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Abstract
The starting point of this paper is the problem of representing

square-integrable functionals of a multiparameter Wiener process. By
embedding the problem in that of representing set-parameter martingales,
we show that multiple stochastic integrals of various order arise
naturally. Such integrals are defined relative to a collection of sets
that satisfies certain regularityconditions. The classiccases ofmultiple
Wiener integral and Ito integral (as well as its generalization by Wong-
Zakai-Yor) are recovered by specializing the collection of sets

appropriately.

Using the multiple stochastic integrals, we obtain a martingale
representation theorem of considerable generality. An exponential

formula and ts application to the representation of likelihood ratios

are also studied.
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1. Introduction
Let R™ denote the collection of allBorel sets in R" with finite
Lebesgue measure {denoted by u). Define a Wiener process {W(A), A € ®"}

as a family of Gaussian random variables with zero méan and
(1.1} EW{AYW(B) = p(ANB)

As a set-parameter process, W(A) is additive, i.e.,

{1.2) W(A+B) = W(A) + W(B) , a.s.

ﬁher& A + B denotes the union of disjoint sets, and intuitively, we can
view W(A) as the integral over A of a Gaussian white noise.

The connection with white noise renders the Wiener process important
in apﬁ11catiuns as well as theory. Consider for example, the following
signal detection problem.

A process Et is observed on t €T C R", and we have to decide
between the possibilities: (a) £ contains a random signal It plus an
additive Gaussian white noise and (b) £ contains only noise.

Formulated so as to avoid the pathologies of "white noise," the
problem can be stated as follows: Let {W(A), AE R"(T)} be a set-
parameter process, with parameter space R'(T) = {Borelsubsets of T},
and defined on a fixed measurable space (2,F). Let P' and P be two

probability measures such that (a) under P' W(A) - £Itdt is a Wiener

process independent of {Et. te T}, (b) under P H{A) is a Wiener process.

Now, let F, denote the o-field generated by the process W, and let

W

Py and Pﬁ denote the respective probability measures restricted to Fy.

If l Zidt < = a.s.,then Py << Py and the detection problem in most cases
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reduces to one of computing the Tikelihood ratio

dPy
(1.3) &A= ®,
in terms of the observed process W.

With respect to the probability space (&,F,P) {W(A), A € R"{T]} is
a Wiener process. Hence, Ais a positive integrable functional of a
Wiener process. Computing A in terms of W is a problem that can be
embedded in a more general one of finding repres_entatiuns of a Wiener
functional, which in turn can be embedded (and i1luminated in the process)
in a still more general problem of representing martingales generated
by a Wiener process.

For a random variable Y that is a square-integrable functional of
a Wiener process {W(A), A € R"(T)}, several representations already exist.
The first is the Hermite-Wiener series of Cameron and Martin [1]. The
second is in terms of the multiple Wiener integrals as defined by Ito
[5]. The third is in terms of the Ito integral [4], and its generalization
as defined by Wong and Zakai [B] and Yor [10]. In the last representation
the concept of martingales plays a crucial role.

For processes with a multidimensional parameter, it is both more
natural and more general to define martingales for processes parameterized
by sets rather than points in R, LetccC R'(T) be a collection of
closed sets. Let {F(A), A € C} be a family of o-fields such that
ADB=F(A) DF(B). Let {M{A), A €C} be a set-parameter process.

We say that {M{A), F(A), A € C} is a martingale if

E(M(A)|F(B)) = M(B) a.s.
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whenever A D B. Let {W(A), A € R"(T)} be a Wiener process and denote
Fu(A) = o({M(B), B CA})

The main object of this paper is to show that under very general
conditions on C, there is a canonical representation of all square-
integrable martingales with respect to {FH{A]. A €}, and hence
representation for square integrable Wiener functionals. For
¢ = {all closed sets} the representation reduces to that of multiple
Wiener integrals. For C = {all closed rectangles in Hﬂ with the origin
as one corner} the representations of Ito, Wong-Zakai, and Yor are re-
covered. These two are in a sense limiting cases, and between them
1ies a vast spectrum of choices for C, giving rise to an equally large
array.uf representations for C-martingales and Wiener functionals.

The key to these representations is to define multiple stochastic

integrals of the form

where ¢ are (in general) randomintegrands C-adapted in a suitable sense
to be defined later.
The basic ideas underlying this paper were first introduced in

the dissertation [3].

2. Multiple Stochastic Integrals

Let C be a collection of Borel subsets of a fixed rectangle T.

