Chapter 8

SEMANTIC ENHANCEMENT THROUGH EXTENDED RELATIONAL VIEWS

Eugene Wong

Department of Electriecal Engineering and Computer Sciences, University
of California, Berkeley, California S4T720, US4

In this paper two ideas on relaticnal databases are
presented and combined; First, it is shown that the concept
of M"yiews"™ can be usefully extended to inelude wirtual
operations in addition te virtual relations, and that both
can be easily supported through query medification. Second,
it is suggested that a simple yet powerful way of
semntieally extending a relational query language (such as
QUEL) is by augmenting the supported operations at the
domain lewvel. These ideas are then developed and
illustrated in two important applications: geometric data
and lexical proceszsing.

1. INTRODUCTION

This paper results from a confluence of two sStreams of ideas
concerning relational databases: extending "views® to inolude virtual
operators as well a3 virtual relations, and enhaneing the relational
model with application specifie semanties such as those found in
geometric and lexical data by adding new data types for the domains.

One of the stremgths of the relational data model is the elegant and
efficient way in which diverse user views can be supported. What makes
this possible is the "elosure™ property of relational operators
Briefly stated the situation is as follows: Consider a set of view

relations V=(V¥1,V2,...,Vm) defined by & transformation f on a set of
base relations B={B1,B2,...,Bn), i.,e,
¥=r{B)

Then, a mapping of the view relations can be wWritten as

gi{V)=g*f(B)

* The work reported in this paper was supported by the National
Science Foundation Grant ECS-8007684

168

170 SECOND INTERNATIONAL CONFERENCE ON DATA BASES

when g¥*f is the composition of g and f defined by
(g*f) (x)=g(f(x))

It follows that any function of the view relations iz a function of
the base relations by virtue of the eclosure property of functions
under composition. The practical zignficance of this fact is that an
oparation g on a view relation ¥V can be evaluated be evaluating g*f on
the base relations and this process is known as "guery modification®
{61,

Powerful as it is, the concept of "relational views™ thus defined is
not as general as it can usefully be. A "base-dependent" operation on
view relations, i.e.

h(B,Vi=h(B,f(B))=g(B}
can also bé evaluated by "query modifiecation®,
As an example, consider a base relation
.amp [ename, dept, salary)
and a view relation
saleamen = emp(dept = "salaea®)

where () denotes restriction. Now, consider a gquery: "find the names
of all salesmen who earn more than the companywide average salary.”
As a query on the view relation "salesmen® it can be expressed in QUEL
syntax as [HELD]

range of 3 i3 salesmen
retrieve (s,ename) where s.salary » [averagel

where both & and {averagel need to be interpreted. Query modification
then yields the QUEL query:

range of e iz emp
retrieve (e.name) where e.depk = "sgles"
and e salary » avgle.salary)

4 natural extension te the concept of "views" that would accommodate
such situations iz to inelude "view" operators" &3 well as "view
relations." While in termzs of the base relations the view ocperators
are ordinary relational operators, perceived in terms of the view-
relations alone, they Gtranscend the boundaries of the elass of
relational operators. For a single user-view, the effect is a semantic
enhancement, and one that can be achieved with a minimal augmentation
to existing systems.

Since it was first proposed [1] "relational completeness™ has become
the standard by which the semantic power of a relation query language
is measured. As such & measure it is imperfect, for it fails to

SEMANTIC ENHANCEMENT THROUGH EXTENDED RELATIONAL VIEWS m

consider expliecitly the operations that are defined at the domain
level., For example, QUEL [2] derived a great deal of its semantic
power from operations on numerical domains. These include arithmetieal
operators such as multiplication and addition, aggregational operators
such as sum and average, and comparison operators such as = and <. The
way QUEL embeds domain-level operators provides a general framework
for semantic extension. For each new domain type that iz introduced,
its domain level operators are automatically propagated throughout
QUEL.

Enhancing the semantics of a language through the use of enriched data
types is hardly new. The use of "abstrackt data typea" [4] is precisely
such an approach. Yet, what we are proposing is different. Rather
than adding a general facility for handling abstract data types. We
aecapt the struckure of QUEL as it is, and seek to extend its
semanties through its existing machinery. In so0 doing, wWe are
motivated by the consideration that QUEL is already in widespread use,
and whatever now exists should be left undisturbed.

The objective of this paper is to combine "semantic enhancement" and
faxtended wviews"™ by making the domain-=level operators of new data
types wvirtual operators supported by "views". In the process, a
general machinery for semantic emhancement will be made available with
only minor augmentations to the existing faeilities in relational
systems for supporting "views".

