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ABSTRACT 

Since the liuear prediction and filtering of nmltiple correlated stat ionary randonl 
signals involves the solution of a matr ix integral equation, several methods of solution 
of this equation have been developed. In this paper the direct solution by complex 
variable techniques is extended from the one-dimensional case. The problem reduces 
to the factorization of a spectral density matr ix and this factorization is the principal 
topic of the paper. 

Under  very general conditions, a factorization procedure has been developed by 
Wiener and Masani (1) 3 for discrete t ime series. Their  technique is applied here with 
some modifications to the factorization of the spectral density matrices of continuous 
processes. A simplified procedure is developed also for the case where the elements 
of the spectral density matrix are rational functions of frequency. Examples illus- 
t ra te  the general technique and the simplified procedure. 

INTRODUCTION 

In the theory of the linear prediction and filtering of correlated 
stationary random signals, the form of the desired multidimensional 
network is specified by the solution of a matrix integral equation (2) 

f f  t (r -- = Rm(r) ,  _< r _< (1) ~7)fi (o-)d(7 0 

where R(T -- ~) is a matrix containing as elements the covariance func- 
tions of the received waveforms ej(t), that  is, 

Rjk(r) = E{e~(t)ek(t q- r)}, (2) 
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2 Associate Professor of Electrical Engineering, Princeton University, Princeton, N. J. 
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Further ,  if mj(t) are the desired outputs ,  then the ou tputs  of the op- 
t imum network are given by 

mj*(t) = ~ f ~  hjk(r)ek(t -- r)dr, (3) 

and the elements of R~(r)  by 

R.,j~(r) = E{ej(t)mk(t + r) t. (4)  

Thus  the matrices occurring in Eq. 1 are defined by Eqs. 2, 3, and 4, 
with the notat ion ~ denoting transpose in Eq. 1. 

The method of undetermined coefficients was proposed originally 
by Wiener (2) for the solution of Eq. 1. An alternate method of solu- 
tion (3) is to reduce Eq. 1 to a system of simultaneous differential equa- 
tions with constant  coefficients, and represents a generalization of the 
work of Zadeh and Ragazzini (4). It  is the purpose of this paper to 
call a t tent ion to a third technique which may not 1)e widely known. 

A MATRIX WIENER-HOPF APPROACH 

In a manner  analogous to the one-dimensional case (2, S) Eq. 1 can 
be rewritten as 

f ~ R ( ~  - ~ ) f ~ ( ~ ) d ~  - R . , ( r )  = f ( r ) ,  - ~ < < (5)  T oD 

with 
f(r) = O, r > 0. (6) 

The Fourier transforms of R(r ) ,  h(r ) ,  R,,(r) and f(r) may be denoted 
by o(iw), I-I(i~0), .~(ico) and F(ico), respectively, for example, 

.(ioa) =a f 2  e-~'R(r)dr" 

Taking transforms of both sides of Eq. 5 results in 

a, (%0)IrI (i~0) - -  ,l,m (i~0) = F (i~0). (7)  

It  follows from Eq. 6 that  F(io)) is analytic and bounded in the upper  
half ~0-plane (6). 

Now, let o(i~0) be factored into the form 

. (¢~) = yvt (¢~) ~r (¢,o), (s) 
where 

~v, (i~) ~ @ ( -  ¢~). (9) 
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The factorization given by Eq. 8 is to l)e such that  the matrix Re(ico) is 
element-by-element analytic and bounded in the lower half c0-plane, 
and its deter lninant  Det Re(ico) is free of zeros in the lower half c0-plane. 
These two properties of ~le (ico) imply that  ~ (ico) and its inverse ~te-, (ico) 
both represent transfer functions of physically realizable mult idimen- 
sional networks. 4 The problem of realizing the factorization of Eq. g 
will be deferred until the next section. 

Multiplying Eq. 7 from the left by [-~l(¢:co)]< yields 

'|'(ico)H(ico) - [-q'~(ico)] '*,,,(ico) = [~(ico)]-'F(ico). (10) 

Now, since both w(ico) and ft(ico) are analytic and bounded in the lower 
half c0-plane, the time response of w (ico)ITI (ico) must  vanish for negative 
time, that  is, 

2rr, ~ [',r(ico)f-I(ico)]e~'rdco = 0, r < 0. (11) 

Similarly, it follows that  

2rr r > O. (12) 

Therefore, the time response of gd(ico)fI(ico) must  be equal to the non- 
negative-time portion of the time response of [-Ret(ico)]-lq~m(/w). This 
fact can be expressed by the relationship 

w(ico)ITI(ico) = 1 £ ~ e - ~ *  {f_~e'~'E~r*(i.)~ t.m(iu)du} dr. (13) 

From Eq. 13, the transposed transfer matrix ITI(ico) is given by 

which represents a generalization of the one-dimensional solution (5). 

