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1. Introduction

There are numerous situations in which a database
cannot provide a precise and unambiguous answer to some
of the queries that we wish to pose. The potential
sources for the difficulty vary. These include examples
such as measurement and recording errors, missing data,
incompatible scaling, obsolescence, and data aggre-
tion of one kind or another. Different approaches to
this problem have been tried. These range from 3 con-
sistent way of handling & place-holder "value not
known" to Lipski's recent work [1] on dealing with the
truth value "possible” in an extended propositional
calcutus. Although the focus is different, the problem
also arises in the artificial intelligence literature

(see [2]).

In many of the situations where a precise answer
cannot be obtained from the database, much more prior
information than "walue unknown" or "predicate is
possibly true® iz available. The goal of this paper
i& to propose a framework wherein such prior informa-
tion can be effectively exploited.

The organization of this paper is as follows:
First, we shall enumerate & number of commonly occur-
ring sources of imprecision, and propose a general
model that encompasses all of these. Using this model,
we shall restate queries on an imprecise database as
problems of statistical inference. We then propose
a definition for "answers" to a gquery, and consider
the merits of these definitions relative to processing
ease and consistency under query transformations. Pro-
blems of acquisition and storage of a priori statisti-
cal information are of areat practical importance, but
their consideration will be deferred until a follow-up
study.

2. Sources of Impre:iﬁiuq

We begin with an enumeration of some common
sources of imprecision.

a. Scale Differences. Here, we are referring to
scale differences that cause an ambiguity and not
merely a change in units. For example, changing a
temperature from °F to " C isa change in units, but
changing temperature in “F to one of four values (cold,
cool, warm, hot) is a scale change that creates impre-
cision.

b. Missing Attributes.. One or more attributes
may be absent altogether in a database.

¢. Combined Attributes. Two or more attributes
may get combined in an irreversible way. For example,
"cost of labor™ and "cost of parts" may get combined
into "total cost.®

d. Missing Data. The value of a given attribute
may be missing for some entities but not others. This
can be considered a special case of missing attribute
by partitioning the set of entities into one consisting
of those for which the attribute value is available and
one that is5 not.

8. Clascification. Entities may get grouped into
classes, and ndividual attribute values are replaced
by class characteristics. For example, instead of
recording maximum crusing speed for individual ships,
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one might record the maximum speed for each of the
classes: destroyers, aircraft carriers, etc.

f. Obsolescence, The data that are available may
be out of date, e.g., last year's salary, ship position
of yesterday, etc

g. Measurement Error. Random errors are often
introduced in measurement and recording.

h. Data Aoggregation. Sometimes, the recorded
class characteristics are data dependent, for example,
the total salary for sach department. We shall call
such class characteristics, aggregated data.

3. A Model for Queires on Imprecise Databases

Consider an idealized world represented by a
mapping:

where E i5 a set of entities and ¥V s a space of values.
We assume that all gueries are expressible in terms of
the schema of the idealized world. The actual data-
base, on the other hand, is an instantiation of a reci-
world schema represented by a mapping

where U is the space of observed values. In other
words, queries concern f but only {hi{e), & € E} is
known .

Consider an elementary retrieval query of the
form:

Find 7' (A) = {e € E:f(e) € A}

fn{ a specified set A in V. The problem of finding
f='(A) can be stated as a problem of hypothesis test-
ing. For each e in E we wish to decide between
H= f(o) €A

and

Hy = fle) € A

and the decision is to be based on our prior knowledge
and the observed database {h{e), & € E}. In many cases
it s reasonable to assume that for a given &, the
decision concerning fle) depends on only hie) and not
{h{e'}, &' # el. The hypothesis testing problem then
;? ?ne oftesting H against Hy using the observation

e).

Suppose that we restrict ourselves to mon-random-
fzed decisfons. That is, if h{a1} = hies) the deci-
sion for e, and e,-is always the same. ?hen, any
decision rL1§ corfesponds to a partition of the space
U into sets A and U-A, and

we decide for 4 iFf hie) €A

The set f|fj}fn]|| = {E:we decide H is true) is expres-
sible as ~h~ (A) and we have the following:
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Proposition 3.1 (Separation Principle)

For any nun{andumfzed decision rule, the approxi-
mate answer ||f71(&}|] to a to a query F-1({A) is of
the form .

u i
e @1 = 07 ()
where & depends only on A and the prior distributions.