Given sets Al.A ,-+,Am € R"{T}. we shall define their support in C by

(2.1) 5 = N{B=BECand BNA, # ¢ for every il
hshge- iy i 4
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If tl’tz""tm are points in T, their support will be written as
We say t],t

5 .
t,t2.+tm 2 :
tained in the support of the remaining ones.

""tm are C-independent if no point is con-
For € = R"(T), 3t1,t2”tm is just {t;,tp,..,t;} so that C-independent
mean "distinct". For € = {T,, tE€TC R: } where T, denotes the
rectangle bounded by the origin and t, 5t Y is the smallest Tt
1*72" ™m
that contains t]’tE""tm' and C-independent means "pairwise unordered”.
For ¢ = {all convex sets in T}, § is the convex hull of
t] ptz- -t-m

{tl,tz,..,tm}, and C-independent means t]'tz""tm are extreme points
of their convex hull, More examples will be given later.

Let T denote the subset of C-independent points in e
For a fixed n and C, ?m may be vacuous for sufficiently large m. For
example, if C = {Tt} is the collection of rectangles bounded by the
originand t €T Ciﬂﬂ:, then ?m is empty for m > n. That is, no more
- than n points can be C-independent.

Let {n,F,P) be a fixed probability space. Let {F(A), AEC} be 2
family of g-subfields parameterized by sets in ¢ CR™(T). Let
{W(A), A € R"(T)} be a Wiener process such that: (a) A CB=W(A) is
F(B)-measurable, and (b) AMNB = ¢ = {H[A'), A' C©A} is F(B)-independent.

We shall assume the following conditions on C:
{c1} For every collection of rectangles A;,A;,...,A  such that

m ~
I A cm

i=1

)=0, §=1,2,...,m

(A, NS
i A]AZ"AH
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{cE} For each m > 1, the mapping
t= {t] vt ,tm}-rqst

is a continuous map from T" to the collection of sets that

are compact under the metric

(2.2) p(A,B) = (max min |x-y| + max min |x-y|)
xEA B = =)

{ca} For each m > 1 and for almost all t € ™

RS U Sele,ty)iBleats) b (et 3 0

when E(e.ti} denotes the ball with radius £ centered at ti'
For a C satisfying conditions Cq = Cg3» e shall define multiple

stochastic integrals of order m

(2.3) ¢ W= L% W(dt,)..N(dt )

for integrands ¢(t,u}, (t,u) € ™ x 2, statifying
{h]} ¢ 15 F x p"-measurable

{hzi For each t € T" by is F{St}-measurah]e+

(hy) Llaw.i dt < =

The space of functions satisfying hl - hy will be denoted by L2{$mxﬂ}.
Call ¢ atomic if #(t.,w) = alw) IAEt} where IA is the indication
function of a product of rectangles A = n Ai such that A C fm_ Two

i=1
atomic functions
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(2.8)  g(tiw) = afw) 1,(t) ,ACT
8(t,w) = 8(w) Ig(t) ,BCTP

are said to be comparable if each pair {Ai,Bj] is efther equal or dis-
Jjoint modulo sets of zero Lebesgue measure, and similar if m = p and

(BysBps.-.»B) is a permutation of (AysRs.-5A ). Call ¢ simple if
K
¢ = kgl ¢, and each ¢, is atomic.

For an atomic function ¢ define

m
(2.5) ¢ o WM = a1H1 W(A,)

S0 define, ¢ o W™ has the following property:

Lemma 2.1. Let ¢ and & be comparable atomic functions in'Li{?mxn} and

L2(1Pxq) of the form (2.4). Then
(2.6)  E(¢ow") (65WP) = 0

unless ¢ and & are similar. In the latter case,

- def, . -

(2.7)  E(seH™) (eou™ = imzatat dt = (4,

where ¢ denotes the symmetrization of 3, i.e.,

-~

(2.8) by

mlf L br(y) o T(t) = permutation of t
I

Proof: First, assume ¢ and 8 to be similar. Then,

(44 (6eh™) = a8 T (A,
i=
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and af is measurable with respect to F[SAIAE....& }. Therefore, condition
m

S implies that

EL(¢oW™ (8eW") |F(S

kg oAy
= af ;It E HZ{A,}
i=1 L
m
=af N u(A;)
i=1
-and (2.7) follows.