THE FACTORIZATION OF THE SPECTRAL DENSITY MATRIX 

It can be seen that  an explicit solution of Eq. 1 can be found pro- 
vided tha t  the factorization (Eq. 8) of the spectral density matrix ~(ico) 
can be effected. One factorization technique has been developed re- 
cently by Youla (~). Youla's technique is applicable whenever o(ic0) 
is element-by-element a rational function of co. An earlier factorization 
procedure was developed by Wiener and Masani (1) for discrete time 

T h u s  I|e(ico) Illay be said to be the  t rans fe r  fum' t ion  of a m i t l h n u m q f l m s e  m l d t i - d i m e m  
sional lint work. 
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series. Their  technique is applied here with some modifications to the 
factorization of the spectral densi ty matrices of continuous processes. 
The procedure will now be explained and illustrated. 

The  matr ix ,I~(ic0) to be factored is assumed to satisfy the following 
conditions : 

(1) ,I~(i~0) is Hermi t ian  on the real ~-axis, tha t  is, 

; 

for ~ real. 
(2) The de te rminan t  Det  o ( i~)  satisfies the inequal i ty  

(15)  

f_~ I ln ]Det  o(¢~) I I do0 oO 
k 2 + .,2 (16) 

where ] [ denotes the absolute value, and k is any real finite positive 
constant  (see Appendix).  

(3) Let  the smallest and largest eigenvalues of q,(i00) on the real 
oa-axis be Xl and X2, respectively, then 

0 < X l < X 2 <  m. (17) 

Condit ions (1) and (2) are satisfied for all physical processes. Condi- 
tion (3) is satisfied if the spectral densi ty matr ix o(i,0) is determined 
experimentally,  as shown by Wiener  and Masani  (1), but  need not  be 
satisfied by theoret ical ly postulated spectral densi ty matrices. 

We note tha t  the diagonal terms ¢jj(i~0) of the matrix ,~(i~o) repre- 
sent auto-spectral  densities, and can be factored easily into the form 

= (18)  

where the ~IG, (i~0) are analytic,  bounded and free of zeros in the lower 
half c0-plane. Now let r (i~0) be a diagonal matrix with elements  

1 
lPik(ioa) ___a ~I'j~(ico) 6~k. (19) 

It  is apparen t  tha t  the matrix ,l,'(i~0), defined by 

0 '  = r *  r (20)  

has diagonal terms which are each equal to uni ty.  Let  the matr ix 
M (i~o) be obtained by subtract ing a uni t  matr ix 1 from ,I,' (io0) ; tha t  is, 

M(io0) ='o '( io~) -- 1. (21) 



Aug., i96i. ] FACTORIZATION OF SPECTRAL MATRICES 

The matrix M (io0) can be written in the form 

M(i~)  = M0 + M+(i~)  + M_( i~) ,  

9I 

(22) 

where Mo is a constant matrix, M+(i,0) is element-by-element analytic 
and bounded in the lower half ~0-plane and M_(iw) is element-by- 
element analytic and bounded in the upper half c0-plane. It is recog- 
nized that  these requirements do not uniquely determine the decom- 
position (18). However, it is shown in the Appendix that  different 
decompositions satisfying the analytic requirements yield equivalent 
results. In practice it is frequently convenient to add the require- 
ment that  

M + ( m )  = M _ ( m )  = O, (23) 

which makes the decomposition (18) unique. Now let the matrix 
lg (i~o) be defined by the series 

N(i~o) zx 1 - M+ q- (MM+)+ - [ M ( M M + ) + ] +  + . . . ,  (24) 

where the subscript + has the same meaning as in Eq. 22. It follows 
immediately from the work of Wiener and Masani (1) that  

(1) The matrices N(ioo) and N-l(i~o) are element-by-element an- 
alytic and bounded in the lower half oa-plane. 

