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1. INTRODUCTION

A tandom field {Xt! t £ T} is a stochastic process with a multi-
dimensional parameter, i.e. T C B®, As in the one dimensional
cage, one is often interested in signal processing problems
involving an observation equation of the form

(L1 i, =F ¥ B e & EA

-where 1 is the observed process, X is the signal, and £ repre-
gents a corrupting noise. In one dimension the noise process is
often associated with the superposition of a large number of
pulses of comparable amplitudes and of extremely short durations.
Such situations (e.g. shot noise) give rise to a process Ly which
is Gaussian and white. By a white noise we mean a process with

a correlation function given by

(1.2) LI Nuﬁ{t-s}

when & is the Dirac delta function. Of course, Gaussian white
noise 1s an abstraction and to deal with it effectively has
required the development of a stochastic caleulus, which began
in the form of Wiener integrals and acquired its full pgeneral-
ization and power in recent years as a calculus of martingales [1].
The critical step was taken by Ito, who established the connee—
tion between "white noise integrals" and martingales, and derived
the differentiation rule which is basie te the stochastic calculus.
Since Gaussian white noise is but an abstraction and since
to handle it requires a rather elaborate machinery, the question
arises as to why it is so widely used. The answer lies in the
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fact that with appropriate interpretations it can be said that
the values of a Gaussian white noise at different times are
statistically independent, and this independence gives rise to a
major simplification to the analysis of those signal processing
problems where the noise is assumed to be white and Gaussian.
Besults which owe their existence to the simplification include
gome of the best known formulas of filtering and detection theory.
For processes with a maltidimensional parameter, i.e., for
random fields, a similar motivation for using Gaussian white noilsge
as a model exists. There is no difficulty in extending the
definition of white noise (1.2) to the multidimensional case. The
difficulty lies in dewveliping a stochastic calculus to deal with
it. To generalize martingales and their calculus to multi-
parameter processes turned out to be far from straightforward.
However, for the two-dimensional case, the essential elements of
the stochastic caleulus are now known, and some preliminary
results on applying the caleulus to problems in filtering and
detection are also in hand. While the full extent of its use-
fulness remains to be seen, a martingale approach to random fields
can now be sald to exist, at least for the two-parameter case.

2. WIENER PROCESS AND MARTINGALES

Our first task is to make precise the idea of a white Gaussian
noise, In one dimension this is done by wviewing it as the formal
derivative of a Wiener process or Brownian motion. We shall
employ the same device for the multidimensional case. Let Fi
denote the positive quadrant of the plane RZ, and let {Wt, EE Ri}
be a two-parameter Gaussian process with zero mean and a covar-
iance funetion given by

(2.1) = Nﬂmin(tl,sl}min{t

EW W JEL)

(tl’tz} (s1.8,) ¢ I
We shall call N a Wiener process. If we denote by A, the
rectangle to the left and below t then we can view W, formally
as

(2.2) W =J z ds
t ;"I.ts

-

whe re Lt is a Gaussian white noise, alternatively

El2

(2.3) L= EEIE?E W t= {tl’tE}

It is useful to define a process {W(A)} parameterized by
Borel sets A in the plane as a Gaussian process with zero mean
and covariance property
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(2.4} EW{A}W(B) = NGMEE(AH B)

If we set Wy = W(A) then W, is a Wiener process. Altermatively,
given a Wiener process Wy, a set—parametered process W(A) can be
defined in terms of it. Hence, {W{A)} and {Wt} are equivalent
and we shall refer to W(A) also as a Wiener process. Formally,
we have
3%, -
(2.5) Wia) = ! ——— dt_dt, = g dt
s 9ty9t, 172 i F
The walues of W(A) for nonoverlapping areas are independent and
this captures the independence property of white Gaussian noise.
For two points t and s in the plane, denote

(2.6) > 8 1t r.l 2 5y and t, 3 s,
and
(2.7 tA s if tl £ Ell and t2 z 5o

The relation > is a partial ordering for points in Ri with
respect to which martingales can now be defined. Let T be a
rectangle in F‘2+ of the form T = {s: 0<s,<a, 'E}Sszsb}. We say a
random field {E‘t, te Tl is a martingale if

(2.8) t' =t implies that E{Mt,[HS, 8 <tl =M  w.p.l

L

We can generalize the concept of a martingale by introducing
a family of o=-fields. We shall say that {drt’ t £ T is an
increasing family of g-fields if

t' > t implies .ﬁ'tq oD F

A randem field {I-It, t £ T} is said to be adapted to {ft,t e T}
if for each £t Mg is -fﬁ't-measurable and it is said to be a
martingale with respect to {drt, t € T} of it is adapted and 1if

(2.8 t' > t implies that E{HE,L;{E, g <t} = M, w.p.l

A Wiener process {W , t e Eﬁ} is a martingale under definition
(2.8).. Purthex if T, t e RZ}  is an increasing family of
g-fields such that W(A) is 4 _-independent whenever A does not
intersect A_, then {Tr}t, t e RE} is a martingale with respect to
{#F. te Rif and we shall say for such a case that (W, #,
t € Ri} iz a Wiener process.