Next, suppose that ¢ and @ are comparable but not similar. With

no loss of generality assume m > p. Consider two possibilities:
(2) There exists a E!j (say 311 such that
(8,n[ U 1)
wB. N[ U A US =0
1 i=1 1 A-IA2+.AIH

(b) For every j <p

m
u(B;,N[ U A US £0

For case (a), let

Then, with probability 1

m P
EL(4M") (0oW*) [F(D)] = o8 T W(A)) N W(B;)[EW(B,)] = O
i=1 §=z. 4

and (2.6) is verified.
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For case (b) we shall prove that § s . Since
A.]Az..ﬂm EIEZ"EP
¢ and & are comparable but not similar and m > p, there must exist an

Aitsay FI..I]I such that u[h.il'"lﬂj} = ( for every j. Hence, HI{A.I} is in=
m

p
dependent of af lI2 Hl:.ﬂ.ill jn‘[ H{BJ] and (2.6) is again proved.
i= =
To prove S o .1 for case {b), let D € C be any set
A'IA'Z“Am E'lEE”Ep !
such that

D r‘lAi # & for every i

then, D 2§ by definition. The defining condition for case (b)
- Ay
implies that for each j

either EJ r l.i.lA{ ¢

5 = A_] for some 1
which in turn implies D N B.1 F

which implies B

. N =
A N

which implies D N Bj F¢
Therefore,

D f'lﬁhi # ¢ for every 1 =1 nB.:I # ¢ for every j

and § =5 ]
Ay A B'JBE“'Bp

Lemma 2.2. For atomic functions ¢ and @ that are not necessarily

comparable, we can write

K

¢
k£1 k

(2.9) L

I
o= 1 6
a= A
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where P2 g, are atomic and the set {¢k'al} is pairwise comparable. For

any atomic 4 and & in Lz the isometry
(2.10)  E(eok™ (eoWP) = ) ($,8)
holds.

Proof: ¢ and 8, being atomic, are of the form

¢ =al
Alxﬂzx...xﬂm

6=pg1
B]xﬂzx...xﬂp

where A]'AE""Am’Bl""'Ep are rectangles in 7. Since 2 union of
rectangles is always a union of disjoint rectangles, there exist dis-
jnint'rectang1es D1,D2._...Dq such that each A1 or Ej is the union of

some of the Du'ﬁ. Hence (2.9) follows, with

4, =al
k Dk1nﬂkzx+..xﬂkm

B, =g 1
A DhlxﬂAEx"'xDlp

where Dki cC Ai and Dld = Bj for every i and j. It follows that o is

FESE D D }-measurable and g is F{SD it }-measurable for each

k17k2" " " km A1°A2° " am
k and X. From lemma 2.1 we have

m Py o_ o
and (2.10) follows from the bilinearity of ( s u

Lemma 2.3. Under conditions <y and Cy the subset of simple functions

is dense 1in LE{?mxn}.
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A proof of this result is given in the appendix A.

Theorem 2.1, There is a unique 1inear map denoted by ¢ o W of
# € LE{?mxn} into the space of sguare-integrable random varjables such

that
(a) For an atomic function ¢ = a I,
goul =a I W(A;)
(b) Symmetry:
oo W= goyl
(c) Isometry:
E(soH™) (8oWP) = (9,8} S

Proof: First, any simple function ¢ is by definition of the form

$ = kf1¢k’ where ¢, are atomic. Bilinearity of { } then implies
the fsometry (2.10) for simple functions ¢ and B. Let ¢ be any function
from Li{?miﬂ}. Lemma 3.2 implies that there exists a sequence {¢{"}}
of simple f;nctions such that
¢':“}L—ﬂ-* ¢
N

Hence, {¢{"]] is Cauchy. The isometry {2.10) then implies that
{¢["}nh'm} is mean-square convergent as a sequence of random variables,
and we take the 1imit to be ¢ o W". Verification of the properties

follows from the isometric property in a striaghtforward way. =
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Remark: Observe that the isometry property of the multiple stochastic
integral implies uniqueness up to eguivalence of integrand. That is,

ifoaW =ac W' then

o S z
Ig-gl= = I E{¢t at} dt = 0

v

Theorem 2.2. (Projection) For any B € RHI[T}

(2.12)  E(¢=W"|F(B)) = E(¢|F(B)) g oW

Proof: It is enough to prove this for an atomic ¢. Let ¢ = a I :
¥ A1 xﬁzx,.xﬁm
en

. m
E(4oW"|F(B)) = E(a I WA IFE))

e
E{fa E[L T W(A,)|F(BUVS F{B
LI WAIFBUS,  p )IFE)

m
E{x I H{AiﬁE-HF{B:I}
i=1

E(a|F(B)) 11_'?] W(A, NB)

E(¢|F(B)) I e W u
B
Corollary. If B €C then
E(poW"[F(B)) = ¢ 1 o W"
B

Proof: If B € C then t, € B for each i implies B 2 54 t Hence,
V2t

teg” = ¢y is F(B)-measurable and E(¢|F(B)) I pool as. "
B B
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Let {{mnﬁmla, B € C} be the set-parameterized process defined by
flg =t T,0 W

Then the corollary to Theorem 2.2 implies that {[-:baHm]lB, BEC} isa
martingale. We shall call E¢¢Hm]B the indefinite integral of ¢ o W".