The separation principle, though 1ittle more than
observation on our model, has major significances in
terms of processing. First, a guery on data that we
do not have has been transformed into one on data that
we do have. Hence, the burden of coping with impreci-
sion is confined to one of query transformation.
Second, to perform the transformations regquires only
prior knowledge and not data. The following proces-
sing arrangement is suggested by the separation
principle:

statistical
prepToEEsSOrT
— database ——

prior information

transformed
query answar

The next question is how do we find good decision
rules? The answer depends on the specific prior infor-
mation that we possess. Consider two cases:

Case 1. hie) is a random variable with a distri-
bution that depends on the value of f(e). We assume
that the distribution

plufv} = prob(h{e) = u|fle) = v)

is known a priori and does not depend on e. In this
case the problem is as follows:

For each e the distribution of h{e) belongs to
one of two families:

{plulv}, v € A} (H)
{plulv), v & A} [Hn}'

We have to decide for each value u which is the case.
The situation here 15 one of testing one composite
hypothesis against a composite alternative. A decision
rule often used in such a situation is the generalized
likelihood ratio test [3].

Define the 1ikelihood ratio by

L) - BRI

u [~ . A

g

Intuitively, if L{u,A) >> 7 then H is more likely, and
vice versa. The generalized likelihood ratio test is
a one-parameter family of decizion rules of the form:

decide H is true iff L{h(e),A} > o

The parameter a 15 adjusted according to how one feels
about the two types of errors:

miss(decide Hy when H 1s true)
false alarmidecide H when Hy is true)

Increasing o will reduce false alarm at the expense
of having more misses.

We shall denote the approximate answer by
“1 .
L7 (A) |1, = {a:Lih(e,A) 2 o}

Case 2. We assume that f{e) 95 a random variable
and the distribution

piv|u) = prob(fle) = v|h{e) =u)

is independent of e anﬁ known a priori. In this case
a solution to the hypothesis testing problem is the
"minfmum cost Bayes decision rule" given as follows:

Proposition 3.2

Suppose that the cost for false alarm is o, and
for miss 1-a. Then, the average cost is minimized by
the decision rule:

decide H 1ff pl{Alhle)) =z o
where

plAlu) = [ plvju)
VvEA

Proof. For a given h{e) one can decide in one of
two ways. If we decide for H, the cost is that of
false alarm a and the probability of having a false
alarm is 1-p(Alh{e}). Similarly, the weighted cost if
we decide for Hy is (1-o)p(A[R{e)). Hence, the deci-
sfon rule that minimizes average cost is to choose the
smaller of the two

a[1-p(A[h(e}}], (1-a)p(A[n(e))

or

decide H if p(Alhle)) > o
decide Hy otherwise Q.E.D.
The family of sets

||F'I{P-J”u = {a: pfAlhI:EH o al

decreases with increasi? n, and represents a family
of approximations to %A}. The parameter o is
adjusted according to the relative cost that is
assigned to "false alarm." Observe that in terms of
Lipski's upper and lower bounds, we have

[ IPENTITE

=11 1,

In most cases where probabilities are available, these
limiting bounds are not useful approximations.

Since the decision rule given by Proposition 3.2
is nonrandomized, the separation principle applies.
If we write

iu = {u€U:plAju 2 a}}
then

-1 =
N, = 0@

and the original guery has been modified into a query
on the actual database.

Summarizing, for a query of the form
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Find {e: f(e) € A}
we propose the following as anpmximaﬁa ANSWETS
case 1: [1£71 (A},
case 2: || (A1,

{e: L{h(e),A) > a}
{e: p(A[h{e)} 2 a}

In each of these cases the separation principle
applies and we can write

7R = 07 ()
with

{u = L{u,A)zal}
ar

{u = p(A|u)zal

4. An Example

Lot E be a collection of ships, each identified by
name, and let the idealized database consist of:

_f{E} = {type(e),speed(e),current location{e))
The space V is defined by
Viype,speed = [(earrier,[20,30] ) s (eub,[25,40])}

Vipcation = 14tlantic.Pacifis, Indian Med}

The actual database consists of:
hie) = (type(e), last week's Jocation(e))

Suppose that our prior knowledge can be summarized by
t he probabilities

plcurrent Toc|LWL)  and  plspeed|type)
as indicated below
M .1 0 2 B
I 0|5 .B |.1
current
J |8 0 0
Al.Bl.0B] O |0
A P I M
LWL
Figure 4.1. plcurrent|LWL)
a in knots carrier sub
20 0 0
25 .4 0
30 | 2
35 1 "]
40 1 1
Figure 4.2. plspeed < pltype)
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Now consider the Fo'llnw"lng query:

"Find a1l ships in Mediterranean with speed > 30 knots.”
The probability

plspeed > 30, loc = Med|type,LWL)

can be easily computed, and we find

p=0 forall LKL
type = carrier LWL} AP I (M
type = sub p |.08| 0|.16|.64

Therefore, Eu is given by

Ao=0 x> .64
(type=sub,LWL=Med).16 < a < .64
(type=sub LWL € {I,H=d}).0B < a < .16
(type=eub, Wl # Paoifia).0 < < .08

This has been determined without reference to. the
actual database. Q.E.D.
Remarks

{a) If we replace {h(e),e € E} by {f(e),ple)}
whe re g{e} = y(h(e)) and p{e) = n(h{e)), then for

a1
£ (ogh ]|, = fe: Fle) = vg and ple) 2 a}

so that we would no Tonger need the original data h{),
or theprior distributions.

(b} The restriction o » 1/2 is intuitively reascn-
able, since we would not expect preprocessing to work
unless the data were reasonably "clean.®

5. Combined Queries

Thus far, we have only dealt with atomic queries.
The guestion is: what happens when gueries are com-
bined, e.q., under Boolean operations? Can the
approximate answer to the combined query be expressed
in terms of the approximate answers of its components?

This is the same guestion that was posed in [1] for
the upper and lower bounds that he introduced. Our
treatment of thiz tepic is not yet complete. Here, we

present some resulis on the two most frequently occcur-
ring operations: confunction and exietential quambi-
Fleation. These results are limited to Case 2 where
the a posteriori distribution of f{e)} given h{e) is
known .

Consider a query of the form: Find {e: f(e)
€ A MBl, Since

Fliane) = £1(a) nelie)

we can normally process the true components in the con=
Junction one at a time. This possibility is exten-
sively exploited in query processing alsorithms, espe-
cially where data are dispersed [4]. The guestion
that we shall consider here is whether a conjunctive
query remains conjunctive when imprecision is involved.

The specific question is:



e, 2 e @, 0 11+ e

or equivalently
2%
(Ang),2A ng

The answer is an immediate no! This may appear to
severely 1imit our ability to decompose conjunctive
queries when imprecision is involved. However, the
following theorem shows that this need not be the
case.

Thearem 5.1. The approximations ||F'1{A}|| de-
fined in Section 3 for Case 2 satisfy the 'Fn'llawgl‘ng
relationships under intersection:

A OB | gy 2 1 A, N 11 B,
2 1171 Y B () (5.1)
e, n e e, 2 1w n e,
DU AN e 0 1B
Lo .%E (5.2)
If for every e, prob{f(e) € B) = 0 or 1 then
Hewas |, = [ m |, n 1 @], (5.3)

If A and B are conditionally independent given the
observation, 1.e., p(A NBlu) = p{A[u}p{BTu} for all
u € U, then

Hetm n e @l el annll,, (5.0

Proaf: We b-eg'in.with the elementary equality
prob(f(e) € A UB) = prob(f(e) € A)

+ prob(f(e) € B)

- prob{f{e) € A N B)
A b L
fr'qm above by 1, we have
1 = prob(f{e) € A) + prob(f{e) € B)

- prob(f{e) € & 1 B)
or
prob{f{e) € A U B) > prob{f(e) € A}

+ prob(fle) € B) - 1
It follows that
e |1 (A1, N I B,

<mm===> prob{fle) € A) za and
prob(fle) € B) = B
===s==> prob{f(e) € A N B) zatp-1

camE=sy g [ | f-] [ANB) | !l}ﬁ'ﬁ"ll

We have proved the left half of (5.1). Takinga = g
and making a change of parameter, we have alsc proved
the right half of (5.2).

The right half of (5.1) iz proved by observing
that since A M B 15 contained in both A and B.

prob(f{e) & & N B) < min{prob(fle € A),prob(f{e) = B))
Hence, prob{f{e) € A N B) = max(u,B)
==s==x prob(fe) € A} > mx(x.8) 2 a, and

prob{f(e) € A) > max(a,B) > £

and the right half of (5.1) is proved.
of (5.2) follows by setting o = 8.

The left half
If prob(fi{e) € B} = 0 or 1 for every e then for

each e

prob(f{e} € ANB hie)) =0
= prob(fie] € A& hie))

if prob(f{e) € B} = 0
if prob{f{e) €EB) =1

Hence, (5.3) follows.

Finally, if p{A N Blu) = p{A|u)p(B|u) for every
u €U, then

prob(f{e) & A r Blh{e))
= prob(f(e) € Alh{e)) prob(fle) € Blh{e))
Hence

prob(f(e) € A|h{e)) > w and prob(f(e) € B|h{e)) > &
====szsane> prob(f{e) € A N B[h{e)) z ub

SEsaEEREEES g E | |f_t{A fn] H” |ﬂE Q.E.D.