3. STOCHASTIC INTEGRATION

Let {Wt, L T} be a Wiener process. The first integrals
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defined with respect to W were of the form
(3.1) J fls)w(ds)
T
where f is a deterministic fumction which satisfies
(3.2) f P(s)as <@
T
Integrals of the form (3.1) are known as Wiener Integrals and
hawve long been known.

The first generalization to (3.1) was to replace the deter-
ministic integrand by a random integrand. Let {¢., t € T} be
an J -adapted random field which satisfies
(3.3) J E¢2ds < e

=
T
Then the integral
{3.4) M= J $_Wids)
T8
can be defined as a straightforward generalization of the Ito

integral. The intepral M is defined as the quadratic-mean limit
of a sequence of approximating sums, i.e.,

(3.5) M = 11: in q.m. 1E ¢ft£§}}ﬂfﬂ§§]}
=+ @ ’j
where {t{n}} is a rectangular partition of T for each n, ﬂFT}
denotes %ﬂe increment 2
(m) _  (m) (o) (n) (n)
(3.6) Bi° T Bra g Y T S T
and
(3.7 max &M ——=

1,3 d

One of the most important properties of the Ite integral
preserved in the generalization (3.4) is its martingale property.
which can be stated as

(3.8) E(M|#,) = L b W (ds)
=

Equation (3.5) implies that if we define

(3.9) W [A p W (ds)

r

then {M_, &, t £ T} is a martingale.
Theé generalization of the Ito intepral to the twe-parameter
case (indeed te the n-parameter case) is routine. By itself, it
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is hardly sufficient to yield a usable two-parameter stochastic
calculus. TFor that we need certain completeness results and a
differentiation formula. These proved to be far more elusive,
and a great deal more of the structure underlying two-parameter
martingales had to be uncovered before the desired results were
finally deriwved.

The first completeness results were obtained by Wong and
Zakai, who posed and ansered the following question im [1]:

Q, Suppose that fW_, t £ T} is a Wiener process, and .ﬁh denotes
the 0-field generated by {HS 8 E At}‘ Let {Ht, t.E %}be an
Fyp-martingale such that E 2 < =, Question: is M,
necessarily representable as a stochastic integral of the
form (3.9)°?

In one dimension the answer is "yes", and this completeness result
represents an important fundamental property of the Ite integral.
For the two-parameter case the answer turned out to be "mo". To
represent every Fy-martingale, we need not only stochastic
integrals of the form (3.4) but stochastic integrals of a second
type, which we shall write in the form

{3.10) J , 4 S.W(ds}WEdS'}
Twp = ?

Cbserve that it is an integral on TXT, hence a four-fold integral.
Clearly, (3.10) needs to be defined, but we shall postpone doing
so for a moment. Henceforth, we shall refer to (3.4) as a type-I
stochastic integral and (3.10) as a type-II integral. Wong and
Zakai showed that every square-integrable Fyp-martingale can be
represented in the form

(3.11) M = + J W Wids) + J P W(ds)W(ds")
™ M A B A xa 508
t Lt
where 0 denotes the oripgin. (3.11) provides a full answer to Ql.
We now return to the problem of defining (3.10). We shall
define a general multiple integral of the form

{3.12) I(Psu,w) = f $S S.u{ds)u(ds*J
TP~

where U and v can each be either the Lebesgue measure or a Wiener
process, ws,s' is iﬁ;fg.-maasurahle for each (s,8"'), and
(3.13) J By ,dsds' < =

sas’ 018

where we recall that sis' means (51 £al

1 and s, 2 Ei}‘
I(P:p,v) is defined by
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(H18)  TCUEY) = dimds gm ) wctig},tigj}u(aiﬂj}v(ﬂéijn
n o+ i<k 1
=k
where t{n:II and E{n} are defined as in (3.5). Observe that the

summati%& cnndit}AH (i<k, j » 2) implies that only the values of
P, on the set sAas' affect the integral.

*> By taking W(ds) and v(ds) alternatively as ds and W(ds)
we get four different types of integrals for (3.12). The case of

Jw ,deds'
5,8

is uninteresting because it i= representable as an ordinary
Lebesgue integral. The case of

stis1widsiw{ds'}

gives us the type-II stochastie Integral. The remaining two
possibilities

st,s.W(dS}ds', th,s'dswtds'}

will be called mixed integrals and they play an essential role
in the stochastic caleulus of two-parameter martingales.

