Siechasics, 1981, Vol. 5, pp. 311-321
D059 1 81 05040311 506. 50,0

i Gordon and Breach Science Publishers [ne., 1581
Primed in Greal Briian

Explicit Solutions to a Class of
Nonlinear Filtering Problems

EUGENE WONG

Department of Electrical Engineering and Computer Sciences, and the
Electronics Research Laboratory, University of Califgrnia, Berkeley, California
94720, U.SA

(Accepted for publication November 25, 1980)

In this paper we obtain the solution of a class of nonlinear filtering problems in the form of
2 series expansion in terms of multiple Wiener integrals. The solution is explicit in the sense
that the kernels of the integralz in the expansion are explicitly determined.
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1. INTRODUCTION
Let Z, be a stochastic process and let X, be a process of the form

X,=[Z ds+W, 120
[

where W, is a standard Wiener process independent of Z,. The general
filtering problem is to find effective ways of computing the conditional
expectation

E[f(Z,)| X, 0=521]

for some function f.

Except when Z is of finite state, the Gaussian case and some recently
discovered examples [4] comprise the entire collection of cases where
solutions, in some explicitly computable form, to the nonlinear filtering
problem are known. The object of this paper is to add a small but
possibly useful class of examples to this collection.

Since Kalman's solution to the linear filtering problem became the
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dominant one, there has been a tendency to view filters only in the |
differential equation form. An alternative and much older interpretation of -
“filters™ is that ol the representation of the estimator as a functional of the
observed process, e.g., as a convolution. Tt is in the latter sense that results
of this paper are to be interpreted. While the representation that we shall
derive is not readily implemented as a differential equation, its form is |
such that the filter can be implemented, at least in principle, by a lattice of
linear filters and multipliers. Whether such an arranpgement can be
reduced to something practical remains to be determined.

2. A WIENER SERIES REPRESENTATION

Let (£, 5, 2") be a probahility space. Let {Z, W, 0=t=T} be a pair of
independent processes defined on (€3, 5, 2%) such that W is a standard
Wiener process, and Z is a strong Markov process that is almost surely
sample square-integrable. Consider an observation process

X,=[Z,ds+W, 0=i=T, (2.1)
0

and denote #F,,=a(X,,s=t). Tt is well known (see e.g. [6]) that if we
define a probability measure #, by

d@ﬁ T 1 T 2
— =expq — [ Z,dW,—% [ Z2ds (2.2)
d3 ] ]

then (£, X') has the same distribution under 2, as (Z, W) under 2,
For a bounded f define the unnormalized estimator

d
nf=E, {f{z,} ﬁ
i}

:F} (23)

To normalize, one would only need to write

B/ (2)| 7.0 =" 4
where
s
nl=L,=F, {;E’To F o (2.3)

is simply the likelihood ratio.



NONLINEAR FILTERING PROBLEMS 313

MNow, from (2.2) we have

| d
| = Z.dx,—3[2Hd 26
i d?g ﬁK'P {i 5 5 2_][ 5 ES} { }

and the exponential formula for multiple Wiener integrals yields [3]

dP ) e
e = Z X" 2.7
@, 50X &
where Z,= X°=1 and for n>1
Z,oX"= ] Z,Z,...2,X(dty)...X(de,) (2.8)

ﬂi:r_l-r.___-::u-:.]'

are desymmeterized multiple Wiener integrals. It now follows that
rf= 3 j EU{ZHZH,,.Z,rf(ZJ}]X[dtl}...X{dr"} (2.9}

The process Z heing identically distributed under cither measures, E, in
{2.9) can also be replaced by E.

Now, let Z be a diffusion process, with the density of Z, being #(z,1).
Introduce an unnormalized conditional density V(z, 1) of Z, given the
pbservation by the relationship [6]

nf= | Vi of(2)dz (2.10)

Then (2.9) reduces to [cf, 5]

Viz, )=plz,t) i, m,(z, -, t)o X" (2.11)
with
m (2, ty, by ..ot t)=E(Z, 2, ... 2, |Z,=2) [2.12)
and
mzs0eX'=  § o my(n b 0K (). Xd,)
iy <

(2.13)
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From the Markov property of Z, the functions m, satisly the recurrence
relationships

ﬂn"[Z, ltIc!' m” .E.I:Z m]l—ll:.zl:"'ri""! II}|ZI_2] {.2'14:|

The main result of this paper is an explicit evaluation of these functions
for a class of stationary Z.