Remarks
(a) Suppose that for some o and B

A
(RN B)ag. = mns}mx{m.ﬂ]

Then equalify obtains in (5.1) and exact decomposition
of the fntersection obtains. Obzerve that this condi-
tion is verifiable in terms of the prior information
alone and does not involve data.

{b) (5.3) allows one to decouple the portion of a
conjunctive query that references exact data from that
which references imprecise data, thereby 1imiting the
effect of imprecise data on processing.

Example

Consider the example of the last sectiom, and let
= "gpeed < 30" and B = "loo = Med." We found that
remained constant for .16 < o £ .64, Takinga = g
B4 in (5.1), we get

II’:EE-!:F-

E R A B 5 2 1FTHARN | g M IIF (BN

(1A )] gy

Since the outer 1imits are equal, we have equality in
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this case.

Even when perfect decomposition 15 not possible,
(5.1) and (5.2) allow us to use the answers from decom-
posed pieces with some measure of confidence This is
especially true when imprecision is not severe and one
demands a high degree of confidence in the answer. For
such cases, a and & would be taken to be near 1 and
[e+8-1) does not differ much from max(e,2).

6. Statistical Processing through View Support

In database management systems (particularly
relational cnes) with facility for supperting views,
such facility can be used to support statistical pro-
cessing. Basically, the idea is to treat the prior
information on the distributions as an additional
database. A query on the idealized world is then
transtormed by view-mapping into a query that spans
both the real database {h{e),e € E} and the statistical
database that contains the prior information. It is
important to note the difference between such a pro-
cedure and the query transformation procedure sug-
gested by the separation principle. The query trans-
formation invelved in view mapping is much simpler,
but the resulting query is more complex. In effect,
one is using the visw-support and query processing
facilities that normally exist to achieve the computa-
tion needed to transform an ideal-world query into a
real=world query. . ;

We shall restrict our attention to the relational
system INGRES, but the results are easily adapted to
other relational systems of comparable power. Define
a statistical sub-database consisting of one or more
of relations of the form

d1sfributiun{idaa1 attribute, real attribute,
probability)

Each tuple im this relation represents one instance
of piv|u) in the form {v.u,p{vTu}], For example, the
probabilities of Figure 4.1 would appear as Figure
6.1. Now, suppose that the deal-world schema con-
515ts of one or more relations of the form

rel-ideal (eid,v)

where v stands for one or more attributes and eid is
the identifier for e. A tuple from such a relation

(if one ware available) would be an instance of (e,f(e)).

For the example of Section 4, we would have an ideal-
world relation,

ship-ideal(shipid,type,speed,current location)

Similarly, a real-world schemz would consist of ane or
more relations of the form

ral-actual (eid,u)

a tuple being an instance of (e,h(e)).
the example of Section 4, we would have

Continuing with
shipdata(shipid,type,location-last-week)

Let A be a set in ¥ of the form
A= {y EV:v*a}

where * i5_a comparison eperator and a is 2 constant.
A query f-1{A) would be expressed in QUEL [5] as
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current last-week  prob
M M .8
dizstribution-Tocation M I a |
| M A .1
| 1 I 8 |
1 P .15
I M .1
P P .8
P A -1
A A B
A M A i
A P .nﬁf

Figure 6.1.

Distribution of Location

range of x is rel-ideal
retrieve into result{x.eid)
where x.v*a

Mow rel-ideal is not a real relation.

But for each a,

[1£-1(A}] |4 i5 obtained by running the following QUEL

query

range of x 15 real-actual

range of ¥ is distribution

retrieve into approximation (x.eid)
where (x.u=y.u)

and sum(y.prob by y.u where y.v*a) =

If the g??parisnn operator * is egquality, the gquery

for ||f7'(A)]]|, can be expressed as

range of x 15 view-o
retrieve into approximation(x.eid)
where x.v=a

The view relation view-a is defined by

range of ¥ 15 rel-actual
range of ¥ is distribution
define view view-a(x.eid,y.v)
where (x.u=y.u)

and (¥.probza)

Consider the exaﬁp1e of Section 4 once again.

& view relation

losation-a [shipid,current location)

by

range of x i5 shipdata

range of y is distribution-location

define view Tocation-a(z. shipid,y. current)
where (x.location-last-week = y.last-week)
and (y.probza)

Define



The approximation ||shipe cwrrently in "Med™ ||, would
then be represented by executing the wiew query

range of 5 15 Tocation-a

retrieve into approximation{s.shipid}
where =.current = “Med"
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