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ABSTRACT

Multibase is a software system for integrating access to pre-
existing, heterogeneous, distributed databases. The system
suppresses differences of DBMS, language, and data models
among the databases and provides users with a unified global
schema and a single high-level query language. Autonomy for
updating is retained with the local databases. The architecture
of Multibase does not require any changes to local databases
or DBMSs. There are three principal research goals of the
project. The first goal is to develop appropriate language
constructs for accessing and integrating heterogeneous data-
bases. The second goal is to discover effective global and local
optimization techniques. The final goal is to design methods
for handling incompatible data representations and inconsis-
tent data. Currently the project is in the first year of a planned
three year effort. This paper describes the basic architecture
of Multibase and identifies some of the avenues to be taken in
subsequent research,

1. INTRODUCTION

What is Multibase?

The database approach to data processing requires that all
of the data relevant to an enterprise be stored in an integrated
database. By “integrated,” we mean that a single schema
(i.e., database description) describes the entire database, that
all accesses to the database are expressed relative to that
schema, and that such accesses are processed against a single
(logical) copy of the database. Unfortunately, in the real
world many databases are not integrated. Often, the data
relevant to an enterprise is implemented by many indepen-
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dent databases, each with its own schema. Such databases are
nonintegrated. Furthermore, these databases may be man-
aged by different database management systems (DBMS),
perhaps on different hardware. In this case, in addition to
being nonintegrated the databases are distributed and hetero-
geneous. Thus, the real world of nonintegrated, hetero-
geneous, distributed databases differs greatly from the more
ideal world of an integrated database.

MNonintegrated, heterogeneous, distributed databases arise
for several reasons. First, many of these databases were cre-
ated before the benefits of integrated databases were well
understood. In those days, total integration was not a prin-
cipal database design goal. Second, the lack of a central data-
base administrator for some enterprises has made it difficult
for independent organizations within an enterprise to produce
an integrated database suitable for all of them. Third, the
large size of many data processing applications has made dis-
tribution a necessity, simply to handle the volume of work.
Since integrated distributed DBMSs have not been available,
it has been necessary to implement applications on different
machines. Since different applications often have different
performance and functionality requirements, different
DBMSs were often selected to run on these machines to meet
these different requirements. Many data processing organiza-
tions have experienced these problems, so there are many
nonintegrated, heterogeneous, distributed databases in the
world.

A principal problem in using databases of this type is that
of integrated retrieval. In such databases, each independent
database has its own schema, expressed in its own data model,
and can be accessed only by its own retrieval language. Since
different databases in general have different schemata, differ-
ent data models, and different retrieval languages, many diffi-
culties arise in formulating and implementing retrieval re-
quests (called queries) that require data from more than one
database. These difficulties include the following: resolving
incompatibilities between the databases, such as differences
of data types and conflicting schema names; resolving incon-
sistencies between copies of the same information stored in
different databases; and transforming a query expressed in the
user’s language into a set of queries expressed in the many
different languages supported by the different sites. Imple-
menting such a query usually consumes months of program-
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ming time, making it a very expensive activity. Sometimes, -

the necessary effort is so great that implementing the query is
not feasible at all.

Multibase is a software system that helps integrate non-
integrated, heterogeneous, distributed databases. Its main
goal is to present the illusion of an integrated database to
users without requiring that the database be physically inte-
grated. [t accomplishes this by allowing users to view the
database through a single global schema and by allowing them
to access the data using a high level query language. Queries
posed in this language are entirely processed by Multibase as
if the database were integrated, homogeneous, and non-dis-
tributed. Multibase uses the Functional Data Model' to define
the global schema, and the language DAPLEX' as the high
level query language.

Implementation Objectives

There are many approaches to the design of the Multibase
system. In deciding which approach to choose, we begin with
the following design objectives.

1. Generality: we do not want to design an application-
specific Multibase system. Instead, we want to provide
powerful generalized tools that can be used to integrate
various database systems for various applications with a
minimum of programming effort.

2. Extendability: we want a design that allows expansion of
functionality without major modification. There are
areas in the Multibase design where substantial research
effort is still required, so we must be able to add addi-
tional features to the Multibase system as we learn more
about the problems.

3. Compatibility: we want a design that does not render
existing software invalid, because such software repre-
sents a very large investment, Thus, we must leave the
existing interface to the local DBMS intact.

The proposed architecture of the Multibase system consists
of two basic components: a schema design aid and a run-time
query processing subsystem. The schema design aid provides
tools to the “integrated™ database designer to design the glob-

al schema and to define a mapping from the local databases to
the global schema. The run-time query processing subsystem
then uses the mapping definition to translate global queries
into local queries, ensuring that the local queries are executed
correctly and efficiently by local DBMSs. The schema design
aid is discussed first.

Schema Architecture

The Multibase architecture has three levels of schemata, a
global schema (GS) at the top level, an integration schema
(IS} and one local schema (LS) per local database at the
middle level, and one local host schema (LHS) per local data-
base at the bottom level, These components and their inter-
relationships are depicted in Figure 1.

The local host schemata are the original existing schemata
defined in local data models and used by the local DBMSs.
For example, they can be relational, file, or CODASYL sche-
mata. Each of these LHSs is translated into a local schema
(LS) defined in the Functional Data Model. By expressing the
LSs in a single data model, higher levels of the system need
not be concerned with data model differences among the local
DBMSs. In addition, there is an integration schema that de-
scribes a database containing information needed for integrat-
ing databases. For example, suppose one database records the
speed of ships in miles per hour, while the other records it in
kilometers per hour. To integrate these two databases, we
need information about the mapping between these two
scales. This information is stored in the integration database.

The LSs and IS are mapped, via a view mapping, into the
global schema (GS). The GS allows users 1o pose queries
against what appears to be a homogeneous and integrated
database. Roughly speaking, the LHS to LS mapping pro-
vides homogeneity and the LS and IS to GS mapping provides
integration. The schema design aid provides tools to the data-
base designer to define LSs, the GS, and the mapping among
them and the LHSs.

