every separating line L, a{W(A(y)),yeL}
splits a{W(A(y)), ye (L")} and o{W(A(y)),yeT(L")} and

o{W(A(), yeT(L)} =a{X(A(), X, X, . 7e T(L)}.

Therefore  o{W(A(y)),y=L} splits o{W(A(y),yel(L")} and
o{Y, X, ,X,,yel(L7)}. A lemma of F. Knight states:

Yo

Lemma [11] Let o, 8,5 be subsigma fields of a sigma field and
assume that & splits o and # then (a) if &, satisfies
FoF =¥ vRB then ¥, splits of and & (b) if &, satisfies
B, =B v & then & splits & and B,.

Applying part (a) of Knight's lemma and (26), it follows
that oY, X,,X,.ycL} splits a{W(A(y),yel(LY)} and
a{¥, X, X II,'};ET{L'}}. Applying part (b) of Knight's lemma and
(26) yields that ¢{Y, X,,X,,ycL} splits o{Y, X, X, ,yeD(L)}
and o{Y,X,,X,.yeT(L7)}. Hence (Y,X,,X,) is Markov with
respect to separating lines.

The notion of a Markov process with respect to separating lines
leads directly to the notion of a strong Markov process as follows
(cf. Chapter 5 of [5] for a discussion of the strong Markov property
for non-stationary Markov processes on R.). Let (,#,F) be a
probability space and #,, ze R} a collection of subsigma fields of #
that satisfy the conditions: (a) %, =%, whenever z; Sz, (b) nF,=
#,. where the intersection is over all >z and (c) %, contains all
the null events of #. Let § denote the collection of all separating
lines including the separating line “c0”. A stopping line L{w) is a
function from Q to § satisfying for every ze R

lmzel(w)}e#F..

For every stopping line L{w) set

op=0{Y, X, X, .ycLiw)}
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For every ye [(RB2) set:
Liy=ynl(w), L'()=ynL(w)
01-=0{ Yo~ Xit-pmpr Xet-omy P€ I(RrY)
op-=0{¥ . XL+t Xu.."mi,*?Ef-{Ri}}-

The process {¥,X, X, ,yel(R1)} will be said to be strongly
Markov if for every stopping line L, o, splits g,- and o, ..

Remark A strong Markov property for random fields has already
been introduced by Evstingneev ([7], p. 85 of [19]) but it is different
from the one introduced here.
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