3. Relationship with Multiple Wiener Integrals and Representation of

Wiener Functionals

Let T" denote the set of m-tuples of distinct points in T. Let
8(t), t € T" satisfy

f 62(t) dt < =

Tl!']

Let 8 o ¥ denote a multiple Wiener integral of order m.

Theorem 3.1. For a given C satisfying condition ¢, - ¢4, a multiple

Wiener integral can be represented as

i o m n k
(3.1) soW-= 51()51: W
where

(+) 8 W K) ()

{321 Bkhl sto,m It‘klu} = {B{t] -tzp' " :tk:‘} Ism k
Yol

and B ° Hk is a multiple stochastic integral defined relative to C.

Proof: Let I8 denote the transformation of § by a premutation of its
arguments. Suppose for some permutation I

l'.[!ﬂ!I.‘,,”':J.‘,'l

1 zx..th
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whare AI’ ..... ’Ak are (-independent rectangles and Ak+1""’ﬂm are

distinct rectangles contained in SA Then, symmetry implies that

1Age A

m k
po W' =noo W' =[ n WA T WA
i=k+] i=]
=|'|ka'|'fk

when

k
bl oasstim) = 1 esbisrentdll o W " (w)
k*™1 k? A1x.,.xAk | Bt k Ak+1x..xﬂm

_ -k
= 18(t; by, enaty,t) O W

The isometry of multiple stochastic integrals implies that both k and
the two sets {A]. g+--sA ) and {Akﬂ‘ pre- oAb are unique. The

integer k is unigue because otherwise we would have
E(o0 W™)? = E(h oW®) (hioW® ) = 0

The collection {A]’AZ""Ak} is unique because otherwise we would have

an#“_-hknw"=gk=u"

and hkgk = 0. It follows that

Ittt ) Ty ()8 WKY o ik

t'ItZ”tk.

= kI(m-k)! 8 0 W'

= m! Bkuik

where
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Hk{t],tz...,tk.m} = ts{tl !tz'l"'ltk'l.} Ism_k (1)o Hm-k]l:wj
Skar-by

Hence,
=fm k
go W (k) B o W

In appendix B, it is proved that Tinear combinations of such @'s are

dense in LE{Tm}. Thus, the theorem is proved. o

Corollary 1. Let F”[A} denote the o-field generated by {W(B), B € A}.
Then, every square-integrable FH{T]-measufable.randum variable Z has a

representation of the form
(3.3) z=€z+ f Z oW
m=1
where Im o W" are stochastic integrals defined with respect to the same
C that satisfies conditions ¢; - c,.

Proof: This corollary follows immediately from the main theorem and
the well known result [5] that Z has a representation in a series of

multiple Wiener integrals.

Corollary 2. For f€ LZ(T) , define

m
”tl'l'l} - 1E] f':ti:l

(3.4) F‘“(t1,..

and set
(3.5) W _(f,A) = (e W,

Then, for A€
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: m &
(3.6)  Mlr) = T (K) teyu_ () o k9,

Proof: Observe that Fk is symmetric and

£k m-k
"Fm[t.l stzstlrtm} = f {t1 |t2|-l|tk] F-I {tk'i"l"“tm}

Hence, (3.1) yields (3.6) for A = T, and the rest follows from the pro-

jection property (Theorem 2.2).

Corollary 3. For f € L%(T) define

(3.7) LA = expi(fom), - 3 [P(e) an
A

Then, for A EC
(3.8}  LIFA) =1+ n;f1 n}—. [?"{-}LH.S.} = W',

Proof: For multiple Wiener integrals (C = {all closed sets )}(3.8)
reduces to
=0
(2.9) L(f,A) =1+ mzl = Hm[f,A}
which is well known [5]. For the general case, we use (3.6) in (3.9)

and write

S I o k
L(f,A) =1 + m‘_jl = kE1 (k) [FH (a5 ) = WD,
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[ (-]
B g 1) k
=] + E H[f JEI} L wj{f-s-} ‘.‘H ]A
1 2k
=1+ ] o [FLfs) o WK, n
The expansion formula (3.8) for exponentials of the form (3.7) can

be extended with the Wiener integral f O W in the exponent being replaced

by a stochastic integral f ¢ N. The result can be stated as follows:

Proposition 3.2. Equation (3.8) remains valid for f € LE{Txﬂ} such

that f is bounded.