Query Processing Architeciure

The architecture of the run-time query processing sub-
system consists of the Multibase software and local DBMSs.

global gueries

Multibase

Sofkware
local gueries
L
lecel local
DEME DBHS

Figure 2—Run-time query processing subsvstem
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These components and their interrelationships are depicted in
Figure 2. The users submit queries over the global schema
(called global queries) to the Multibase software, which trans-
lates them into subqueries over local schemata (called local
queries). These local queries are then sent to local DBEMSs to
be executed.

Since the global queries are posed against the global schema
without any knowledge of the distribution of the data and the
availability of *“fast access paths,” the Multibase software
must optimize queries so they can be executed efficiently. In
addition, the translation process must also be correct; that is,
the local queries must retrieve exactly the information that the
original global query requests.

Meeting the Objectives

The proposed architecture meets the objective of gener-
ality. The only component of the Multibase system that is
customized for the application is the global schema and its
mapping definition to the local schemata. The only com-
ponent of Multibase that is customized for the local DBMSs
i5 the interface software that allows Multibase to commu-
nicate with the heterogeneous DBMSs in a single language.
These are-only small-compenents of the Multibase system,
Thus, most of Multibase is neither application-specific nor
DBMS-specific. Multibase also meets the objective of com-
patibility, because local databases are not modified; there-
fore, existing application programs can still access local data-
bases through local DBMSs. And as the details of the
architecture are discussed in later sections, it will become
clear that the objective of extendability is also met.

Project Starus

The Multibase project is a three-year effort. Within the first
two years, the research problems in the system design will be
resolved and evaluated, using a “breadboard™ implementa-
tion of the system. In the final year, a revised design will be
developed and implemented in ADA. The ADA version will
be made available for experimental testing within the Navy
“Command and Control™ environment.

It is anticipated that the major research problems are

1. basic architecture of the system,
2. global and local optimization, and
3. handling incompatible data.

At the time of this writing, an architecture has been designed
that supports a restricted version of DAPLEX with reason-
able efficiency and that can be tailored to handle certain kinds
of data incompatibility. This basic architecture is currently
being implemented as a breadboard system. Subsequently,
research will be devoted to removing the restrictions on DA-
PLEX and investigating algorithms for processing incompat-
ible data. The breadboard system will then be enhanced to
include the new capabilities. This paper describes the basic
architecture developed to date.

Organization

The architecture of the Multibase system is expanded in
more detail in Section 2. The process of mapping each LHS to
a LS and merging LSs into a GS is discussed in Section 3.
Section 3 also discusses the problem of data incompatibility
and inconsistency. The method by which user queries are
translated into efficient local queries is discussed in Section 4.
Section 5 is a summary.

2. QUERY PROCESSING ARCHITECTURE

The architecture of the Multibase run-time subsystem consists
of

1. a query translator,

2. a query processor,

3. a local database interface (LDI) for each local DBMS,
and

4, local DBMSs.

A global query references entity types and functions de-
fined in the global schema. Before it can be processed, it must
be translated by the query translator into a query referencing
only entity types and functions defined in the local schemata.
In other words, the query translator translates a global query
over the global schema into a global query over the disjoint
union of local schemata. The query processor decomposes the
global query over the disjoint union of local schemata into
individual local queries over local schemata. The query pro-
cessor also does query optimization and coordinates the
execution of local queries. The LDI translates local queries
received from the query processor into queries expressed in
the local DML and translates the results of the local queries
into a format expected by the query processor. These com-
ponents and their interrelationships are depicted in Figure 3.

The User Interface

The global schema is expressed in the functional data mod-
el." In this data model, a schema is composed of entity types
and functions between entity types. Each entity type contains
a set of entities, so functions map entities into entities. Func-
tions can be single-valued or multi-valued, and can be partially
defined or torally defined.

The functional data model was selected because it embodies
the main structures of both the flat file data models, such as
the relational model, and the link structured data models,
such as CODASYL. Entity types correspond roughly to
relations in the relational model or record types in the
CODASYL model. Functions correspond to owner-coupled
sets in the CODASYL model.

The query language that we use with the functional data
mode] is called DAPLEX. DAPLEX is a high level language
that operates on data in the functional data model and is
designed to be especially easy to use by end users.
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Figure 3—Run-time query processing subsystem

Query Translator

The gquery translator receives global queries expressed in
DAPLEX over the G5 and translates them into queries ex-
pressed in an internal language over the disjoint union of L3s
and IS.

To perform the translation, the query translator must use
the mapping that defines how entity types and functions of the
GS are constituted from the entity types and functions of the
LS and the IS. The query translator uses these mapping defi-
nitions to substitute global entity types and global functions in
the global query by their mapping definitions. The substi-
tution results in a query containing only entity types and func-
tions of the LSs and the IS, Therefore references by the global
query to entities in the GS are now expressed as references to
the actual entities at particular sites that implement the global
GS. Any extra data needed from the integration database to
resolve incompatibilities among LSs is now explicitly refer-
enced in the translated query.

The query produced by the query translator only references
data in the LS and the IS. Thus, we can imagine that this query
is posed against a database state that is the disjoint union of
the LSs together with the IS. This disjoint union is a homoge-
neous and centralized view of the distributed heterogeneous
database.

The language used for defining the mapping between sche-
mata must be compatible with the global DML. Otherwise, it
would be awkward to translate the query from the GS to LSs
and IS using conventional guery modification techniques.
(Query modification composes the given query, which is a
function from GS states to answer states, with the mapping
from LS and IS states to GS states, to produce a query from
LS and IS states to answer states.”) Therefore, we propose to

use the same language DAPLEX as both the query and map-
ping language. The process of constructing the global schema
from the local schemata is discussed in Section 3.