(2) The matrix G, defined by 

G a g (25) 

is a constant symmetric matrix. 
Furthermore, it is seen from Eq. 24 that  

N t ( m )  = N ( m )  = 1, (26) 

if Eq. 23 applies. Therefore, 

G = q,'(oo) (27) 

since G is a constant matrix. Thus G can be found without performing 
the matrix multiplications implied by Eq. 25. 

From Eqs. 20 and 25, q~(i~0) can be written as 

¢( i~ )  = [ r * ( i ~ ) ] - , [ g * ( i e ) ] - l G N - , ( i e ) r - l ( i ~ ) .  (28) 

All that  remains to complete the factorization is to factor G. This 
factorization is easily accomplished since G is a constant matrix. For 
example, G may be diagonalized by unitary operations and the square 
root taken of the resultant diagonal matrix. However, there is no need 
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to  proceed fur ther  t han  Eq. 28. Using a rgumen t s  similar to those 
leading to Eq. 14, it is easy to show tha t ,  ins tead of Eq. 14, the  solut ion 
can be expressed as 

= r ( i~)N( io~)G- ,  ~ '~  R(¢~) 
J 0  

dre-i,,,r 

1 r t(iu)@.,(iu)du}. (29) × 

A SIMPLII~IED P R O C E D U R E  FOR RATIONAL SPECTRA 

Since Eq. 24 is an infinite series, N (ioa) canno t  a lways be ob ta ined  in 
closed form. If 4,'(ioa) is e l ement -by-e lement  a rat ional  funct ion of io0, 
an a l te rna te  procedure  yields N(i~o) in a finite n u m b e r  of steps. 

To  derive this procedure ,  o'(i~0) is wr i t ten  as 

o' ( i~)  = 1 + M0 + M+(i~)  + M_(¢~). (30) 

It  should  be no ted  t h a t  the  successive t e rms  in the  series (24) for N (i¢o) 
can be wr i t t en  more  explici t ly;  for example,  

(MM+)+ = MoM+ + M+M+ + (M_M+)_+. (31) 

If the  p roduc t  o'(ioa)N(ioa) is formed and use is made  of Eqs. 30 and 31, 
it is found t h a t  mos t  t e rms  cancel and  the  p roduc t  becomes 

o ' ( ioa)N(i~)  = 1 + M0 + [-M_(ic0)N(i~0)]_. (32) 

F rom Eq. 32, N (ioa) can be wr i t t en  formal ly  as 

N(io0) = [-o'(io~)-]-1{1 + M0 + [M_(ioa)N(i~o)]_}. (33) 

Since N(ioa) is ana ly t ic  and bounded  in the  lower half ~0-plane and 
[-M_ (ioa)N ( i~)]_ is ana ly t ic  and bounded  in the  uppe r  half oa-plane, the  
poles of N (ico) m u s t  result  f rom the upper  half  w-plane poles of [-o' (ion) ~-~. 

Let  [o ' ( io~)]  -~ and  M_(i¢0) be wr i t ten  as 
K 

[@'(ioa)-] -1 = [-~l,'(m)-]-~ + X a,~(~m + ioa) -~ 
m = l  

K 

+ X *~(~,,, - i¢o)-,, (34) 
m = l  

and 
L 

= 1C - ( 3 s )  
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From Eq. 34 it is apparent  that  lg(ico) can be written as 

K 
N(/co) --=- 1 + Z C,,,(cr,,, + ico) ~. (36) 

m = l  

Subst i tu t ing Eqs. 34 through 36 into Eq. 33 and equating coefficients 
of the upper  half w-plane poles yields 

lJ 

C,,, = A,,,(1 + M0) + A~ E B,,(~,,, q- r,,)-' 
n~=l 

L K 
+ A , ,  Z Z B , C k ( ¢ ~ + r n ) - ~ ( a m + r , )  - ' ,  m =  1 , 2 , . . - , K .  (37) 

n = l  k = l  

Equation 37 represents a set of K matrix equations from which t h e / (  
unknown constant  matrices C,,~ can be found. 