3. PROCESSES OF THE PEARSON CLASS

We shall restrict our attention to & class of stationary dilfusion processes
Z, that have a transition density of the forms

p(z,t| 20, to)=p(2) }, e W™Dy (2)dy(20) (3.1)
k=10

where p(z) is the stationary density and ¢ are orthonormal polynomials
of degree k. Densities of the form (3.1) were introduced by Barrett and
Lampard [1]. In [7] diffusion processes with such transition densities
were exhaustively studied subject to the additional condition that p(z) is
of the Pearson type [2]. It was found that such processes fall into three
categories, corresponding to the classical Hermite, Laguerre and Jacobi
polynomials respectively. In terms of the Fokker Planck equation for the
transition density p

L - L e =2 32)
these cases can be summarized as [ollows:
o*(2)=2, m(z)= —z (3.3a)
¢lz) are Hermite polynomials
=0, 62(z) =2z, m(z)=(x+1)—z, z=0 (3.3b)
i lz) are Leguerre polynomials

lzl<1, e?(2)=201-2*), m(z)=(a—B)—(a+f+2)z eafi>—1
(3.3¢)

@ (z) are Jacobi polynomials.
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i

Observe that z¢,(z) is a polynomial of degree k+ 1. Furthermore, for
jany j=k—2 z¢p;(z) 15 a polynomial of degrees k—1 or less and hence is

s orthonormal to ¢, ie.,
:

| [P(2)20u(2)o,(2)dz=0  jSk—2.
|

It follows that z¢h,(z) is at most a linear combination of ¢, and ¢,.,. We
!shall write

zh(z)=ay  Prr 1 (2)H Bdlz) + o by 1 (2) (3.4)

——e. - A W RS

or the general 3-term recurrence relationship, and use this to evaluate the
conditional moments m,(z, -) explicitly.
We note that for any of these cases we have

i lo=0 and ¢olz)=1
|
|

4. AN EXPLICIT SOLUTION

We begin with the following observation:

THEOREM 4.1 If Z is a stationary Markov process with a transition
function of the form (3.1). Then, m,(z, -} are of the form
|
My(2, 85 st )= Y, Gy (tz =1y, t3—1s.... 0 —1L,),(z) (4.1)
p=0
where =, satisly the recurrence relationship

i 'Inp['rZ LSTERED ;._..["}=E_JP“_"'](.|P5¢"_ Lp—1 [IZ I TREPHY Mt SEY

+bp|:€n_|L,{f1"f|---ntn'_1u—1}

+eply g etz =ty ty— L JnZpz0  (42)

i Proof We note from (3.1) that
|
|
i E[$(Z,)|Z,=z]=e 2"y (2), 12 (43)
!
i
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Hence, from (3.4) we have
my(z,1,,1)=E[Z, |Z,= z]1=E[a,,(Z, )+ botbo(Z,, )| Z,= 2]
=a, e MM g, (z)4 bge™ W) gy (z)
so that (4.1) holds for n=1, and we have ag=hye "ot ni=p

oy =y e M0,
Suppose that (4.1) holds for k=n— 1. Then, from (2.14) we have

S T T g, plla—tps - b — by JELZ, ¢ (Z,)
p=0

L —7]

n—1

- z 'Ir;—],pﬂg “lhyy s eiilg =gy ]{ar'_ l¢p+1[z]e-lp.m—:.;
p=0
+hp¢p{2]€_1ﬂ_m+{'p— 1¢"p~ ((2) e dr-tli—uly

(4.4)

which is again of the form (4.1).
Il we rearrange terms in (4.3), we get (4.2). [

In (4.2) let's adopt the convention that e, ,=0 whenever p>n or n<0.

Then the equation holds for any n and p. Observe that when n=p, we
have

o, =e Wiy

u=1,n—1

which can be solved immediately to yield
anntTia T2 tu} - n al. e "
k=]

and that in turn can be used to solve for a,,_,, etc. It is convenient to
work with Laplace transforms and make a change in notation as follows:

(=l (=]
&‘;]{*gllsl!“-rsp‘ v.}: .F j E_{"“‘ e bt ]
[i] [

TR | RO SRS SRR e L
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Then, (4.2) becomes

&{;'{SI! 321---1-5,-{-1-]: Iaﬁﬂttl{sl!‘“'!sp‘r?—ll

(5p+.+4,)
+ bp&';;_ ”[‘5|1511 iy lSp+ =1 }
+:’.‘F&P+1 {.Sil S2,- '!3p+r—1]} [4'6]

which can be solved immediately to yield

I'UF =1 [4_?}

P
n {314"1*:]’

verifying the result that we obtained earlier for «,,
The general solution for &)’ is given as follows.