Query Processor

The query processor translates a query over the disjoint
union of LSs and IS into a query processing strategy. This
strategy includes the following: a set of queries, each of which
is posed against exactly one LS or the IS; a set of “move”
operations to ship the results of these queries between the
local DBMSs and the query processor; and a set of queries
that is executed locally by the query processor to integrate the
results of the LS and IS queries. The main goal of this trans-
lation is to minimize the total cost of evaluating the query,
where cost is measured by local processing time and commu-
nication volume.

A query processing strategy is produced in two steps. First,
the query is translated into an internal representation called a
guery graph. Using this representation, the query processor
isolates those subqueries of the given query (which are essen-
tially subgraphs of the query graph) that can be entirely eval-
uated at one local DBMS. Thus, the result of the first step is
the set of single-site subqueries of the given query,

The second step is to combine the single-site queries with
move operations and local queries issued by the query pro-
cessor. Move operations serve two purposes. First, they are
used to gather the results of the single-site queries back to the
query processor. These results can be integrated by the query
processor by executing a query local to itself. The integrated
results may be the answer to the query, in which case they are
returned to the user. Second, they may be used as input to
other single-site queries. In this case, a move operation is
issued to ship the data to the local DBMS that needs it. The
method by which single-site queries, move operations, and
queries local to the query processor are sequenced to produce
a correct and efficient strategy is discussed in Section 4.

Local Database Interface (LDI)

Local queries posed against the LSs are sent by the query
processor to the LDIs in an internal format, The LDI trans-
lates these local queries into programs in the local DML and
programming language over the local host schema (LHS).
This translation is optimized to minimize the processing time
of the translated query. When the local DBMS uses a high
level {i.e., set-at-a-time) language, such as DAPLEX, this
translation is fairly direct. However, when the local DBMS
uses a low level (i.e., record-at-a-time) language, such as
CODASYL DML embedded in COBOL, this translation may
be quite complex and may require nontrivial optimization,
Translation methods for a file system and CODASYL lan-
puage are described in Section 4.

To do the translation, the LDI must have information about
how entity types and functions in the LS are mapped to ob-
jects in the LHS, These mappings are defined using the rules
discussed below.
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3. SCHEMA INTEGRATION ARCHITECTURE

*Schema Integration™ is the process of defining a global sche-
ma and its mapping from the existing local schemata. The
general architecture of this design process is discussed in this
section.

There is one local host schema (LHS) for each local data-
base. Each LHS can be expressed in a relational, CODASYL,
or a file language. To merge these LHSs we must convert them
into a common data model first. Otherwise, we would be
mixing relations from a relational model with record types and
set types from a CODASYL model. Thus the first step of
schema integration is to translate LHSs into Local Schemata
(LS) defined in the Functional Data Model of DAPLEX.

The second step is to merge LSs into a GS. To do this, an
integration schema which defines an integration database is
often needed. An integration database contains: information
about mapping between different scales used by different LSs
for the same entity type; statistical information about im-
precise data; and other information needed for reconciling
inconsistency between copies of the same data stored in differ-
ent databases. The integration schema and LSs are then used
to define a global schema.

The overall architecture of schema integration consists of

a) a global schema,

b) a mapping language,

c) local schemata (LS) and an integration schema (IS),
d} a mechanized local-to-host schema translator, and
e) local host schemata (LHS) and local DBMSs.

These components and their interrelationships are depicted in
Figure 4. The local host schemata are translated into local
schemata by the mechanized local host schema translator, and
local schemata and the IS are mapped into the GS by using the
mapping language facility.

Mapping between LHS and LS

Since an LHS can be defined in the relational, CODASYL,
or file model, how an LHS is mapped into an LS depends on
the data model used.

CODASYL model

If an LHS is defined in the CODASYL model, then it
consists of record types and set types. The functional data
model consists of entity types and functions on entity types.
S0, to map the LHS into an LS one simply maps record types
and set types into entity types and functions respectively.

The concept of record type in the CODASYL model is very
similar to that of entity type in the functional data model. A
record in the CODASYL model has a record [D, and one or
several attributes. The record ID uniquely identifies the
record, and the attributes describe properties of the record.
Similarly, in the functional data model, an entity is an object
of interest, and the functions defined on the entity return
values that describe the properties of the entity. Therefore, a

record type corresponds to an entity type, and the attributes
of the record type correspond to functions defined on the
entity type.

If an attribute of a record type is a key (in CODASYL
terminology, a key is the data item(s) declared *NO DUPLI-
CATE ALLOWED") then the corresponding function must
be a totally defined one-to-one mapping. If the attribute is a
repeating group (declared to have multiple occurrences in a
CODASYL model), then the corresponding function is a set-
valued function.

A set type in the CODASYL model is a mapping between
an owner record type and one or several member record
types. A set type maps an owner record to a set of member
records, or, conversely, a set type maps a member record to
a unique owner record. Therefore, a set type resembles a
function that maps an owner entity to a set of member enti-
ties, or, conversely, maps a member entity to a unique owner
entity.

In a CODASYL model, a set type implies not only certain
semantic information but also the existence of access paths.
For example a set type “work-in" between “department”™ and
“employee™ record types implies that the employees owned
by a department work in that department. But it also implies
that there is an access path from a department record to the
employvee records owned by that department and another ac-
cess path from each employee record to its own department
record. Since the LSs will be used for query optimization, we

users
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must capture all this access path information in the LSs.
Therefore, for each set type in an LHS, not only a set-valued
function from the owner entity type to the member entity
type, but also a single-valued function from each of the mem-
ber entity types to the owner entity type must be defined in the
corresponding LS.