The organization of this paper i3 as follows: first, we conslder how
domain level operators are embedded in QUEL. HNext, geometric data
types and operators appropriate ko them are introduced.
Representation of geometric operators as "view" operators is then
illustrated, Az a second example of semantic enhancement through
domain level operations, data types appropriate to "text" are
introduced. The power of the semantic enhancement so achieved is then
illustrated by expressing some sophisticated lexical processing tashks
in the enhanced version of QUEL.

2. DOMAIN LEVEL OPERATIONS IN QUEL

Az in any relational query language worthy of the name, the primitives
of QUEL are relation-at-a-time operations, How, then, can domain-level
operations be incorporated in such a language? This is done in QUEL
by introduecing the construct "computing a new column" which adds a new
unary relational operator not present in the "relaticnal algebra"™ as
originally defined in ([1]. BSince new columns are computed using
arithmetical and aggregational operators, these are then propagated
through the language via concatenation of relational operators.

Comparisen operators are embedded in the relational algebra via the
selection condition of the operator "restrietion."™ In QUEL the

selection condition is known as the "qualifiecation™ clause of a query.
¥

Since columns (i.e. attributes) of relations are explieitly
manipulated in QUEL, a compact notation for them is needed. In QUEL

172 SECOND INTERNATIONAL CONFERENCE ON DATA BASES

eolumns are denoted with the wse of range variables. For example,
suppose that employee (eno, ename, byr, dept, salary) is a relation.
The declaration

range of e 13 employee

defines e as a variable that ranges over employee and e,salary denotes
the salary column.

New columns can be constructed in QUEL in two ways:
al Through arithmetical operators —— For example,
e.salary/(1982=-e.byr)
defines a new column on employee,
bl Through aggregational operations -- For example,
avgle.salary by e.dept)

defines a new column that gives for each employee the average
salary of her department.

In addition, aggregational operations can be qualified by a selection
condition, 2.g8.s

avgle.salary by e.dept where e,byr < 19300

A newly constructed column can be used like any other ecolumn.
Specifieally, it can take part in arithmetical operations, in
aggregations, and in gqualifications., These, in turn, can be used to
produce new columns, Thus, nesting can occur in a number of ways as in
the following examples:

retrieve (e.dept, rate = avg(e.salary/(1982-e.byr} by e.dept))

retrieve (e.dept, var = avg({e.salary-avg(e.salary by e.dept))®%2
by e.dept)}

retrieve (number = countule.dept where
avgle.salary by e.dept) > 25000))

In summary, domain level operations are absorbed into QUEL in two
ways. First, arithmetical and aggregational operators are embedded
through the construction of new columns. Second, comparison operators
take part in qualifications, Nesting to any level is allowed.

3. A GEOMETRIC EXTENSION TO QUEL

Database applications that involve geometriec operations are both
common and important [3,7]. As our first example of szemantic
extension, we consider the case of geometric data. For the primitive
objects of the geometric data types, we propose the following:

SEMANTIC ENHANMCEMENT THROUGH EXTENDED RELATIONAL VIEWS 173

a) atomic objects : point, line (finite oriented line segment)

b} composites: point-group (finite ecollection of points) line-
group(finite collection of lines)

@) aonstrained composites:

path = ordered line group {L1,L2,...,LN} such that
start(Lk+1) = end (Lk),k=1,.... N=1

polygan = path such that start(L1) = end(LHN)

We distinguish an object from its representation in terms of other
objects. For example, & line is uniquely represented by an ordered
pair of points, but a line and its endpoints are different geometric
objects, For eclarity, we shall use the term "type" to denote one of
the six possibilities: point, line, point-group, line-group, path and
polygon. GCollectively, they will be known as the "geometric data
types."