Proof: Define f to be a discrete simple function if f is a simple

function
) % (w) 1, (t)
flt.,m) = a.(w) I, (t
L R
such that P[aiEJ} = 1 for some finite set J. Such a function may be

written as f{t,w) = g{t,nlw)) where o = {ui,...,uk] and

k
gltsc) = I c.1, (t) for c € 0¥,
i=1 i

Then g(-,c) € LE{T] for each ¢ € J¥ so by Corollary 3 of Theorem 3.1,
: 1+ 1 g r
(3.10)  L(g(-.c),A) =1+ E ar L9 { »c)Lg(-,c),5.) ° 1a.
=1

This equality holds in L2(Q,F,P) for each ¢ € J¥ and hence it continues
to hold in LZIR,F,PJ if ¢ is replaced by the random vector a(w). By
proposition C in appendix C, replacing c¢ by aflw} in the stochastic

integrals is equivalent to replacing ¢ by a{w) in each of the integrands
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and then forming the stochastic integrals. (To apply propositon C to
the mth term on the right of (3.10], let By = SA'i:I. This verifies
equation (3.8) if f is a discrete simple function.

Conclude that E[L(f,A)] = 1 if f is discrete and simple. Moreover,

ifp>1and |[f(*,")| < T for some constant T' , then
L(.A)P = L(pf.A) exp%{pf-p;l f(t)%t)
< L(pf,A) exr:{%{pz-p}rzu{ﬂ
so that
(3.11)  ELL(F,A)P] < exp(H{p-p)Tu(T))

Now choose any f € Li{Txﬂ]l with |f(w,t)] < T. Then there is a
sequence of discrete simple functions fj = f in LE[TJ:R} such that
|fj{m,t}| < T for each j. Hence EfjﬂH}A - [fﬂH}A a.s. in Lz{ﬂ} so that
taking a subsequence if necessary, we can assume that 1':1“j<-1.-.|']'Inl -+ {fnw}A
with probability one. Thus Ll:fj..ﬁ.]l -+ L(f,A) with probability one. By
the estimate (3.11), the collection of random variables {L{fj A)P:p > 1}
is uniformly integrable for each p > 1 so that Lr:-Fj AY = L(f,A) in
LP(a) for each p > 1. Moreover, ?;- ™ in Lgl[?mm}l for each p > 1
since these functions are uniformly bounded. MNow (3.8) is true for f
replaced by f.:i' and it is then easily verified for f by taking the limit

in L2(g) term by term as § — . n

4, A Likelihood Ratio Formula

Let {It,t £ T} be a bounded process defined on (g.F,P) and let
{H(A), A C T} be a Wiener process defined on the same space. Let
F(A) = o({W(B), B CA}, {Z,, t EA}). We assume that
ANA' = 4 =HU(A") in Ff-ﬁ}'indemnd&nt.. For any collection ¢ the support
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S, contains t. Hence, Z, is F{St} measurable, For any C satisfying
ET - c3, the stochastic integral Z = W is well-defined.

Now, let P' be a measure on (a,F) defined by:

1

8.1} 9w axp(z o W~ 7220 )

dr
and set

(8.2)  L(ZA) = expl(ZoH), - 3 (Z2n),)

For any C satisfying ¢y - C3» proposition 3.2 yields

1

o _I A
(&.3)  LZA =1+ T g [Z%(+)L(Z,5,) » W™,

It follows that

(4.4)  L(Z.A) = EC S F(A))

and P' is a probability measure.

Next, Tet F (A) = o({W(B),BCA}), and define the 1ikelihood ratio

by
(a.5) A = £(95] £ (A))
. aF Ty
We shall use (4.3) toderive an expression for A(A).

Proposition 4.1. Let t € T" and define

(4.6)  Z.(t) = BN (2(4)2ty) - Ze) IFylSy o g )
m

Then the 1ikelihood ratio is given by
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(8.7)  AQR) =1+ ng 11z ()a(s ) o W™
Proof: We begin by writing
AA) = E[L(Z,A)[F(A)]
and using (4.3). Observe that with P-measure 1,
ECLZ"(-)L(Z,S ) o W', |F, (A)} = ELZ7(-)L(Z,S ) [F(A)] o W"
Now, for t = (t;aty,e..st) €A

ELZ™(t)L(Z.5,) | F, (A)]

E[I{t]}Iitzﬁ---I{tmlL{I-5t3t2+.tm}|F“{ﬂ}]

1]

E[I{t]}Il[tz]l.nl{tm}L(I,St]tE__t ]|ifh.|:s,r_]t2_‘t 1]
m m

]