In a CODASYL model, a record type can be declared to
have a “LOCATION MODE CALC USING KEY." This
means that an index file is created for the key, and the record
type is directly accessible through the indexed key. Therefore,
for each record type with “CALC KEY" in the LHS, a system
set function of which the domain is the key value and the
range is the entity type (corresponding to the record type)
must be defined in the LS, This system set function will be
used only for query processing optimization. It is not visible
to the database designer. Therefore, it cannot be incorporated
into the global schema. This restriction is imposed to preserve
the data independence of the global schema.

For example, the CODASYL schema shown in Figure 5 is
translated into the schema in the functional data model shown
in Figure 6. In Figure 6, the inverse of a function F is denoted
by “F-inv."

Relational model

A relational database schema consists of a set of relation
definitions. To translate a relational LHS to a functional LS
we essentially map each relation to an entity type. A tuple of
a relation in a relational model is similar to an entity in a
functional data model. A tuple is uniquely identified by its
primary key and has one or more attributes, just as an entity
has one or more functional values. Therefore, to map a re-
lational model LHS into a functional data model LS, for each
relation in the LHS an entity type is defined in the LS, and for
each attribute of the relation a function is defined on the
corresponding entity type. The range of the function is the
domain of the attribute. If the attribute is a primary key, then
the function must be totally defined and one-to-one. If it is a
candidate key, then the function can be partially defined, but
it must still be one-to-one. In any case, due to the relational
format, the function must be single-valued, not set-valued.
For example, the relational LHS shown in Figure 7 is trans-
lated into the functional data model LS shown in Figure 8.

File model

A file model consists of record files and indexed fields
(keys) in those files. A record file consists of a set of records
of the same type, which is similar to the concept of record type
in the CODASYL model or a relation in the relational model.
To map a file LHS to a functional data model LS, for each
record file in LHS a corresponding entity type must be defined
in the LS, and for each field of the record file a function must
be defined on the entity type. Since a key supports an access
path to the record file, for each key of a record file, a system
function must be defined whose domain is the key field's
entity tvpe and whose range is the entity type corresponding

system

all-clas

all-ship

shipclass

mmth .
ship

Y

positions

trackhist

Shipclass Recerd Trackhist Record

*classname char{24) £+ DTG char (10}
length char (6} speed char(3)
draft char(2) latitude char (5]
beam char (3} longitude char (6}
displacement char(5) course char (3}
endurance char(3)

* primary key
** key within a set

Ship Record
&

vIC char (6)
VCHR char(5)
name char (26)
type char (4)
flag char(2)
oWnRer char(2)
hull char(4)

Figure 5—A CODASYL schema

to the record file. This system function is not visible to the
database designer; it is used only for query optimization,

Integration of L8s

To integrate LSs into a global schema, the database de-
signer designs an integration schema that defines an integra-
tion database. He then designs a global schema and defines it
in terms of the LSs and the Integration Schema by using the
view support facility.

An integration database contains information needed for
merging entity types and their functions. For example, two
entity types, El and E2, from two schemata are shown in
Figure 9. These two entity types represent information about
ships. There are two functions defined on each entity type;
one function returns the ship-id of a ship and the other returns
the ship-class of the ship. The ship-class of E1 and E2 are
coded differently. A sample of entities and their functional
values are also shown in Figure 9. To merge E1 and E2 into
a single entity tvpe, a uniform code must be defined, and the
two existing codes must be mapped to the new code. Defini-
tions of the new code and the mapping function are shown in
Figure 10, and a sample of the function is shown in Figure 11,
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ikype shipclass is

:.n.t.i..h::
string{l..24});

classnama
length : string{l..8);
draft t stringf{l..2);
beam t string{l..3);
displacement : string{l..5};
endurance : string{l..3);
consistg=-of t et of ship;
end esnkify:
.tm ship .:.5 entity
ic : stringil..6);
‘-’l:'ﬂ : stringfil..5);
name H stringil..261:
1] : steingil..4);
flag : skringi{l..2};
owner ¢ string{l..2};
hull : skringi{l..4};

positione ¢ get of trackhist;
congists-of_inv : shipclass;
end entitys:
type system ig entity
all-class : set of shipclass
all=-ship : et of ship;
end enkity:
type trackhist is eptity
076 : string (1..10);
speed : string (1..3);
latitude : string (1..5};

longitude 1 string (1..6);
cougse t steing (1..3);
positions_inv : ship;

L]

Figure 6—A schema in the functional data model

The definitions of the new code and the function are stored in
the integration database. A global schema defined on the two
local schemata and the integration schema is shown in Figure
12.

As the discussion above indicates, integration of local sche-
mata which are not disjoint involves two activities: merging of
entity types and merging of their functions. These activities
are discussed in the next section. Two special problems re-
lating to schema integration, the creation of new entity types,

Relation Platform

VesselName char(26)
class char(25)
type charig)
hull charig)
flag chari(2)
category char{4)
PIF char(4)
NOSICID char{8)
IRCS char(8)
Relation Position
PIF char(4)
NOSICID char(8)
DTG char(10)
latitude char (5)
longitude char (6)
bearing char(3)
Course char(3)
speed char(3)

* primary key
Figure 7—A relational model

and the integration of incompatible data, are discussed in
subsequent sections.

Merging Entity Types and Functions

To merge two entity types, say E1 and E2 in Figure 9, into
an entity type, say E in Figure 12, the database designer must
first determine whether the set of entities of type E1 is disjoint
from the set of entities of type E2. If E1 and E2 are disjoint,
then E is simply the union of E1 and E2. If E1 and E2 are not
disjoint, then the condition under which two entities from E1
and E2 respectively are identical must be specified. To specify
the condition under which entities are identical, entities of E1
and E2 must be able to be identified by their attributes.
Therefore, for each entity type to be merged, a function or
combination of functions of the entity type must be a primary
key. Two entities from two entity types being merged can then

type platform is entity

Vessellame tatring (1..26);
class :string (1..25);
type :etring (1..6);
hull tetring (1l..6);
flag tetring (1..2);:
category tetring (1..4);
PIF tetring (1l..4);
HOSICID :string (1..8);
IRCS :string (1..8);
end entity; .
type position is enkity
PIF :string (1..4);
ROSICID tgering (1..8) %

DTG :skring (1..10);

latitude tskring (1..5);

longitude :etring (1..6);

bearing :string (1..3);

course tatring (1..3);

speed :etring (1..3);
end esntity;

Figure B—A schema for the functional data model

Expe El is gnfily type E2 ig entity
shipidl : integer; shipid2 : integer;
clagsl @ codel; class2 1 codel;

end entityy end entiky;

El shipidl classl E2 shipid2 classi
ell 1212 cl ell 3440 d2
el2 1240 c3 ell 3651 d3
ell 2341 c5 e23 4411 dd

Figure 9—Local schemata

Lype code is entity
end entity;

Define 3 new

function
£ tcndel union code2) =» code.