Geometric objects are riech in the operations that accept. Indeed, in
the modern era the very term "geometry" has come to mean the study of
tranaformations, The following is a list of some familiar operations,
but the liast i3 not intended to be complete in any way:

Unary and Type=Preserving
rigid body motions - translation and rotation

isometries - rigid body motions plus reflection
isomorphic operators - isometries plus scaling

Unary, Hot Type-Preserving
gonnect: point-group=-» path
close: point-group => polygon
vertices: path or polygon =* point-group

Binary
intersection: (path, path) -» point-group

common part: {(path, path) =r line-group
border: {polygon,_pnlygnn] =» line-group
overlap: (polygon, polygon) = polygon

Metric
length (line-group)
eount {point—group)
area (polygon)

Compariscn
equality

CONgruenae
similarity
set ineclusion
intersect
enclose
pass=thru

174 SECOND INTERNATIONAL CONFEREMCE ON DATA BASES

An aggregation is an operator on a set. The existing aggregation
operators in QUEL act on sets of values from the databases. It is
useful to generalize fthese operationz to aect on sets defined
mathematically rather than by data. For example, "shortest" is an
operator on a set of paths, and the operator "econneot" can be
expressed as!

econnect (pointl, pointz)
= shortest ({path: start(path) = pointl1 and end{path) = peint2})

As in the case of existing aggregations, an interesting property of
set operators is that they are subjeet to qualifications. For example,
to find the shortest "route" often means finding not the shortest
among all paths connecting two pointa but the shortest among those
that satisfy some additional conditions. e.g..

shortest ({path: start{path) = point1 and end(path) = point2
and path pass-thru point3})

1]

shortest ({path: start{path) = point1 and end{path} point2

and polygon3 enclose pathl)

shortest ({path: start(path) = point1 and end{path) = point2
and path3 not intersect pathl)

It is not hard to make up examples of set operations in addition to
fshortest." The following examples come readily to mind:

longest - on set of paths
smallest - on set of polygons
longest - on set of polygons
closest to "a" - on set of pointa

straightest - on set of paths

The set on which these operate can be defined using qualification as
in the case of aggregationa in the existing QUEL.

4, GEOMETRIC OPERATIONS IN VIEW OPERATORS

Suppose that we begin by viewing all objects of geometric data types
as entities, and seek to represent all information concerning them as
properties of the entities and interrelationships among them, For
example, each point is an entity and its x and ¥ coordinates are twe
of its properties. An oriented line segment is alsoc an entity, with
beginning-point and end-point as two functions, Ome conseguence of
viewing points and lines this way is that it immediately suggests that
points and lines can be represented as ordinary INGRES relations:

point (pid, xcoord, yecord)
line (1id, ptl-pid, pt2-pid)

where all domains are of numerical type.

SEMAMNTIC ENHANMCEMENT THROUGH EXTENDED RELATIONAL VIEWS 176

Paths and polygons can be expressed uniquely in terms of ordered sets
of points. One way of representing them is to combine them in a single
relation

pointgroup (pgid, type, order, pid)

where "type" can be either "polygon" or "path™ and "order" indicates
the sequence of the points in the pointgroup.

Now, conszider a relation that has a geometric domaln, e.g.,
gity (ocname, nation, loecation)

whare cname and nation are of type "character string" and leocation is
of type "point." BSuch a relation can be represented as a view on base
relations that contain only ordinary domains ({i.e., numbers or
character strings), e.g.,

eityb (cname, nation, location-pid)
point {(pid, xeoord, yeoord)

Geometrie operations on the domain "location™ are then expressed as
operations on the base relations. For example, consider the query:

range of ¢ 13 city

range of ¢l iz city

retrieve {(c.name) where ecl.name = "Chicaga"
and distance(e.loeation, el.loecation) < 500

If distance is interpreted as euclidean distance, then this query ecan
be mapped into a query in ordinary QUEL as follows:

range of ¢ is cityb

range of cl is eityb

range of p is poeint

range of pl is point

retrieve (c.name) where cl.name="Chicago"

and p.pid=c.location and pl.Did=cl,location

and sqrt{{p.xcoord=-pl.xcoord)**¥2+(p.yooord=-pl.vooord)*®*2) { 500

In principle, all geometric operators that we have introduced ean be
re-expressed in terms of the coordinates. However, the operatora on
numerical domaina that INGRE3S ocurrently supports are mainly
arithmetical and wWill have to be extended. The difficulty in doing
this is largely a matter of obtaining good performance.

The use of "gquery-modification" to support extended data types is very
much in the spirit of wiews, but the current "views"™ facility of
INGRES (or of any other relaticnal system) is inadeguate to support
it. The big difference is that instead of view-relations, we now have
view-domains and view-operators on such domains. The olass of
oparators that can be supported through query-modification ia of great
interest, since they can be implemented with only minimum changes to
the existing INGRES.

176 SECOND INTERNATIONAL CONFEREMCE ON DATA BASES

5. EXTENDING QUEL TO SUFPPORT TEXT

Some of the ideaz in database management have their origin in
automatic text searching. For example, secondary indexing and query
language wWere both used in information retrieval long before database
management existed as a technieal diseipline. Thus, it is ironic to
note that the existing database management systems all handle text
badly. Fundamentally, the preblem is that text as data has a seman-
tic depth far exceeding anything that is recognized in existing
systems.