4. DIFFERENTIATION FORMULAS AND WEAK MARTINGALES

The next natural guestion that arises concerns transformation
rule for stochastic integrals, i.e., generalization of the Ito
differentiation formula. This turned out te be rather difficult,
but a restricted wersion of the differentiation formula was
obtained in [1]. Suppose that My is an #Fyi-martingale which is
also a type-I stochaﬁtic integral, i.e., of the form (3.9). Let

Flu,t), u € R, t € R, be a suitably differentiable function such
that

l:!;.]_j :':t e F(Htft}

is again an o -martingale. Then the representation of X in
terms of stochastic integrals is given by

- 1 i 1 '
{4.2) X, Xﬂ+[ F (Hg,sjm(ds}+J F*Emgus.,svs IM{ds)M({ds')

A A A

t t
where F' and "' dencte differentiations of F with respect to the
first variable, svs' = (max(s,,s!), max(s,,sl)), and M(ds) =
b b ol oerd

¢SW{ds}.

As a transformation formula (4.2) is severely limited. It
deals only with transformations of type-I stochastic integrals
which result in martingales. The general question Is the following:
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Suppose that X, is of the form
(4.3 X, = j i ds+f # wcds}+f Y W(ds)W(ds")
t s s 8,8
A A Jﬁtxat :

and Flx,t} is a suitable differentiable functiom. Can F(Xt,t}
again be expressed as the sum of three such integrals?

The answer is once again "no'". This means that the two
types of stochastic integrals together with the Lebespue integral
are still not enough to give us a complete stochastic calculus.

To get a complete stochastic caleulus we need the mixed
integrals defined at the end of the last section. The substance
of the differentiation formula is that if Xy is of the form

(4.4) X = I B d +f t Wid }+I Yo W(ds)W(ds")
b K = 5 e g A A Bk ’ :

+ J £ TH{ds}ds'+J E ydsWids')
A4, Bds A x4 Sah

then F(X ,t) is again the sum of five such integrals, The full
differentiation formula is rather complicated and will not be
given here. (See [2])

Stochastic integrals of the two types are martingales. The
mixed integrals clearly cannot be martingales, because there
would be ne need to Introduce them otherwise. Howewver, they are
weak martingales. [3] A process i, J%,c £ T} 4is said to be a
weak martingale if X is F-adapted and

(4.5) EIX(a) |#,.] =0

where

(4.6) XA ) =X -X -X -X
t (tl+ﬂl,t2+a2} {tl+ﬂ1,t2} {tl,t2+52} t

All martingales are alsc weak martingales, but not conversely.
We note that (4.5) is a natural pgeneralization of the alternative
definition for martingales in one dimension given by

EIK{t+ﬂJ—K(tJlHFt] =0

The substance of the general differentiation formula can now he
taken to mean that a suitably differentiable functienm of a weak
martingale plus a Lebesgue integrable is again a weak martingale
plus a Lebesgue integral.

5. LIKELIHOOD BATIO FORMULAS

Let us return to the observation equation (1.1) with which we
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began our discussion. Integrating both sides of (1.1) we get
a new observation equation

t £T

{5.1) Yt. - JA ]{Sds + Wt,

t

where we now consider Y as the observation and W the noise process.
Let 3% denote the o-field generated by {Xg,Ws,s € A} and let
dgt denote the sub-o-field of #_ generated by {Ys, s £ M), If
# denotes the probability measure, then our earlier assumption
that the nolse is white and Gaussian is equivalent to say that
W, is a Wiener process under #. Let us also assume that the
noise is independent of the signal then W is a Wiener process
with respect to (&, [ #.1), and it was shown in [4] that there
exists a new probability measure -?a such that Y_is a Wiener
process with respect to (#,,{ 3,;]}. The density (Radon-Nikodym
derivative) of # with respect to::% is given by

d

P 1 :
(5.2) E?EE = exp{JTEgY(ds}— E!TxidS}

Observe that since Y is a Wiener process,under -‘?ﬂ the first
integral is a type-1 stochastic integral.
The likelihood ratio L, defined by

- d &
(5.13) Lt = Eﬂ{ﬁ Jj"l‘.}
0

plays a prominent role in both hypothesis testing (detection) and

estimation problems, and it is important to find explicit

expressions for it. First, it can be observed immediately that by

virtue of its definition L_ must be a (&, ,{ & }) martingale.

