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Summar

In this paper we examine the Markovian properties
of three important random fields: Lévy's Brownian
motion, free Euclidean field, and Wiener process. In
so doing, we advance the proposition that appropriate
candidates for Markov fields are stochastic differential
forms and their Markovian property s characterized by
bzing "one derivative" removed from white noise.

1. Introduction

A continuous parameter random field is a stochastic
process {X,, t € T} with a multidimensional parameter set
T (say TS RN). Let 80 be a smooth (n-1)=-surface
separating T into two parts D and D*. Following Lév_l,rI
we say X is Markov if for every such 3D, the future

{X, t € D'} and the past {X;, t € D"} are conditionally
independent given the present {X;, t € aD}.

It s interesting to examine the Markov property
in terms of three examples. A1l three are Gaussian
processes and each has played a prominent role in the
theory of random fields. These are: Lévy’s Brownian
metion, the "free Euclidean field," and the Wienar
process

2. Three Processes Exhibiting a Markov Character

Lévy's Brownian motion is a Gaussian process
{Bt, t € RN} with zero mean and a covariance function
1
Rit,s) = EB,B. = > (|t] + [s] - [t-5]) (2.1)
where | | denote_the Euclidean norm. Lévy conjectured

and McKean prﬁ?&dz that B had a Markov property (though
generalized) in odd dimensions but none in even

dimensions What is responsible for this state of
affairs isthe fact that for n = 2p-1
APR(t.s) = - {; AP |t-s | (2.2}
= Kp Glt-s)

where A denctes the Laplacian operator. Far a smooth
9, {B,, t € 0%} and {B,, t €07} are conditionally

independent aiven {akB,, t €30, 0 < k < p-1} where
ﬁkﬂt denotes the {kth gutward normal derivativel at a
point t on the boundary 2D.

In [3], the following question was posed and
answered. Let {., t € RO} be an isotropic and

homogeneous GaussTan process with zero mean. What must
its covariance

R{t,s) = F Kt IS
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be in order for the processes to be Markov? It turns
out that strictly speaking there 15 no such process.
However, if we allow X to be a generalized process, then

‘a covariance function of the form

do -(lt-s])

pE =il A" Ly,
R(t,s} = KL] %_1 hzﬂz}
{|t-s])

is the Bessel function is both necessary and
The fact that R(t,t) = =

{2.3)

where J
sufffcignt for X to be Markov.
renders X a generalized process.

" At the same time, X must also be Tocalizable to
(n=1) dimensional surfaces in .order for its Markov
property to be properly defined. Ihis process
independently discovered by Nelson™ is now widely known
as the "free Euclidean field."

Let R} denote {t € R":t, > 0 for 0 < 1 < n}.
A standard Wiener process {Ht. t € BQ:} is defined as a
zero-mean Gaussian process with covariance function

S e

t s

S
g3
—t

m1n(ti,5{}

An alternative, and intuitively appealing,way of
defining W is in terms of a Gaussian “white noise."

Let {1 denote the o-field of Borel sets in R". We say
nfA), A E /" is a "standard Gaussian white noise" if
n is a zero-mean Gaussian random function with

En(A) n(B) = u(ANB)
where U denotes the Lebesgue measure. Now, Tet Ay,

o BRQ. denote the closed rectangle with the origin
and t as its two extreme points. Then, W, = niht? is

a standard Wiener process.

One might think that if any process is Markov, it
should be Wiener process. Surprisingly, it s not.
Even for n=2, Walsh® has shown that W is not Markov.
Tao see that, consider the triangular region

D™ = {{tysty) s ty,ty > 0, t; +t, < 1}
with a boundary

D = {{t],t,) 1 ty.t; 2 0 and £y +t, = 11
How ,.

E[W) 1[Wg> t €071 = n(D7)

while
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F[W; ;lW,. t € 3D] = E[n(D")aM,, t € 30]

1
JD My 1os ds ¢ n{D7)

Hence, W cannot be Markov. One of our objectives will
be to elucidate why this 1s the case and to discover
what Markev properties, if any, are possessed by the
Wiener process.

3. Stochastic Differential Forms

The case of the free Euclidean field suggests
that Markov fields are not point-parametered processes,
but processes parametered by oriented (n-1)-dimensional
sats in RN, As such, they are stochastic versions of
co-chainsf, or equivalently, differential forms. We
shall use the latter terminology to emphasize the
"local" nature of the process.

The foundation of a theory of stochastic dif-
ferential forms has been Taid and the basic results
will be reported elsewhere.! Here, we limit ourselves
to a brief account of the concepts that we need for
studying the Markov properties of the three basic
Gaussian fields.

