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ON POLYNOMIAL EXPANSIONS OF SECOND-ORDER
DISTRIBUTIONS*

E. WONGt anp J. B. THOMAS}

Summary. Under certain general conditions the problem of finding the
principal solution to the Fokker-Planck equation can be reduced to an
eigenvalue problem of the Sturm-Liouville type. In particular, when the
eigenfunctions are orthogonal polynomials, the resulting second-order
probability distribution functions are of a well-known class. The conditions
which give rise to polynomial solutions are investigated in this paper.

Introduction. Barrett and Lampard [1, 2] have investigated a class of
two-dimensional probability density functions p(z, ¥), which admit expan-
sions of the form

(1) p(@,y) = pu(x)P(y) 20 Aupn () 0.(y),

where ¢,(z) and 6,(y) are polynomials of degree =, orthonormal with
respect to the first order densities pi(x) and p.(y), respectively. Since (1)
represents an expansion of a function of two variables in a single sum, the
expansion is said to be diagonal. If p(x, y) is symmetric in the variables x
and y, as it is in all the examples shown by Barrett and Lampard, (1)
becomes

(2) (@, y) = p@)p(Y) 2o Aupu()eu(y).

It was shown that two important examples of such two-dimensional
densities are those of the Gaussian and chi-square distributions with
Hermite and Laguerre polynomials as the corresponding orthogonal poly-
nomials. ,

In part, the diagonal polynomial expansions of the Gaussian and chi-
square two-dimensional density functions can be understood as conse-
quences of the fact that the Fokker-Planck equations for the Gaussian
and chi-square Markoff processes reduce to the differential equations for
Hermite and Laguerre polynomials. In this note, the necessary and suffi-
cient conditions under which the Fokker-Planck equation reduces to an
eigenvalue problem with polynomial solutions are derived. It is further
shown that these conditions restrict the solutions to three distinct classes.
In addition to the Gaussian and chi-square cases, there exists a class of
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stationary Markoff processes, for which the two-dimensional densities
admit diagonal expansions in terms of polynomials, the polynomials being
Jacobi polynomials. This class of two-dimensional densities represents a
natural extension of some familiar first order densities, and may be useful
as models in analysis.

The eigenvalue problem. It is well known [3] that the principal solution
p(xolx' t) of the Fokker-Planck equation,

2 6 — [B(r)p(xo l.e; 8)] — — [A(x)p(xo |2; t)]

) _ ap(xo | ; t)

t =0,
ot

represents the conditional probability density function of a one-dimensional
stationary Markoff process. If it is assumed that an equilibrium density
function p(x) exists such that

(4) p(x) = lim e p(@o| 2; 1),
and that
(5) lim e %”-‘;l—x;—t) —0,

then, (3) reduces, in the limit, to

(6) (B(x)p(x)) - (A(x)p(x)) = 0.

2d2

Equation (6) can be integrated once to yield
1d ‘
(7) 3 o (B@p()) — A@)p(x) = const.

Sufficient conditions for the constant in (7) to be zero have been investi-
gated by Andronov, Pontryagin and Witt [4]. Here, we postulate the
existence of a principal solution p(zo|z; ¢) of (3) which satisfies the con-
ditions of (4) and (5) and the following:

(8) L L (B@)p@) - A@)p() = 0.

As a consequence [5], the equilibrium density p(x) satisfies the differential
equation

dp(z) _ 1 dB(x)
® k) (240 - ) s,
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With the usual substitution of (f(t)p(x)e(z)) for p(ziz; t), (3) sepa-
rates into

(10) I — e
and
1D 1L BEp@e) — L A@@eE) = e

With the use of (8), (11) becomes

1 d (B( e >"“’(x)) +p(@)e(@) = 0,

(12) 2 dx

which is of the Sturm-Liouville form. Assume the eigenvalues to be discrete,
this being the case of interest at present. Then it follows from (12) that
the eigenfunctions ¢(x) are orthogonal with respect to p(x) and can be
normalized so that

zg

(13) [ p@)en(@)enz) do = bun,
zy

where z; and 2, are the limits of the range of interest.

Equation (10) is easily solved and yields
(14) fa(t) = ke .

Thus, under the assumption of discrete eigenvalues, p(zoz; ) can be
written as

(15) plaola; 1) = p(z) 2nmo Gul(z) e 0u(2).

The functions G, (z,) can be obtained from the requirement that p(zo|z;t)
be the principal solution, i.e.,

(16) p(xolz;0) = 3(z — o).
Therefore (15) becomes
(17) () Dm0 Gu(Zo)n(x) = 8(x — o).

After multiplying both sides of (17) by ¢m(z) and integrating over the
range ; to x2 , G.(x) is found to be

(18) Gn(x) = ¢n($o),

where the orthonormality condition (13) has been used.
Thus (15) becomes

(19) p(x‘)[x t) = I’(x) Zn—"e ﬁan(xo)ﬁl’n(x)-
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The joint probability density function p(z,, x; t) is given by

(20) p(0, 205 8) = P(0)p(x) Dnmo € "'pu(T0)en().