Figure 10—Integration database
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Bample of function £

code 1 2 3 4 5 [ 7 ] 9

Figure 11—Sample of function

type E is entity
shipid : integer;
class : code;
end entity;

Figure 12—Global schema

be specified as identical if and only if they have identical
primary key values.

In Figure 13, entity types E1 and E2 (which are assumed to
overlap), are merged into an entity type E. The syntax used
is a subset of DAPLEX. Notice that “shipidl” and “shipid2”
are assumed to be primary keys of E1 and E2 respectively,
Further, it is assumed that an E1 entity and an E2 entity are
identical if and only if they have the same primary key values.

Creation of a New Entity Type and its Functions

Merging two entity types into a single entity type is a special
case of creating a new entity type. Essentially, a new entity
type may be created which is a combination of the existing
entity types. However, this combination does not create new
objects in the database. Rather, it simply presents many exist-
ing objects of different types as objects of a single type to the
global schema users. Properties of the new global entities are
simply those that previously existed in the local schemata.

However, in some cases, a database designer may want to
design a more sophisticated global schema in which new (vir-
tual) objects derive their properties (attributes) from many
dissimilar existing objects. An example is used to illustrate
this process, and general principles can be drawn from the
example,

type E iz entibty
shipid : integer;
clas; : code;

end entity

for each x in El where pot (shipidlix) imin
shipid2(E2))

loop
Lreate pew Elshipid => shipidlix}
class =>» £ (classlixi});
end loop:
for each x in E2
loocp
greate pew El(shipid = shipidzix),
class => flclass2{x)));

end laop:
Figure 13—The mapping definition of entity type E

Local Schema 13

supplierl partsl
supplier.name supplier.na parte.name | parks.na
Bupplym Ap‘plied-—hy
supplier.no patkd.na

type supplierl i3 entity
snama i Btring(3d0);
[=1al+] t intggar;

supplying : met pf supplyl;
EnLiEy;

Eype partel ls eptity

Fhame i atringll5)y

pno 1 integer;
supplied=by 1 get of supplvl;

P

Lype supplyl Ls entity

sno t inktegery
e ¢ integer;
end snbibys

Local echema Z1

supplyd

I Bno i pRG 1

type supply? is entity
=1 5T] i Integer;
Era : integer;

¥

Figure 14—Two local schemata

Suppose a global schema with two entity types, “supplier”
and “parts,"” is to be designed from two local schemata shown
in Figure 14. The global schema must capture all the informa-
tion contained in both schemata. Notice that in the second
schema, “supplier” and **parts” entities do not exist, but their
existence is implied by the presence of supplier numbers and
part numbers: “sno” and “pno.” To capture this information,
virtual “supplier” and *‘parts” entities corresponding to those
“sno™ and “pno” must be created in the global schema. A
definition of the global schema is shown in Figure 15. Notice
that in the definition primary keys ‘“supplier.no™ and
“parts.no” are used to map the new entities to existing entities
in the first schema and the implied entities in the second
schema,

Data Incompatibility

Several sources of data incompatibility are discussed in this
section. The objective of the discussion is to show how the
proposed architecture allows us to incorporate our present
understanding of incompatible data into Multibase. The de-
tails of solutions to the problem are to be fully investigated
later in the project.

Some sources of data imprecision are:

1. Scale difference. For example, in one database four val-
ues (cold, cool, warm, hot) are used to classify climates
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Lype supplier is gotify
&Zna B J.I'lt-'E'C}E‘IF
supplying : Spk of parts;

P

Lype parte iag
name: stringll5);
no i integer;
engd snkity;
Eor sach » in (snolsupplierl) union ano{supply2il
doap

Ereata supplier (snoc =» xb;
end loop:
Lor each ¥ ip (pnolpartsl) upion pnoi{supply2l)
logg
greate parts (pno => yl;

end loop:

for gach s in supplier logp

supplyingls] :+ (p in parts xhere (for some vyl in supplyl:

snofe) = enolyl) and pnolpl= pnoiyll) of

(for some y2 in supply? :

snofs) = Bnoly2) and pnolpl = proiy2l)lg
end loopy

Figure 15—A global schema

of cities, while in another database the average tem-
peratures in Fahrenheit may be recorded.

2. Level of Abstraction. For example, in one database
“labor cost™ and *‘material cost” may be recorded sepa-
rately, while in another they are combined into ““total
cost.” Another example is recording an employee's
“average salary” instead of his or her “salary history”
for the previous five vears.

3. Inconsistency Among Copies of the Same Information.
Certain information about an entity may appear in sever-
al databases, and the values may be different due to
timing, errors, obsolescence, etc.

There are many other sources of data incompatibility. Data
incompatibility must be resolved if different databases are to
be integrated. The architecture of schema integration devel-
oped previously can be extended to handle the problem.