Example  I 

A two-dimensional prediction problem is considered in some detail. 
Let two correlated signals el(r) and e2(r) be received in the interwd 
- m < r _<t. I t  is desired to estimate el(t + a )  and e2(t + a )  for 
a > 0. The  spectral density matrix of e~(r) and e2(r) is given as ~ 

* ( ico)  = 

1 + co"- (1 - ico)  ~ 

e 1 
(1 + ico) ~ 1 +¢o s" 

r~l < 1. (3s )  

The matrix ~m(ioa) for this case is simply 

*,n(ico) = ei'°~eo(ico). (39) 

Fronl Eq. 20 it is found tha t  

. ' ( i co )  = 
1 E l _  

1 - ico 
e l + i ~  1 

(40) 

In this example the power spectral density matrix is a rational 
function of/co; hence the simplified procedure previously described can 
be applied• For comparison the problem is solved using first the general 
approach and then this simplified procedure. 

This example appeared in (2) and was solved by the method of undetermined coefficients. 
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The unit  matrix 1 may  be subtracted from Eq. 40 to yield 

and, finally, 

M ( i ~ )  = 

0 ~ 1 -  

1 - i~o 0 
* 1 + i ~  

M+ (io~) = 

° °  1 2, 0 
1 + i ~  

(41) 

(42) 

For this simple problem the series (24) for N (~0) terminates  after two 

N ( i ~ )  = 

terms, and the result is 

1 

1 + i ~  

0 

(43) 

From Eq. 25 the matrix G is given by 

G = 

- 2 ~  
1 --  ice 

I 1+i  ] 
1 ~ 1 - -  

1 - i~  
~ 1 + i ~  1 

1 0 

- 2 ~  
0 1 

G = . (44) 

1 + i ~  

I t  is seen tha t  G is indeed a constant  matrix• From Eq. 29 and 39 
the solution is found to be 

I i  (i~) -- r (i~)N (i~) fo * [10] 
e - a  • 

2,a 1 

dre_~" [1  f_~ e~,N_l(iu ) r_~(iu)du] (45) 

Following the simplified procedure of the previous section, Eqs. 30 
and 40 are used to obtain 
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1 - -e l  q , ' (~ )  = 1 + M,  = 
--e 1 

(46) 

The matrix given by Eq. 40 may be inverted to yield 

Eo' (i0.,)-I-' 
1 - -  t~ 2 

1 +iw) 
1 ~1 --ioo 

1 -- io~ 1 
-~1 +i--~ 

(47) 

A comparison of Eqs. 34 and 47 shows that  o 1 = 1 and that  

i I 

0 

--2~ (48) 

From Eq. 41, M_(i~) is given by 

M _  ( i ~ )  = 

2 / 
0 1 - -  

0 0 

(49) 

and Eq. 35 yields rl -- 1 and 

0 2~] 
B ,  = . ( 5 0 )  

0 0 

Substitution of Eqs. 46, 48, and 50 into Eq. 37 yields a matrix equation 
which may be solved for C l t o  give [oo] 

e l  ~ • 

- 2 E  0 
(51) 

From Eq. 36, N(iw) may be written as 

[ o  o I , N (i~o) = 1 + 
--2~ 0 1 +i~o' 

(s2) 

which is identical to Eq. 43 obtained by the general procedure• 
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Example I I  

In this example a somewhat  more complicated spectral density 
matrix will be factored. Let this matrix o(iw) be 

= 

OL 2 60l 9 

~2 _~_ 03"-' (~ + i~) (9  - i ~ )  

~9  9' 
92 _}_ (.02 

< 1, (53) 

The matrix r ( i~0)  of Eq. 19 is found, by factoring the diagonal terms, 

r ( i ~ )  = 

to be 
+ i w  
. . . .  0 

9 + i ~ o  

(54) 

From Eqs. 20 and 54, o'(ic0) is found to be 

a - i~9  + i~]  
l c -  

a + iw 9 - ico 
• ' ( i ~ )  = . (55)  

a + ico 9 - i~o e 1 
a - i ~  9 + i~0 

Thus  M(iw) of Eq. 21 is given by 

M (i~) = 
0 

a ÷ i e  9 -ico 

a - i~o 9 + i~o e 
a ÷ i c o 9 - i ~ o  

0 

(56) 

From Eqs. 22, 23, and 56 the matrix M+(i~0) is 

0 • - -  - -  

M+(i~o)  = . (57)  

2 9  a - 9 0 

The series (24) for lg (7~o) in this example is a geometric series, and can 
be evaluated to yield 
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1 ~ k l  k z _ _  ~ 
a + i~o a + iw  

N ( i ~ )  = 

fl 1 k ,  

(5,~) 

where the constants kl and k2 are given by 

and 

(59) 

Application of Eq. 27 yields immediately 

I CI = ((,1) 

The matrix G could be obtained also from Eq. 25. Since this example 
has a rational spectral density, it could be solved by the simplified pro- 
cedure previously discussed. 