When the ¢,(x) are orthogonal polynomials, (20) shows that p(zo, z; t)
is precisely of the form studied by Barrett and Lampard. Now the problem
is to determine the conditions under which the eigenfunctions ¢,(z) form
a complete orthonormal set of polynomials.

Conditions for polynomial solutions. Consider the integral defined by
(21) I= ] - (B(x) (x) d‘a"(”)) Gn(z) dz,
z1

where G, (x) is an arbitrary polynomial of degree m < n. Since ¢, () is a
solution of (12), this integral becomes

(22) [ = -2\ f p(2)on(2)Gon() dz.

Now if ¢,(z) is a polynomial of degree =, the arbitrary polynomial G,,(x)
can be expanded in terms of the eigenfunctions ¢ (x) as

(23) Gn(x) = ZZLO awpr () .
Substitution of (23) into (22) yields
(24) = —2n Y [ p@en@)en) de.

The right hand side of (24) is zero from the orthogonality condition (13)
and the fact that m is less than n.

If the right-hand side of (21) is integrated by parts twice, the integral I
can be expressed as

I= {B(x)p(x) (G (z) % (2) dson(x) on(z )dG (x))}

+/ ea() —(B(x)p(x) dGm (x)>

(25)

Let (25) be rewritten as
(26) I=1+1,.

where I, is given by

(27) A san(x)—(B(x)p( y dGn (”)) .
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With the use of (23) and (12), I, can be rewritten as

m

(28) = =2 an [ @) d

TFrom the orthogonality condition and the fact that m is less than n, it
isseen that I, is again zero. Thus it follows immediately that 7; also vanishes.

The fact that I; and I, vanish separately is expressed by the following
equations:

(29) {B(x)p(x) (Gmu)d*”;_gf) on(2) 2Gm (x)>}

(30) [ o) & (B %) ir =0, m<n

z1

=0, m < n,

Ty

Equation (29) is satisfied for arbitrary polynomial G,.(x) if and only if

B(x)p(x) e, (1) = B(xa) p(x2)e.’ (22)
= B(z)p(x1)en(21) = B(22)p(a2)@n(as) = 0

where prime denotes derivative with respect to x. Equation (31) is satis-
fied if either B(a1)p(x1) = 0 or if ¢./(2:1) = ¢.(x;) = 0, and if either
B(zs)p(x) = 0 or ¢.'(x2) = @n(22) = 0. The condition that ¢, and its
derivative both vanish at either end point forces ¢,(z) to be zero. There-
fore B(x)p(x) must vanish at both end points, i.e.,

(32) B(z)p(z1) = B(a2)p(xz) =
Equation (30) can be written, with the use of (8), as

@) [ @) (B T 14w P g o

Equation (33) is to be satisfied for all polynomials G..(x) of degree less
than n. In particular, for G,.(z) = z, (33) becomes

(31)

(34) [ p@)A@)en(a) de = 0, n=23 ..
As a consequence of (34), A(x) must be a polynomial of degree not more
than one, i.e.,

(35) A(x) = ax + b.

Similarly, for G,.(z) = a°, it is found that B(z) must be a polynomial of
degree not more than two, i.e.,

(36) B(z) = c@® + dx + e.
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Thus, (35) and (36) are necessary conditions in order for (33) to be satis-
fied. That (35) and (36) are also sufficient conditions is obvious, since now
(383) can be written as

(37) [ p@en@)Gutz) de = o m<n,

where (,(x) is a polynomial of degree m. In addition, in order for the
polynomials to be normalizable, p(z) must be such that all the moments
are finite, i.e.,
73
(38) f 2"p(z) dv < o, n=01--.,n<w,
z1
Equations (32), (35), (36) and (38) represent a set of necessary conditions
for (12) to yield as eigenfunctions a complete orthonormal set of poly-
nomials. The sufficiency of these conditions remains to be proved, since
¢n(x) has been assumed to be a polynomial of degree n in (23) through
(38).
With the use of (35) and (36), (12) can be rewritten as

m>ww+m+>”M)

Now let ¢, (x) be given by
(40) eu(x) = D iodiVa",

and substitute (40) into (39). Equating the coefficient of each power of x
to zero results in the following set of equations:

(41) n(n — 1) + na + \)al® = 0,
A(n —1)(n —2)c+ (n+ (n— 1a+ N)al™

(42)

+ (An(n — 1) d + nb)al” =
and
43) (3k(k — 1)e + ka + M)at™ + Gk(k+ 1) d + (b 4+ 1)b)aet})

4+ EE+ 1)k +2e)aid=0 k=012 ---,n—2.

Equation (41) yields the solution for A, . From (42) and (43) the coeffi-
cients o, for values of & up ton — 1 can be expressed in terms of « {*. The
coefficient (" in turn can be found using the normalization integral (13),
the convergence of which is assured by (38).