Let E1 and E2 be two entity types, and f1 and 2 be func-
tions defined on E1 and E2 respectively. If E1 and E2 have
been merged into an entity type E, then fl and f2 can be
merged into the function f defined on E as follows,

f(e) = T1(fl{e)) if e in E1-(E1 intersect E2)
T2(f2(e)) if e in E2-(E1 intersect E2)
gifl(e)f2(e)) if e in (El intersect E2)

The transformations T1 and T2 are typically used to map
the ranges of f1 and f2 into a common range as discussed in the
section “Merging Entity Types and Functions.” On the other
hand, the function g is used to reconcile any inconsistencies
between the values of f1 and f2 over the same entity, Typi-
cally, g will involve accessing data described in the integration
schema,

For example, in Figure 16, the entity types E4 and E5 are
merged into the entity type E6 by using functions IS2 and IS3
of the integration database. In the figure, the data values of
the entities and functions are shown in tabular form. In this
example, T1 and T2 transform the climate of cities from two

different scales, (cold,cool warm, hot) and Fahrenheit, into a
unified scale (temperature range, probability) by combining
E4 with 52 and E5 with IS3. The function g could return all
the (temperature range, probability) pairs from the two data-
bases without any further processing, as is shown in Figure 16.

Alternatively, g could use some statistical technigue to pro-
cess sets of (Temp range, probability) pairs, and return a
simpler but descriptive summary of those pairs. For example,
the function g could return the average value and the standard
deviation of the distribution represented by these pairs; it can
make statistical estimation and return a confidence interval;
or it can do time series analysis and return information about
the spectral function.

The above examples are merely illustrative of potential data
integration problems and their solutions. More complete ap-
proaches to the problem will be fully investigated later in the
project.

4, RUN-TIME QUERY PROCESSING SUBSYSTEM

Overall Architecture

Now we will show how the schema mappings developed
during schema integration are utilized to drive query pro-
cessing over the global schema. As we explained in Section 2,
the run-time subsystem consists of a query translator and a
query processor. Here we will expand these two components
in further detail.

A “Global Database Manager” (GDM) is that part of the
Multibase System which consists of the query translator, and
the query processor. A query over the global schema is nor-
mally sent to the nearest site that has a Global Database
Manager (GDM). There may be one or more GDMs in a
Multibase system. A GDM stores a copy of global schema,

E4 lof LE1)

cityl climate

I52 (of integration databage)

climate range of kemp probcabllity

Boaton  cold cold b -20F 20%
Morfolk cool cald 20 = 40 F 403
Dallas wacm cald a0 - 60 F 28%
Miami haot aald &0 = A0 F 10%
anw sea aald Br = 100F 5%
rrrrrrrrrrrrrrr cool 0 -20F 10%
ool 20 - 40 F 20%
. !
ES (nf LE2} 183 (of integration databasel

Denver E2 F 52 F o0=20F 20%
Chicago MF 52 F 0 - 40 F ELL]
Los Rng 15 F 51 F 40 - B0 F Nl
i e i . ae
ES fof global schemal

city Lemp cange probablility

Dastan q9=20PF 204
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Figure 16—Example of data incompatibility
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local schemata, integration schema, and the mapping defini-
tions among them. It uses this information to parse, translate,
and decompose queries over the global schema into local
queries over local schemata, and coordinates execution of the
local queries. The structure of a GDM and its interface with
local DBMSs is shown in Figure 17,

A query expressed in DAPLEX over the global schema is
first parsed by the parser and a parse tree is generated. Com-
ponents of the parse tree, which are entities and functions of
the global schema, are then replaced by their corresponding
definitions, which are expressed in terms of the local schemata
LSs. The result is a parse tree consisting of entities and func-
tions of the local schemata. The parser is part of the query
translator.

The parse tree is then simplified to eliminate the inefficient
boolean components. For example, the boolean expression
“la=5)or(a<20)" is reduced to “true,” and "(a > 5)and
(a=2)"is reduced to “false.” The query simplifier is also part
of the query translator.

The parse tree is then decomposed by the decomposer into
subtrees. Each subtree represents a local query referencing
only entities and functions of a single local schema.

The “ACCESS PLANNER" transforms the local queries
into “data movement” and “local processing” steps. De-
pending on the memory size and processing power of each
individual site, and the capacity of the communication chan-
nels, the “ACCESS PLANNER" may move data and distrib-
ute the computing load among several sites, or it may move

l

Query Translater

tParser, View = Global Schema
Mapper, Query and Views
Local Schemata
LEi
¥
QUEIY PECCEEEOT
Integretion
Schema
‘.DECDITIPCIEEI’. o
Bocess Planner
Query Optimizer
WDEKEPECE
¥
- .
EXECUTION STRATEGIST by
LDIL LpIz LoI3 i LDOIn
DEMSL DEMEZ DBEMS3 Integraticn
Databage

Figure 17—Fun time query processing subsystem

data to a central site which has large memory and computing
power and do most of the processing there. In doing this
planning, the “ACCESS PLANNER"™ tries to produce steps
which minimize the cost of processing the query. The meaning
of “cost” depends on the individual systems being integrated,
It may mean the amount of data moved between sites, or the
amount of processing time.

The execution of the access plan is coordinated by the
"EXECUTION STRATEGIST.” It sequences the steps of
the access plan and it makes sure that the data needed by a
step are there before the step is initiated.

The “EXECUTION STRATEGIST communicates with
local DBMSs through the Local Database Interface (LDI),
The LDIs receive “data move™ and “local processing” steps
from the “EXECUTION STRATEGIST,” translate these
steps into programs in the local query language or Data Ma-
nipulation Language (DML), or call local routines to process
these steps, and translate the results of these steps into the
format expected by the “EXECUTION STRATEGIST.”
The LD may reside in a GDM if the local site does not have
enough memory or cpu power; otherwise it resides with the
individual local DBEMS at the local site,

The query processor to be described in this section is orient-
ed towards the initial breadboard system. It is designed to
handle restricted versions of the user interface language and
view mapping language with reasonable efficiency. Subse-
quent research is needed to extend the query processor to
efficiently handle the unrestricted languages.