THEOREM 4.2 Let u,, b\ and c}"' be defined as follows:
(kz1,v21)

.1‘.9_) 48
L(SJ G

b . (s +4; )
\.:,= . k j+'\r {4_g
. (5E+m+-‘1t)fl:l Sjav=114y )

=0 v=1 (4.10)
= s 2 ﬁ( ety ) v22.
(Sevv—1F A1 Moks o+ 4) jot \Speu—2+4; n

For vz1, p=0 and 1=k=p+1, define a v-dimensional row vector a as

Jollows:
(k] c{u-— Ly v}
5,0 5, - 5,0
al)=| b, u, [ ), u, | ety | =
[ -] U, Uy

by = (5", ¢[,0...0), 2=k=p

ddey=(0,6%,,0...0)
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Finally, define v+ 1 by v matrices

a
A‘”’:l: o ] (4.12)
pk
Bl

where I, is the v x v identity matrix.
Then, &' are given as follows:

vk
'IP

_l ——e

iy i1[5,+.,+3ﬂ

P

TS R 1 k+1
[kgﬂ { Zi E - . E Ahb :rﬂ'l EL A‘mt*l:llﬂuq l.-"'l}] {4.13]
3 My b T B

when 1, is the k-dimensional unit column vector.

Proof We begin by iterating (4.6) in p and get

»
A= . "‘[""1‘+ —
> j:llt.j;fv-l-'l] IE I[

Jj=1 ['ij\'+"1]]

h C
— b= g d 4.14
x(sm+h+ﬂm)u' +(sm+r+'1 )a--'-l 5 { }
for p=1 and
i by A Cp "
(v [r—1) (v —a} 4.15
R D T ardg) A

MNow, denote for p=1

L z ""J {vh .
i _[,—1 L (4.15)

B Ao U ol s
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Then, we have

L 1
Tyl ¥ g
m=1 a;

i=1 (554, + 45)

e+ |
Em a; H—Ib}
Tl PR AT 40
(Sm+,‘+dm)jl__[1 {sj+__;+)‘j] +1

which simplifies to yield

ptl

P =a 4+ Z Y L R Y

m=1 m=1

where b''! and ¢!’ are as defined in (4.9) and (4.10).
Equation (4.15) can be iterated to yield

&’B’ o bl} +'i2 Cpily br_l_z (31+I + jlil )-}.1:"
. - siFA
ﬂi (s;,+4g) ]1’{5"1+4n]. Sket H Ay
i= i=

which is of the form

\ﬂﬂ =, + Z 5} 4 zvl'.'lk 2'(—_'_) '.I'[Lh.-
My o4 q
With the use of (4.19), we can now rewrite (4.16) in the form of

: 1‘; R

+u.l

revd ]

oy (]
¥e Vin

318

b"l " 4 fe—1)
{( S+ A, )J]:[, (5;4 =1 +3~;}I Y

(4.16)

4.17)

(4.18)

(4.19)

(4.20)
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where Aj;jf, are as defined by (4.12) and (4.11). Equation (4.20) can now be
iterated in v. With 3" =1 we get

Vb
i

Z - |: Pil MIZ mi:ﬂ

Ll k=0 m—lr.u'_,I_l "'"n|.=|'

QAR A0, AT o]

whence the desired result {4.13) follows immediately using (4.15). [

5. THE SYMMETRIC CASE

There are some cases for which the polynomials ¢,(z) contain only even
or odd terms according as n is even or odd respectively. This is the
situation, for example, for Gegenbauer polynomials {which include both
Chebyshev and Legendre polynomials), and most importantly for Hermite
polynomials which correspond to Z, being a Gaussian process. We shall
refer to these cases collectively as the symmetric case.

For the symmetric case the coefficient b, in the recurrence relationship
(3.4) is necessarily zero for every k It follows from (4.9) that b are
identically zero, and the result of Theorem 4.2 simplifies a great deal as is
indicated as lollows:

THEOREM 5.1 For the symmetric case we have

(2v+ 1} _

oy =0
I pHl w1l mz+ 1
E(:f'”: ﬂ {z Z E cif,ubcauz,v__lh ":'fmz:} (5.1)
JFL{EZP-'-J-'—A}] m=1lm, _, =1 my, =1
Froof Since b =0, (4.17) becomes

ptl

}?“] = Z & 1ad h}'m s =k &II'}I‘F.I {5-2"

and (4.18) now takes the form
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With the use of (5.2) for &}, (5.2) can be rewritlen as

rtl

...l;l-b Z ctl-]..ll.h-"z:l {54']

where ¢t is given by (4.10). Since $"'=1 and y!''=0, we have y/"'=0 for
all v odd, and

ptrl myt1l mz+l

=2 B T el el (5.5)

mo=lm _ =lm =1

whenece (5.1) follows. [

It is interesting to note that in the Gaussian case (cf. 33a) the terms c}”

are given by
k-2
civ!= K I' 5 S:+r+J (5.6)
(So—r + 1)(8,+2) iy \Sje +i+2)
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