Consider an r-dimensfonal rectangle & in r" with

edges parallel to the axes: i sty s s by . Let
Tt .

¥
i denote ffl,fz,.,,,i?] and [i] denote a permutation

of 1 that puts it in increasing order. We give o an
orientation (+ or -), and call [i] its direction. Let
T1s0gs .- -2 0k be oriented r-rectangles (not necessarily

co-directional), and Tet 07s05s-.-,0, be real numbers.
Sums of the form

k
v = _f] aj 03 (3.1}
;s

& = s
form a vector space V' under the equivalence relations:

(a) (-clo = -{oo) = of-o)
(b} if o is subdivided into gy and g, then o = gy +oy

We call elements of the vector space " rectangular
r-chains, or simply r-chains.

We note that the boundary 3o of an oriented
r-rectangle o is an (r-1)}-chain. Hence, the boundary
av of an r-chain v is an {r-1)-chain.

Let 5 denote the space of a1l random variables
defined on a fixed probability space (2,5, &). MWe
define a stochastic differential r-form X as follows:

(D) X is a linear map : V =S
{DE} Let |o| denote the r-volume of o. Then,

Jt:rm| - ﬂx{cm} = {0 in probability
ligasd i pacsd

[DB} Suppose that {vm} is a sequence of {r+l1)-
s

chain:
|”m1 ~+0=X(3av_} - 0 in probability
11 ] inac]

Condition (Dy) implies that it is sufficient to

specify X on positively oriented r-rectangles.
Conditions (Dzj and tn3} imply that X can be extended

by continuity to any oriented r-dimensional surrace r
that is the 1imit of a sequence of r chains {um} such

that either |r-y_| = 0
[fb00

or |[r"'-'l.l' ] = 30 and |D | el
m m Ly
We note that a D-form is an ordinary point-
parametered process, and an n=form in BT is a random
measure. For example, & standard Gaussian white noise
n is a Gaussian n-form in RN such that for any n-
rectangle g En{o) = 0 and

En°(o) = o]

Stochastic differential r-forms can be thought of °
as generalized processes with sufficient smoothness as
that when integrated on r-dimensional sets they enjoy
good reqularity properties. Stochastic differential
forms are random currents in the sense of Ito,® but
not all Ito currents are differential forms.

If X is an r-form with r < n-1, then we define
its exterior derivative dX as an (r+]1) form with

(dX}(a) = X(50}

It is easy to verify that dX 15 fndeed a form, i.e.,
that D,-D, are satisfied. Thus, "forms" are closed
under extérior differentiation, a surprising and
important result.

(3.2)

Hexﬁ, we develop a coordinate system for stochastic
differential forms. For oriented r-rectangles in R",
there are [ﬂ) possible directions. For a given

direction [i], define I[i] as the [i] coordinate of an

r-form X as follows: For any r-rectangle o,

if ? is a rectangle with direction
i

H[i]ful = ¥(a)

0 otherwise

So defined, I[f] s an r-form for each [il, and the map
X = Xr4q fs obviously Tinear. We note that {Xr 1} is a
decomposition of X, so that 3

i w

Finally, we define dk for 1 < k < n by combining

exterior differentiation with decomposition into
coordinates as follows: For any (r+l)-rectangle o

{dk K[iJ}{D] = dx[iJ{U} if o has direction [i, k]

=0 atherwi se

We define dkx by
d X = d. Kpes
¢y %

We observe that (3.2) is in effect the Stokes
theorem which we are using for a definition. We further

~note that 33D is always zero so that

dd =0
as 15 consistent with ordinary forms. Finally, we note
that

e Mg
K K

1448



idjdk +dd;) =0

. 3. 4 :
which implies that dk 0 and dj o —dkdj. Finally, we

pbserve that boeth exterior differentiation and
rectangular coordinate system are well defined for Ito
random currents. As defined on differential forms,
they are fully compatible with the definitions for
random currents.

4. White Moise and Markovian Fields

In this section we show that the Markavian
properties of the three processes: Léwy's Brownian
motion, Euclidean free field and Wiener process, can
all be traced to their relationships with the Gaussian
white noise.

We begin with the Wiener process since it is the
gne most closely related to white noise noise. We
recall that a standard Gaussian white noise n is
defined as a Gaussian stochastic n-form in R such
that for a positively oriented rectangle

En’(c) = |o| (4.1)
A standard Wiener process {W., t € R} is in turn
defined as a O=form with

W, = n(A,)

When Ay is the positively oriented rectangle bounded by
the origin and t.