Within the “Query Processor,” the database is modelled as
a collection of entity types and links. A link L from entity type
R to entity type S is a function from entities of S to entities of
R; 5 is called the owner entity type and R is called the member
entity type relative to L. We assume that if L links R to §, then
L, R, and § are all stored at the same site. We also assume that
there is a database schema describing the entity types and
links of the database.

We will sketch the Multibase query processing strategy in
three steps. First, we define the set of queries that can be
posed. Second, we define the set of basic operations that
Multibase is capable of executing. Third, we describe how to
translate a query into a sequence of basic operations that solve
the query, Finally, we describe how to translate a local query
posed over a CODASYL local host schema into a program in
a low level Data Manipulation Language.

Chueries

A query consists of a target list and a qualification. A target
list consists of a set of function terms of the form A(R) where
R is an entity type and A is a non-link function of R. A
qualification is a conjunction of selection clauses, join clauses,
and link clauses. A selection clause is a formula of the form
(A(R) op k) where A(R) is a function term, op is one of
[=.,=,=<.>,=,+}and k is a constant. A join clause is a
formula of the form (A(R) = B(5)) where A(R) and B(5) are
function terms. A fink clawse is a formula of the form
(L{R)=5) where L is a link from R to 5.

Let r and s be entities in R and § respectively. We say that
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r satisfies the selection clause (A(R) op k) if the A-value of r
is op-related to k (i.e., (A(r) op k}). We say that r and s sarisfy
the join clause (A(R)= B(8)) if the A-value of r equals the
B-value of s (i.e., A(r) = B(s)). And we say that r and s satisfy
the link clause L{R) = § if L connects r and s (i.e., L{r) = 5).

Let R1,..., Rn be the entity types referenced by qual-
ification q, and let rl,...,rn be entities in R1,... Rn re-
spectively. We say that rl, ... o satisfy the qualificarion q if
tl,...,rn satisfy all of the clauses of q.

Let Q be a query consisting of target list T = ([Ajl(Ril),
... Ajm(Rim)) and qualification q. Let R1,... ,Rn be the
entity types refererced in T and g. The answer to Q is the set
of all tuples of the form {(Ajl(ril), ... ,Ajm(rim))) such that
rl,...mareinR1,... Rn(respectivelv) andrl,. .. rnsatis-
fy q. Given a database R1,...,Rn and a query O, our goal is
to compute the answer to Q efficiently.

The subset of DAPLEX that we have just described makes
the following simplifications:

1. Set expressions in range predicates and qualifications
have been **flattened out,” and quantifiers eliminated.
This allows us to utilize existing view algorithms for re-
lational databases. Further research will be devoted to
handling the novel aspects of view processing in the
DAPLEX functional model.

2. The type-subtype hierarchy is not explicitly handled.
This hierarchy will be useful in the schema integration
step. However, the mechanics of interpreting queries
against the hierarchy require further research.

A query graph QG(N.E) is an undirected labelled graph
that represents a query O. The nodes, N, of QG are the entity
types referenced in Q. Each node is labelled by the entity type
name of the node, the non-link functions of the entity type
that appear in the target list, and the selection clauses of (I's
qualification that reference the entity type. The edge set E of
0G contains one edge (R,S) for each join clause or link clause
that references R and 5. Each edge is labelled by its corre-
sponding clause(s).

A query is called natural if (a) join clauses are of the form
(A(R) = A(S)), that is, the functions referenced in both terms
of a join clause have the same name; and (b) if A is a non-link
function of two entity types R and 5, then A(R) and A(S) are
“connected” by a sequence of join clauses. There is a simple
and efficient algorithm that, given a database description and
a query O, renames the functions of the entity types where
necessary to produce an equivalent natural query Q'; Q and
Q' are equivalent in the sense that they produce the same
answer for any database state {(up to the renaming of fields).
We will therefore assume, without the loss of generality, that
our queries are natural, Given that we deal only with natural
queries, the edge labels corresponding to join clauses are
unnecessary. Also target lists need only contain function
names, instead of function terms.

Given a join clause (A({R) = A(S)) and a selection clause
{A(R) op k), we can deduce that {S{A) op k). We assume that
the qualification of each query is augmented by all clauses that
can be deduced in this way. A simple and efficient transitive
closure algorithm is sufficient for performing such deductions.

Basic operations

There are three types of sites in the breadboard Multibase:
File, CODASYL, and GDM. Each type of site is capable of
executing a different set of basic operations. This section de-
scribes these basic operations,

1. File Select. If record type R is stored at a File site §, then
the only operation that can be applied to R at § is a
selection of the form

R[(Al=kl) and (A2 =k2) and...and {An = kn)].

The result of the selection is a record type consisting of
the set of all records r in R such that r[Ai]=ki for
i=1,...,n; this result is always transmitted to the
GDM.

2. File Semijoin. In principle, File select can be generalized
into File semijoin by performing selections iteratively,
Let R be a File file and 5 a GDM file, and suppose
Al, ... An are fields of R and 5. Then the semijoin of
RbySonAl, ..., An, denoted R[Al, ... An]S, equals

{rin R | (there exist s in §)
(r.Al=s5Al...r.An=5An)}

This can be computed by the following program.

Result: =0
for each sin §
loap
kl:=s.Al,...; kn: =5 An:
Result: = Result U R[(Al=kl)...
{An = kn)];
end loop;

In practice, this operation may place an unacceptable
load on the File system and hence may not be usable,

3. CODASYL tree queries. The basic operation that can be
performed at a CODASYL site § is to solve a natural
tree query (defined below), returning the result to the
GDM. A natural tree query Q at site S has two proper-
ties: (1) All record types referenced in Q must be stored
at 5. (2) Let Q' be Q minus its join clauses (i.e., all
clauses of Q° are selections or links), and let QG' be the
query graph of Q'; then QG’ must be a tree.