ﬂ{Stl . -tm}El [z{t'l }I == ‘I{t[ﬂ} lFH{St] e 'tm}]

Em{t}ﬁﬁst}

and (4.7) follows. g

Two special cases are of particular interest. First, let a € R" be
a fixed unit vector (i.e., lal = 1) and let H, denote the half space
(ter": (t,a) > a}. Then, the collection C = {Hn N T} is a one-
parameter family of sets such that ?m is vacuous for m > 1. That is,
two or more points are always C-dependent. In this case the 1ikelihood

ratio formula reduces to

MA) =1+ [Z(-IMS) ° W), , AEC
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and an application of (3.8) yields
(4.8) A(R) = L{E],A} = exp{{ilaw, % E%nu}ﬂ}
where
Z,(t) = E'(Z(t)|Fy(sy))
= E'EI(t]EFH{H{t’B}r1T}}

In this case we see that the 1ikelihood ratio is expressible as an

exponential of the conditional mean.

The second case of special interest results from taking

¢ = {all closed sets in T}. For this case

3 = {t1.t2,...,tm}

tth...tm
Hence, with P-measure |

A(S ) =1

t1t2...tm
and
Im{t] = E' I{t.l}.”I{tm]']

Furthermore, if we assume that 7 and W are independent processes under
P then Z is identically distributed under P'. Hence, for that case we

can write

7
(4.9)  A(A) =1+ mEI -7 (0,0 W),
where P is the mth moment

(4.10) g (t;tp,..0t) = E[Z(ty). .. Z(t )]
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Equation (4.9) provides a martingale representation of the likelihood
ratio for the "additive white Gaussian noise" model under very general
conditions. In the one-dimensional case, it was recently obtained in
[71.

Equation (4.7) is an integral equation in that A occurs on both
sides. In special cases [2,6,9] the equation can be converted to yield

an exponential formula for A in terms of conditional moments.
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Appendix A: Proof that Simple Functions are Dense

The purpose of this appendix is to prove the following proposition:

Proposition A. Conditions Cy and cq imply that the space of simple

functions is dense in LEE'?mxﬁ} for each m > 1.

Proof: We begin by introducing some additional notation. For £ > 0 and

t= {t.l,...,tm} € Tm, define the e-support of t by

sS=5
t " TBest))Blesty) . Blest ),

where B{E,‘LI] denotes a ball with radius € and center ti’ and define
SE‘:' = 51;'0 si_ Define LE{?nm] the same way as LE{‘F“xn:l but with
condition hE replaced by the stronger condition: {h;} for each

tE .i‘.m’ ¢y is F{S:]-masurab]e. Finally, let CE{?mxn} be the subspace
of Li['?mxn]l consisting of ¢ € Li{!l:mm} such that ¢(:,w) is continuous on
T with probability one.

Proposition A is a consequence of the following sequence of lemmas.

- |

Lemma A.1. W LE{?“xn} is dense in Lzl?"xﬂ} under conditions ¢, and c,.
E}‘U E d 3

Proof: Let f E‘Li{fmxﬁ] be bounded by a constant T > 0. For any e > O,
there is a Borel measurable mapping u(-,e) of the open set .i.‘m into a

finite subset of T" such that |u{x,e) = x| < e forall xe ™. Define

fo(s) = ELF(s)|F(SZF )] seT

A version of f%(s) can be chosen for each s so that f€ is a jointly
measurable function of (s,w). Indeed, for each fixed t € ™ there exist

versions of
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¢(s,t) = E[F5(s) [F(SE%)]

which are jointly measurable functions of (s,e), and then gs[s,ul[s.a]lll is
a jointly measurable version of f=(x). Also, f° can be assumed to be

bounded by I'. For each s E‘?m, f%(s) is measurable with respect to
E
F{su{x E}} C F(sg)

so that € € Lz{'?“‘m}
3e 2e E; 2e s {-)
Since 5; = Su[s E} e a(s.e) llg 5= 55 for each
5 E :.I:m By the continuity nf o-fields generated by the Wiener process,

Tim F[SE} = F{Sr: }J Then, by L2+mart'[nga'le convergence, for each
e+l

se,
EL(F(s)-15(s))%] = E (ELF(s)|F(R))] - ECF(s)|FRET, \)])

~+ E (E[f(s)|F(Ry)] - ELF(s)[F(R{™)D)

el
By condition ¢, u(R_-R\™) = 0 and so also EL(f(s)-f%(s))2] =0, for
a.e. s € ™. Since {f{s}-fE{s}}z % #I‘z,