(4.2}

We note that (4.2) can be "inverted" to express
n in terms of W as follows:

n= d]dz....dnh
where d, was defined in the previous section. We
observe that if we denote

PER E R P (4.3)

then
da, = (1) Td.d,.. .d
i 1-2=2iray
50 that we can write

n = (-1 e

Now, for each i {1 < 9 < n), %Hisan[ml}mnn
such that for an (n-1) rectangle g fa1wj[aj = 0 unless

o lies in a hyperplane perpendicular to the tT"axis.
This property together with

d(a ) = (1) (4.4)

mply that for each i, &1H is Markov.

It is clear that we only need to prove this far
i=1. The rest follows by symmetry. Let RN be
divided into a bounded region D~ and an unbounded aone
D*. Let 3D denote the boundary of D¥, which includes
parts of the hyperplanes H1= {t:t. = 0}). HNow, leto

be an (n-1) rectangle in p* perpendicular to the t.-
axis, and construct a cylindrical volume YV bounded by
o, a0, and hyperplanes parallel to t;-axis. With
appropriate orientation, we can write

3V = g-g' + [faces parallel to ti-axisj

where o' is a subset of 3D. Such AW is zero on the
faces parallel to t1—axi5, we have

(da,W)(v) = (W] (aV)
= (a,W){a) - (8;W)(c')
= n(v)

It follows that for ¢ € 0, a.W(c) can be expressed as
the sum of n on a set V in D*'and AW on a set o' on
the boundary 3D. Similarly, for a ;ectangle ydn: 0
perpendicular to ty-axis, ﬁ]H{TJ can be expressed as

the sum of n on a set V' contained in D° and &W on a
set ¥' on the boundary 3D. Hence, given AW or al,
A.Wia) and A W(Y) are conditionally independent, and the
M;rknv1an property of ﬂ]w 15 proved.

The extent to which & Wiener process is Markovian
is now clear. It is not W but axw that is Markov. The
intuitive reason is that A.W is "one derivative removed,"
whereas W is "n derivative removed," from white noise.

For the two dimensional case (n=2), it means that
d]H f=£2N} and dEH E=ﬁ1H] are Markov 1-forms. It

follows trivially that, taken together, {W, d; W, dzw}
is Markov. This implies that if we set Z = f{W), then
{Z, dyZ, dpI} s also Markov. Thus, this vector Markov

character’ (dubbed v -Markov in [9]) is preserved under
nonlinear transformation. Generalization to the
n-dimensional is clear.

Mext, we show that the free Euclidean field is
also "one derivative away" from white noise. To keep
the details simple, we shall restrict ourselves to
nx3, in which case we can take =0 in (2.3) and assume
the free Euclidean field to have a spectral density

$(v) =—% , veR" (4.5)

W
Mow, take n iniependent and identically distributed free
Euclidean fields {£,, i=1,2,...,n} each with spectral
density (4.5), and define an [n-1)-form X by setting

o) = J Eit dt, for ol tf-axis (4.6)
o

The integral in (4.8) is formal, and needs to be
properly defined (e.q., by using the spectral
representation), but it can hE done. Egquation (4.6)
means that, if we denote by i° the sequence of 1 through
n with 1 deleted, then

Kriap(o) = JG Bt for ol ti-axis (4.7)

=0 otherwise

We call the {n-1) form X so constructed a "standard free
Markov form."

Now it is easy to verify that if we set
i (4.8)

then n is & Gaussian white nofse. From this fact the
Markovian property of X, and of each X[g#]e can be
proved.in a direct way.

Finally, we turn to Lévy's Brownian motion B.
Equation (2.2) suggests that we deal with two situations
(a)
(b)

n=2ap-l,p=2k=n-=4k=1, k= 1,2...
n=2p=1, p= 2k+] =n = 4k+1, k = 1,2,...
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For {a) define an n-form Y by setting

Y(g) = J B dt
(¥]
Equation (2.2) then implies

EKY =7

is a Gaussian white noise. For (b) define an (n-1)
form Z by taking n independent Brownian motions Bit

setting

26) = | By dt. for oL ti-axis

4]

it
Then,

akz =X
iz a standard free Markov form.

To summarize, we can elucidate the Markowvian
character of Lévy's Brownian motign B in odd dimensions
(n = 4k-1 or 4k+1) by examining A“E. The generalized
process AKB 15 either a white noise or a component of
a free Markav form X whose exterior derivative dX is
again a white noise.

5. Conclusion

We have examined three important examples of
multiparameter processes: Lévy's Brownian motion,
free Euclidean field, and Wiener processes. In all
three cases we have related them Markovian properties
to white noise using the machinery developed for
stochastic differential forms.
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