To solve a tree query Q using CODASYL DML, one
essentially expands the cartesian product of the record
types referenced by Q and evaluates the qualification on
each element of the cartesian product, We describe how
this cartesian product can be systematically generated in
the section “Processing CODASYL Tree Queries.”

4. CODASYL Tree Semijoins. The preceding operation
can be generalized into a semijoin-like operation; Let Q
be a CODASYL tree query and 5 a GDM record type,
and suppose Al,...,An are fields of S and fields of
record types of Q. Let Q' have the same qualification as
Q, and the target list augmented by Al,... ,An. Finally,
let R’ be the result of Q. The semijoin of Q by S on
Al, ... An, denoted Q < Al, ... ,An], equals

{r' in R'|(there exist 5 in §)
(r'.A2=5A2)...(r"An=sAn)}.



408 Mational Computer Conference, 1981

This can be computed as follows. Suppose Al,... An
are fields of R1,... Rn respectively where R1,... ,Rn
are record types of Q. (R1, .. . ,Rn need not be distinct.)
Augment the qualification of Q' by adding the clauses
{R1.A1=kl)...(Rn.An=kn). And execute the fol-
lowing program.

Result: = 0

for each s in § loop
kl:=s.Al;...: kn: =s5.An;
Result: = Result U QF;
end loop;

5. GDM Queries. The GDM can process any natural query
O provided (1) all entity types referenced in Q are stored
at the GDM, and (2) Q contains no link clauses. Suppose
() references entity types R1, ... ,Rn. Q is processed by
constructing a request to the local DBMS (the Datacom-
puter for the initial breadboard system) of the form:

foreach rl in R1 where (selection clauses on R1})
for each r2 in R2 where (selection clauses on R2)
and (join clauses on R1 and R2)

for each tnin Rn where (selection clauses onRn)
and (join clauses on R1 and Rn)
and (join clauses on R2 and Rn)

and (join clauses on Rn-1 and Rn).
print (target list).

It is important that the *for™ statements be in a “reason-
able” order for performance reasons. Optimization
techniques developed by Wong for the SDD-1 DM? are
directly applicable.

Query Decompaosition

To solve a query Q, we must decompose it into a sequence
of basic operations, Our basic strategy is to find subqueries of
0 that can be entirely solved at File and CODASYL sites,
move the results of these subgqueries to the GDM, and solve
the remainder of the query at the GDM.

To follow this strategy, we must isolate File and CODASYL
subqueries of Q. File subqueries are easy to find. We simply
find entity types in O that are stored at File sites. For each
such entity type R, we produce a subgquery consisting of the
selection clauses on R.

Let QG be the guery graph of Q. To find CODASYL
subgueries, we begin by deleting from QG all entity types not
stored at a CODASYL site and all join clauses. Each con-
nected component of the resulting graph includes entity types
and links that are stored at the same site, because no link can
connect two entity types stored at different sites (c.f., the
section on “Overall Architecture™). If a connected com-
ponent is a tree, then it corresponds to a tree query and can
be salved by the CODASYL site. If it has a cycle, then it must

be further decomposed into two or more tree queries. (In the
breadboard version of Multibase, we will only handle queries
whose CODASYL subqueries are tree queries; if some CO-
DASYL subquery is cyclic, the query cannot be processed. )

Having extracted the File and CODASYL subqueries, we
must now choose an order for these subgueries to be exe-
cuted. As a first-cut solution, we propose to solve all File and
CODASYL subqueries before processing the results of any of
these subqueries at the GDM. This strategy will be an es-
pecially poor performer if a File or CODASYL subquery has
no selection clauses. For such cases, we recommend use of
File and CODASYL semijoin operations, so that the results
of some subqueries can be used to reduce the cost of other
subqueries. However, this tactic brings us into the realm of
new guery optimization algorithms and will require further
research.

Processing CODASYL Tree Queries

Let Q be a CODASYL tree query and QG its tree. The
following algorithm compiles Q into a program that solves O,
The program contains statements of the form:

1. for r in set(s) loop...end loop ; where S owns R via
set ;

2. r: = setinv(s) ; where R owns 5 via set. Note that set-inv
is the inverse function of set and is always a function.

Algorithm

1. Do a pre-order traversal of QG. The result is a list of the
nodes of QG. Call this list P,
2. Let R and S be nodes of QG; with R the parent of S.

Cases
R is the root of QG; replace “R"” by “for rin R
loop™ in P.
R owns S: replace “S” by “for s in set(r)” in P.
5 owns R: replace "5" by “s: = set inv(r)” in P.
3. Push loop independent assignments up as high as possi-
ble.
4. Add an "output (target list)"” statement, add selections,
and joins as high as possible, tack on enough ends to
balance the fors.

As an example let QG be the query graph of Figure 18.

1. Preorder traversal: R,5,T,U,V,
2. forrin R loop
for s in L1ir) loop
t: = L2 inv(r}
for win L3(t) loop
v: = L4 inv(t)
3. Push up T and V; add an output statement; add ends to
balance the fors.
for rin R loop
t: =12 inv(r);
v: = L4 inv(r)
for s in L1(1) loap
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L1 L2

o
Figure 18—A query graph

Jor uwin L3(1) loop
outpur (target list);
end loop;
end loop;
end loop;

3. SUMMARY

This report describes the architecture of the Multibase sys-
tem. Details of the components of the architecture to be

implemented in the initial breadboard version are also de-
scribed. Although additional research is required to fill in the
details of optimization and incompatible data handling, the
architecture already contains several innovative ideas in inte-
grating distributed heterogeneous databases. These include
the following:

1. the idea of using an integration database to resolve data
incompatibility;

2. the idea of using a mapping language to uniformly define
the global schema in terms of the local schemata and the
integration schema; and

3. the idea of using query modification and query graph
decomposition to transform a global query into local
queries and queries over the integration database.
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