Summarizing, necessary and sufficient conditions for (12) to yield as
eigenfunctions a complete orthonormal set of polynomials are as follows:

(32) B(z1)p(2) = B(z2)p(x2) = 0,
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(35) ’ A(z) = ax + b,

(36) B(x) = ca® 4 dx + e,

and

(38) f2x"p(x)dx<w, n=01---,n < .

It is of interest to note that (35) and (36) together with (9) imply that
p(z) belongs to the Pearson system of distributions.

Construction of a class of two-dimensional distributions. The conditions
(32), (35), (36), and (38) derived in the previous section restrict the density
function p(x) to be one of three forms [7]. Without loss of generality these
forms can be taken as

1 '
(44) p($)=\/%e_ix2, —w = = w,
1 _
4 - _ - e, = < < .
(45) p(=) e T2 0<z= w,a>—1,
and

p(z) 1 (e +8+2)

= — ) 8
gy " T emh i@ oo

—1<z=1,a,8> —1.

Equation (44) represents the familiar Gaussian case with Hermite poly-
nomials as the corresponding polynomials. For special values of «; namely,
a=n—4%n=0,1,2, ..., (45) represents the density function of the
chi-square distribution. The corresponding polynomials are the Laguerre
polynomials L,*(x). ‘

Equation (46) represents the density function for the Pearson type I
distribution [6, 8]. For special values of a and 8 (46) reduces to density
functions of well-known distributions. For example, the case of « = 8 = 0

yields the uniform density function

(47) p(z) = 3, -1 =z =1
and the case of @« = g8 = 3 yields

48) ()—1; 1<z<1
( Y T sz s,

the density function for the distribution of a sine wave with unit amplitude
and random phase [9]. The results thus far show that it is possible to con-
struct a class of second-order density functions as diagonal expansions in
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terms of orthogonal polynomials based on distributions of Pearson type I
(see also [10, 11]).

The polynomials orthonormalized with respect to the density function
p(x) of (46) are the Jacobi polynomials [12]
(="

2n
2n+a+8+ DI(n + a+ B +1)I'(«e + DI(B + 1)

T(a+ B8+ 2T(n + a+ 1)I'(n + B + 1)n!

¢’n<x) =

(49)

X (1 —2)7*(1 + x)"”% (1 — 2)"™(1 + )"

It should be noted that (49) represents a rather wide class of polynomials,
which includes Legendre and Chebyshev and other Gegenbauer-type
polynomials as special cases.

The eigenvalues A, can be determined from (12). To proceed, let (12)
be rewritten as

(50) 1B(x) & ‘;;(f) + 4@ 2 @) =0

The functions A(z) and B(z) satisfy (9) and (35) and (36). I'or the
p(x) of (46), these functions are

(51) A(x) =v(B — a) — v(a+ B+ 2)z,
and
(52) B(z) = 2vy(1 — ",

where 7 is an arbitrary positive constant. If (51) and (52) are substituted
into (50) and the coefficient of the 2" term is set equal to zero, it is found
that

(53) —yn(n — 1) —y(a+ B8+ 2)n+ N\ =0,

or
(54) Ao =yn(n + a+ B8+ 1).

The construction of the class of two-dimensional density functions based
on the type I Pearson distributions is completed by the use of (46),
(49) and (54) in (20). These density functions have the form

(55) p(xo, t) = P(xo)P(x)ZLO6_7"("+a+ﬂ+l)t¢n(xo)%(90),
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TaBLE 1
Results
Conditions for Polynomial Solutions

Density Range Polynomials
(1) B(z)p(z)) = Blza)p(z) = 0
(2) A(x) = az + b ke 3s® —®, ® | Hermite
(3) B(x) = ca? + dzx + e ksxee™ 0, © Laguerre
@) [Zapla) de < ©,n < » ks(1—z)*(14-2)# 1,1 Jacobi

with p(2) and ¢,(x) given by (46) and (49). As was noted by Barrett
and Lampard, the normalized covariance function p(¢) defined by

s E)

2 . .
where p and ¢ are the mean and variance respectively, can be expressed as

(57) p(1) = {ar(@)er(0)).

Equation (55) shows that, for the class of Markoff processes, with joint
density expressed by (55), p(t) is given by

(58) p(t) _ e—‘y(a+ﬁ+2)t.
Thus (55) can be generalized to the form
(59)  p(0,2) = pzo) p(w) 2o (p) "IN (2) g, ().

As in the cases of Gaussian and chi-square distributions, the second-order
distribution represented by (59) is uniquely determined by the first-
order distribution and the covariance functions p.

Conclusion. The principal results of this paper are summarized in Table 1.

The results in this paper find applications in a number of areas. Among
these are cross correlation of outputs of nonlinear devices [13, 14, 15] and
optimization of nonlinear networks [16]. In addition, the solutions of the
Fokker-Planck equation are of general interest in problems involving noise
and other stochastic processes (see, for example, [17]). Specific applications
are found in the investigation of dynamic systems [4], the level crossings of
random processes [18], and the distribution of functionals [19].
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