We take "words" az the semantie atoms of text. The semantic
components of text are lexical in nature, and they form a natural
hierarchy as follows:

Wwords
word-sequences
clause

nested sequences
sentences

text

A word-sequence is an ordered set of words. A clause is a word-
sequence that ends in a punctuation. A nested sequence is an ordered
set of clauses, =snd a sentence is a nested segquence that satisfies a
special constraint. A ‘text is a ordered set of sentences.
Collectively, these will be referred to as the lexiecal data types.

The following list contains some examples of natural operations on
lexical objects:

bype-preserving

concatenate : (Word-segquence, Word-sequence) -» wWord-seguence
combine : (nested-seguence, nested-sequence} =» nested-seguence
root ! word ->word

synonym : word => word

noen=type=preserving
punactuate : (word-sequence, "symbol") -> clause

metric
length (word)
eount {(word-segquence)

compariscn

contain : word-sequence vas, word-sequence
match :; word=sequence vs. word
root-equal : word vs. word

equal : word vs, wWord

SEMANTIC ENHANCEMENT THROUGH EXTENDED RELATIONAL VIEWS 177

6. LEXICAL PROCESSING USING QUEL

The hierarchical nature of the lexical data types makes them easy to
support in the framework of the existing QUEL. Stripped of the
information used only for display and formatting purposes, a text
eonslsts of word occurrences and punctuation symbols structured as
follows: .

test = {sentencel
sentence = {clausel
elause = {wordl symbol

Define sno as the numerical order of & sentence within a given text,
eno as the numerical order of a clause within a given sentence, and
who as the numerieal order of a3 word within in a clause. Each sentence
in a text is uniquely identified by its sno, eaech clause by (sno,
onol), and each word ocococurrence by (sno, cno, wno). A text, then, ean
be represented by two INGRES relations:

text (sno, cno, wno, word)
punetuation (sno, eho, symbol)

The operations in the existing QUEL ¢an be used not only for searches
but also for lexical operations that are statistical in nature, For
example, the following QUEL statement can be used to produce a
histogram of words:

range of t is text
retrieve into hist (t.word. freq = count (t.wno by t.word))

To find sentences in whieh the word "data" ocecurs more than once, we
can write

retrieve (t.sno) where count (t.wno by t.sno where t.word = "data") >1

Although these examples can he done in INGRES now, storage efficlency
may be poor because the domain "word" in the relation "test" will be
required to have a fixed length. Changing INGRES to support variable-
width domains will be necessary to support lexical data types
efficiently. Another possible source of efficiency gain i3 the ability
to maintain ordering in a relation (the "ordered relation" [51). It
may allow the prefix (sne, eno, wno) to be eliminated or drastically
compressed.

7. CONCLUSION

In this paper two ideas are presented: first, the coneept of
"pelational views" can be usefully extented to operations in addition
to relations; second, an easy yet powerful way of extending the
semantics of a relational query language is to augment the domain-
level operators. These two ideas are then combined and illustrated in
two important cases: geometric data and lexical processing.

178 SECOND INTERNATIONAL CONFERENCE ON DATA BASES

REFERENCES

[1] E. F. Codd. "Relational Completeness of Data Base Sub-
languages." In Data base 3ystems, Courant Computer Science
Symposia Series, vol. 6, Prentice Hall. 19T72.

[2] G. D. Held, M. H. Stenebraker and E. Wong. "INGRES - A Relational
Data Base Systems.” Proe. NCC 1975,

[3] G. Hagy and 5 Wagle. "Geographie Data Processing." Computing
Surveys, vol. 11, 1979,

(4] L. A. Rowe. "Data Abstraction from a Programming Language
Yiewpoint." Proceedings ACM Workshop on Data Abstraction,
Databases and Conceptual Modelling, 1980,

[5] M. R, Stonebraker and J. Kalash., "Timber: A Sophisticated
Relation Browser." Proc. 8th VLDB Conference, 1982,

[6] M. R. Stonebraker. "Implementation of Integrity Constraints and
Views by Query Modification." Proec. ACM=SIGMOD International
Conference on Management of Data, 1975.

[T] M. Tamminen, “Efficient Spatial Access to a Data Baze." Froc.
ACM-SIGMOD Internaticnal Conference on Management of Data, 1982,