Since ¥ is a (& ,{ # }}tUiener process, thif means that we can

write Lt in the form J°©

(5.4) L, = 1+[ ¢$Y(da}+J ws E.Y(dS}Y(ds‘}
A A xA 77

t e

The integrands ¢ and Y were identified in [4], and (5.4) can be

rewritten as

(5.5) L = 1+J f(sfs)L_Y(ds)
E A 5
t

+ f [p(a,s’ |5w5'}+i{5]513'}i[5' |sys ') ]LBfE.T{ds}Y(dS*J
A XA
t c

whare
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(5.6) X(s|s) = E[X_] ,i;s]
and
(5.7 pls,s'lsvs’) = Cov(X X\ | F .0

Equation (5.4) shows that L, is expressible in terms of
(5.6) and (5.7) which are conditional moments of X given the
oghgervation. Unlike the one-dimensional case, the likeliheood
ratic now depends on the second as well as the first moment.
The next obvious step was to treat (5.5) as an integral equatien
in L and solve it to obtain an explicit expression for Lt in terms
of ¥ and p. This proved to be rather difficult and had to await
further developments in the stochastic calculus. The desired
expression is derived in [5] and has the form
(5:.8) - L, = E}cp{f x(sls}ﬂds}- = J ﬁ2{5|s}ds
J:ILt t
p{s,s‘|5vs'}[Y(ds)—xfs]svs')dsl[Y(ds’)-ﬁ(s‘|svs'}ds*]

+
4.

£

- % [ p2(5,5'|sv5‘}dsds*}
Ia =
At At
Equation (5.8) is an exceedingly interesting formula, and its form
could not have been predicted from its one-dimensional coumterpart.

6. INNOVATIONS AND BRECURSIVE FILTERING

Consider the observation equation (5.1) once again, and pose the
following guestion: :

Suppose that Z_. is a martingale with respect to {.?.'[J" }':l.
What iz the general form for Z_ 7

This tums ocut to be a di%ficult gquestion and a satisfactery
answer iz not yet known. Although this question may appear to be
the most natural generalization of the innovations representation
problem in one dimension, it is actually not. In terms of the
form of the answer and the usefulness of the answer, the most
natural peneralization of the innovation problem is the following.

What is the ‘general form of a weak martingale with respect
w {(FLF T

The atswer is that if Zt is a (9, {,ﬁ' }} weak martingale
then it must be of the form

(6.1) 2z, =2 +[ b, Y(ds s}+f £ s.?{dalsfs')ds'
A A xA #
T
1 ]
+ Eq S.dsY{ds ﬁsvs 1

" "
ﬂt ﬁt
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+ f i .[%(ds|svs’]?(ds*|sv5'}—p{s,s'|3vs‘}d5ds']
A xj 518

where ¥ is defined by
(6.2) $(ds|t) = ¥(ds)-X(s|t)ds

Equation (6.1} leads rather quickly to a recursive formula
for computing X, when the signal X satisfies a modelling eguation
of an appropriate type. Without attempting to get the most
general result possible, assume that X is a Gaussian process which
satisfies the differential equatiom

32

Btlatz

(6.3) = a(t}n—- -4 +B{tj §§~ X +Y{t}K +T,
1

where Et is apgain a white Gaussian noise. We can rewrite it as

(6.4) d, d, Kt—ﬁ{t}dt X dt,~B(t)de,d X -y(£)X dt

dt2 = V{dr)
o 1 2

1

where V is a Wienzar process. MNow, it is easily shown that if we
define a process M by

(6.5) dtldtzﬁitjt}-a(t}dtli{tlt)dtz-ﬁct)dtldtzﬁ{tgt)
=y(e)X(t|e)de de, = M(de)

then M must be a weak martingsle with respect to (P, F ).
This means that M_ must be of the form given by (6.1). %nrther—
more, X is Gayssian and the observation equation is linear., It
follows that K(t|t] must be linear in ¥, and for M the last term
in (6.1) must wvanish, It also means that the integrands in the
first three integrals of (6.1) must be deterministie functions
for M. Indeed, these integrands can all be shown to be expressible
in terms of the covariance function p, and M(dt)} can be expressesd
as
1 P
(6.6) M(dt) = = p(t,t|e)¥(dt|t)
: 1 [%2 A
e o
% fﬂ dtzm(tl.tz,tl,sz|t}Y{dt1d92|t}
rt
+—;%— La pte
o R

Equations (6.5) and (6.6) together with the definition (6.2)
for ¥ reveal the nature of recursion for X(t|t). They show that
d, d, X(t|t) depends not only on X(t]t) but also on %(s|t) for s

i

12238yt [£)T(ds, dt, [ t)
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on the boundary BAt of the rectangle & . Instead of (6.5), a
more interesting recursion 1s in terms of the boundary data

X(ae) = {X(s|t), s ¢ Mt}

If t'p t, then X(8t') can be computed from X(3t) and the

observation in the area between At and At" The details can be

fomd in [&].
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