1F-£12= L EL(f(s)-f5(s))? ds = 0

by the Lebesgue Dominated Convergence Theorem. Thus, any bounded
function T € LZIT %) is the 1imit of functions in U LE{T ¥). Since
the bounded functions in LE{?"m} are dense in LE{?mxn} the lemma is
established. u

Lemma A.2. W € ﬁ"‘xﬁ} is dense in WU L {F“xn]
e>0 >0
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Proof: Let f € ngt?nxﬂ} be bounded by some constant T > 0. Choose

V€ C(R™) such that V > 0, V(x) = 0 if |x| > 1, and j V{x)dx = 1.
Rn
For & > 0, define vé e ¢*(R™) by vix) = {%}m"'ﬂ'{%} and define a

function ‘F6 an '?m

by the convolution: fﬁ{-,m} = vﬁ*f(-,w} for each
fixed w. Here the function f{-,w), which is a priori defined on
PoPe (R™M™ = R™, is extended to a function on all of R™ by
the convention f(s,u) = 0 if s € T, Mote that f° is bounded by T and
sample continuous, and since ¥(x} = 0 for |x] > &, e Coe {?ﬂxﬂ}

Observe that

=512 g L“ms} - £3(s)|? ds]

E [ |(s) - vo*£(s)|2 ds]

- R .
< [ v (x) E [ 1£(s) - f(s-x) 2 ds] dx (A.1)
r™ R

Now J- |¥(s) - f{s-x}lz di =0 as s =0 for all w since translations

™
are continuous in Lz{m"‘“j. Hence, the expertation in (A.1) converges

to zero as x =+ 0 by Lebesgues Bounded Convergence Theorem and so also

1451 = 0 as § - 0. n

Lemma A.3. If FEC ﬁ’“m] for some € > 0, then there is a sequence

£ of simple function which converge to f in Lzl:'?mm].

Proof: It suffices to prove the lemma under the additional assumption

that ¥ is bounded uniformly in (t,w}. Recall that under Condition
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Cas ™ is naturally identified with an open subset of R™ . For & >0,

let I'5 denote sets of the form

X, ..%I ]

{111x...xl1n}x...x{1m1 &

where each Iij is an interval of the form (k&,(k+1)4], and let Ea consist
of A€ I, such that A CT". Let u(-,8) be a function from T" to T"

such that u(x,58) = u{x',8) € J whenever x, x' €J for some J € Tﬁ.

Define f3(s) = f(u(s,8)) if s € J for some J € T, and define f*(s) = 0
otherwise. For & < gf/n, each of the m rectangles in T of a set in

?6 has diameter less than e so that f° € Sal[;mxﬂ]l for & < g/¥n. Further-
more, % s bounded by the same constant that f is, and fﬁis.m]-+ fis,w)
as § =+ 0 for each (s,u) € fmxﬂ by the sample continuity of f. So

£ = f in Lz{"lmm:l as & = 0 by dominated convergence. o



Appendix B
Let Im denote the collection of subsets of ™ of the form

Alx...th such that each A, € R"{T} and for some permutation I,

i
1) Aggyys--sPgy) are C-independent, and
2) cs
k1) -+ Pa(m) Arc)Prcz) - Ak -
The purpose of this appendix is to prove the following proposition:

Proposition B. The linear span of {'JA:.AE Im} is dense in L2{T'"} for

each m > 1.
Proof: Consider the following two conditions on C:
{h.l} There is a countable subcollection of Im which covers T" a.e.

{bz:l There is a countable subcollection II': of disjoint sets in I

which covers T a.e.

By a sequence of lemmas it is shown below that conditions Cy and

c3 = condition by = condition b, = the conclusion of Proposition B.

Lemma B.1.
o v Tel(xy)ix € E%, y € ES,{J'”'*} & (*)
2=1 n=P(m) - X

Proof: Let g = {q],...,qm} € T". Choose a permutation

= (pys---p,) = Mgy,...,q.) so that forsome £ with 1 <2 <m,

5, =5 Fs

L TR PyaeeaPyaeeesby for1<i<g



1g proposition:

e in L2(T™ for

1ich covers T" a.e.

isjoint sets in Im

conditions Co and

Proposition B.

(*)

Nt

To show that g is contained in the letrt s1
show that Pys---sP, are C-independent. MNow, if

Ll

C-independent, then p; €5 for

P]-nupif---.lﬂ'ﬂ_

{A€C: py,....p €A} = {ASC: PpseensDyse.

Intersecting all the sets contained in this col

that

S -
Pysee-sPy - SPT""'pi""’pi

which contradicts our choice of PysesesPy- Thu

C-independent so that p, and hence g, is contai
(*).