APPENDIX 

Ill order tha t  continuous processes may be brought  within the framework of the work of 
Wiener and Masani (1), a mapping of the w-plane into some z-plane must  be effected such tha t  
the real axis of the c0-plane is transformed into the unit  circle in the z-plane, the upper half 
~0-plane into the region outside the unit  circle in the z-plane and the lower half co-plane into the 
region inside the unit  circle. Such a mapping can be obtained by the transformation 

ik  +co 
= - -  0 < k  < ~ .  (62) z ik -- w' 

Physically, the constant  k can be interpreted as a scale factor which translates the dimension- 
less time scale of the discrete case into the t ime scale of the continuous case. It  will be shown 
tha t  the transformation (62) also serves to give a precise definition to the decomposition (22). 

Let F(z) be a function which can be represented by the expansion 

F(z) = ~ a.z'h (63) 

Then the functions F+(z), t~_(z), and F0 are defined as 

Fo ~ ao (64) 

f+(z) ~ ~ ~,,z" (65) 
n - - i  

t~'_(z) a ~ a ,,z " (6~,) 
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It  is apparent  from Eqs. 65 and 66 tha t  

F+(0) = F_( ~o ) = 0. (67) 

From Eq. 62 it is seen t ha t  the points z = 0, oo correspond to ~ = - ik, ik, respectively. 
Therefore, the  condition to be imposed on the decomposition (22) is 

M+(--ik) = M_(ik) = 0, 0 < k  < ~ .  (68) 

I t  may appear  from Eq. 68 tha t  the condition (23) is inapplicable, since k is restricted to 
be finite. This, however, is not the case. Consider the  al ternat ive decompositions of M(ico) 

M(ico) = M+(io~) + M_(ioJ) + M0 = M+(i~) + M-(io~) + M °, (69) 

where M+ and M + are analytic in the lower half ~o-plane, M_ and M -  analytic in the upper half 
o~-plane and M0 and M ° are constants.  Furthermore,  require tha t  

M + ( - i k )  = M _ ( i k )  = 0, 0 < k < ~ ,  (70) 
and 

M + ( ~ )  = M-(~o)  = 0. (71) 

It  is apparent  tha t  M + and M+, thus defined, differ only by an additive matr ix constant.  Now 
let N(ioJ) be given by 

N ( i o )  = 1 -- M+ + ( M M + ) +  - [ M ( M M + ) + ] +  + . . . ,  (72) 

and let N'(io~) be given by 

N'(i~o) = 1 - M + + ( M M + )  ÷ - [ M ( M M + ) + ]  + + . .  ". (73) 

Equation 73 can be rewrit ten as 

N'(/¢o) = 1 --  (M+ -{- KI) -~- { [ M ( M +  + K , ) ] +  + K~I " "  

= {I - M + + ( M M + ) + -  [ M ( M M + ) + ] + +  . . - } { 1  - K ~ + K s -  K 3 +  " " }  (74) 

= N(io~)K. 

Thus the matrices N'( i~)  and N(i~o) differ only by a multiplicative constant  matrix. This 
difference does not affect the final result given by  Eq. 29. To see tha t  such is the  case, instead 
of Eq. 29, write 

f-I'(i~,)=r(io)lV(io)[G']-'fo=d,e-'~'{lf~®e'~'FN'(u)l'r*(u)O,~(u)du}. (75) 

[N'(i~o)] t = KtNt(io~), (76) 

G' = [ N ' ( i ~ ) ] t ~ , ' ( i ~ ) N ' ( i ~ )  
= KtNt( i~)  O'(io~)N(o)K 

= KtGK,  (77) 
and 

[ G ' ]  ~ = K- 'G- 'EK*] - ' .  (78) 
Therefore, 

~I' ( io,) = r ( io~) N ( io~) KK-'G-'[Kt] -~ 

× fo~dre_,~, ~ l  f_~e,~,K, Nt(iu)rt(iu).~(iu)du} (79) 

So o ( , z  ) ['(i~)N(i~)C-- t ire- ~ -~e" N ( iu) r  ( iu)~( iu)du 

= f i ( i ,~) .  

From (74), it is found tha t  
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