Lemma B.2. Conditions Cy and cq imply Conditio

Proof: Let ﬂ denote the subsets of T" of the

for some T € P(m) and some £ > O,

a) ﬁn""'AH are C-independent, closed r
j

have rational coordinates in T C Il".
s CURSSER, Tl TR

Then Ig is a countable subset of Im and
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m "
UjAD U U To{(x,y):xET, xE{SE'}}mLL}

el &=1 1€P(m)

E u 1 {{x . s, 4 m=£
= o{lxy):xET", ¥yE(5)77) (8.1)
=1 EEP{m) X

- U W =S

%=1 1ep(m) ™*

where
Spg = () xe T, ye )™ - i)™

The first term on the right hand side of (B.1) is equal to T" by
Lemma B.1. Thus, to complete the proof it must be shown that
um[5m13 =0 forallm>1and 1 <2 <m

By Condition Cos

F_ = {(xy) €T, ye (5™

is a closed subset of Tx X Tmﬁz which increases as e decreasesto zero.

Since Sm,n = FD - st; Fe’ it follows that Sm, is a Borel subset of T".

By Condition Cq» the section

L

{y:(x.y) € S 4} € ek

of S, g3t x has Lebesgue measure zero for a.e. y € ™. Hence, by

" Fubini's theorem, um{Sm E} =0forl<tz<m n

Lemma B.3. Condition h.I implies condition bZ'
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Proof: Let F] ’FE"“ be a countable subcollection of ITI1 which covers
i-1

Tm a.e.. Then the disjoint sets D'I = F‘i - U Fj f>1 cover 'I'm a.8..
i=1

We claim that for each i > 1 there is a finite collection of disjoint

M
sets I:!.”,.H.Erim‘i in Im such that Di = j:g Dij' Condition b is then

satisfied with I;: = {Dij:i 21, 1<J<ns}. It remains to prove the

claim.

2. MNow

By induction, it suffices to establish the cliam for i

r
FI = A]x...xﬁm for some Borel sets A],...,Am CT. Thus, F{ = j:l'l Kj
where K]""*FY are disjoint and each Kj is the product of m Borel
subsets of T. In fact, F; is the union of all sets of the form
ByX...xB such that B, = A, or B, = A;: for each i and such Ehat By = A

for at least one i, and these sets are disjoint. Seo D, = U Kj N F,.
3121
The sets Kj n FE' The sets I{j n F2 are disjoint sets in Im as

required so the claim is established. =

Lemma B.4. Condition I:-z implies that the linear span of {'lR:AE Im} is
dense in Lz{ijl.

Proof: Let F = Fix...xF_ where each F, € R"(T). Then ANFE I
for any A € 1, and by Condition I:rz.
1 = Ed Ty 2.6 90 T,
AEIm
Since the linear span of functions of the form IF is dense in Lz{Tm},

the lemma is established. ; -1
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Appendix C

Proposition C. Assume Conditions C; - €5 Let BI"”'EI: be closed
subsets of T and suppose that u,I{m} is an F{Bi] measurable random
variable with values in a finite set J for 1 < i < k. Suppose for each

k

¢ € 0 that h(-,-,c) € L2(T™n) and that

hi{t,-,c) = hit,*,c'}) a.s.
whenever ¢y = c.i for all i such that B'i 'Ist. Then h{-,-,a{:})) € Li['?'"xﬂ]
and

h{'-'-“{'”‘“m = h(: .',C}nﬂml

B‘ﬂ-{'} a.5.

Proof: For each 8 € {ﬂ,]}k. define
F; = {te?‘“;aicstwai =1for1<i<k}

By condition c,, the set {t:BC St} is open for each i so that "I:g is

Borel for each 8. Since U ?g = '?m it suffices to prove the lemma when
3]

?mtt}

;]
for all t,c. Now, for definiteness, suppose that &1 =]forl<iz<?

h(t,-,c) = h(t,-,c)I

and Qe = 0 for 2 <i=<k. Let nRK -+ gt denote projection onto the

first ¢ coordinates. Then for all c € JX,

h{t,w,e) = h{t,u,a(c))

where h{t,uw,c) = h{t,w,{ﬂ{t},jn,...,ju}} for some fixed g €9.
Thus,
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h(+,*he(-))oW™ = h(* " Ti(e(+)))oh"

bFEJi« Ao ab) g yy=pd © W

" L Taarnep bt b1

(h- 0 D)™ o))
= (h{‘-':‘:]“ﬂ}lcmi'l

The second equality is easily proven by approximating H[-,-,b} in
LE{?“m} for each b by simple functions which vanish off the open
set {tE'F":B_iCSt for 1 < i<t}





