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1. Introduction

Let X,, 0£¢=1, be a standard Wiener process defined on a probability space
(2 1%}, &) Let 2 be a probability measure on (£2, %,) equivalent to #,. E and
E, will denote expectation relative to & and &, respectively. Let §,, denote
o(X,,0=5=1). The following set of results is by now well known [see e.g, 31:

d L 2 :
{a) If §=exp{[¢jd}f‘-—ﬂaﬁf d:r} where ¢ is an [} adapted process,
[i] o o

then W,=X,—[¢,ds is a standard Wiener process with respect to {2, {&}, #}.
o

1
(b) Under some additional conditions such as [E¢]ds<m, the likelihood
0

ratio is expressible as
L=E, (dﬁ E—:l) =exp {‘[ ﬁﬁ: dX:_Ji j$§ dﬁ}
dFy D ]

where ¢, = E(¢,|&.,)-
{¢) Even without the hypotheses of (a) and (b), the likelihood ratio (viz., the

: d .
projection of g on the o-field generated by X,, 0=s=1) is of the form
[+]

l,?:Exp{jn,dX,—ﬂufds}
D D

where v is an {{,,} adapted process and ¥,=X,— (v, ds is a standard Wiener
o

process with respect to (£, { .5 &)
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The purpose of this paper is to consider these and related problems lor
Wiener process with a two-dimensional parameter. An attempt in this direction
was begun in [4] but the effort was only partly successful. It revealed the far
more complex structure of the stochastic calculus in the two-parameter case,
and a full elucidation of the form of the Radon-Nikodym derivative and
likelihood ratie had to await the development of the calculus as presented in [6]

and in Section 2 of this paper.
Let R% denote the positive quadrant of the plane. For two points a=(a,, a,)

and b=(b,, b;) we denote
a=<b if a;=h, and a,=h,,
a¢bh if a;<b; and a,<bh,,
aib if a;=b;, and a,=2h,,
akb if aj<b, and a;>h,.
Furthermore, we shall adopt the notations
a@b=(a,,b,),
ansb={min(a,,b,), minia,, b;)),
awv b=(maxia,,b,), max(a,, b;)).

Observe that if aAb then a@b=axsb and b@a=av b. Note also that a@b&Ec
=a®c. Finally, for a fixed point z, in R%, R,, will denote the rectangle
{z:2<zq, 2R ).

Let (£2,%,9") be a probability space and let {§.,zeR,,} be a family of o-
subfields such that

F))e'>z=%.2F.. )

F,}) %, contains all null sets of § where 0 denotes the origin,

F;) &.= |’:| W, for every z,

F,) ®.9-, and §&., g, are independent given ..
For each z, &! will denote §. 5., and &2 will denote F.,q..

Let {X.,zeR.,} be a stochastic process defined on (82, %, &) and adapted to
{%.} (ie, for each z, X, is &.-measurable). For b3=a let (a,b] denote the
rectangle {z: a<¢z<(b} and X(a, b] the increment X, — X, zp— Xpga + X.a-

Definition. {X,. §.,zeR,,} is said to be:

M) a martingale if E{X.|%.} =X, almost surely,

M) a weak martingale if E{X(z,27]|%.} =0,

M) a strong martingale if E{X(z, z':[ﬁE:, W EE} =0,

M,) an adapted i-martingale if E{X(z,2']|F.}=0,i=1,2,

M) a Wiener process if {X,,&..zeR,,} is a strong martingale, and X is a
(Gaussian process with EX_ =0 and

EX(A)X(B)=Area(4~B) forall rectangles 4 and B.
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We note that if X satisfies condition M, it is said to be an i-martingale whether
or not it is {§.} adapted. In (1)+5) the conditions are to hold for all z and all
"=z With these definitions, we can easily verify that a process is a martingale
" if and only if it is both an adapted 1-martingale and an adapted 2-martingale. A
strong martingale is also a martingale, and an adapted one or two martingale is
also a weak martingale, We owe most of these definitions to [1].

Let (12, {%.1) be a measurable space on which two probability measures &
and #, are defined. Let {X,,&.. zeR,,} be a Wiener process under &, and let
.. denote the o-field generated by {X,, {<z}. We shall attempt to answer the
following questions:

{a) Suppose that # and %, are equivalent and

d®
—-=exp{ [ ¢ dX,—% | dal,
dEFIJ Ry 20
how does X behave under 27
{(b) With whatever additional assumptions which might be necessary, is it
possible to obtain an explicit expression for the likelihood ratio

Lk {0

(c) If we do not assume that & and #, are equivalent, but only that their
restrictions on [, are equivalent, can the general form of the Radon-Nikodym
derivative on §,. be found?

We believe that these questions are answered with reasonable completeness
by the results of this paper. We are satisfied that the form of these results is quite
general, even if the conditions under which they are proved may not be the best
possible. The order of our presentation will be as follows: The stochastic
calculus required for the paper will be summarized in Section 2. In Section 3 we
shall obtain a series of formulas which provide an answer to (c), and in Section 4
a generalization to the exponential formula for Wiener processes. In Section 5
we shall give an interpretation for these formulas in terms of some conditional
moments of the process X under the #-measure. Finally, in Section6 an
application of these results to the following hypothesis testing problem which
arises in signal detection will be considered:

Hp: The observation {£,,zeR, } is a white Gaussian noise.
H: The observation is of the form £,=40,+n, where n is a white Gaussian
noise and & is a random signal.

It will be shown that in this case the likelihood ratio is expressible in terms of

0.=E(0.|%,..) and piz,z)=cov(f, 0. |Fe:y)

2. Stochastic Caleulus for 2-Parameter Wiener Processes

As in Section 1, define a Wiener process {W,,#..z£R,,} as a strong martingale
such that W is also a Gaussian process with EW, =0 and
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EW,W.=Area(R,, ). (2.1)

Provided that a separable version is chosen, a Wiener process is sample
continuous, and for rectangles 4 and B

EW(A) W(B)=Area(4~ B). (2.2)
Let {¢.,zeR_} be a process satisfying the following conditions:

(a) ¢ is a bimeasurable function of (w, z) and (2.3
(b) [ E¢ldz<om or
R,D

(b7) 2({w: sup |$(w, z)| <oo})=1

and for each z

either (cg) ¢, is .-measurable
or (e) . is F-measurable, i=1,2.

We shall denote by 5#(i=0, 1,2) the space of functions ¢ satisfying conditions
(a), (b), and (c,), and by 2 if (c)) is replaced by (c)).
For g, the integral | ¢, dW, is well-defined, and if we set

(¢o W)= [ dW,

= [ I(s<z)d dW; (2.4)

Rz

then the process ¢=W is a strong martingale for ¢ef, and an adapted -
martingale (i=1,2) for ¢e.#.. Furthermore, if we define

M, =($o W).(yo W)~ | b dl. (25

Then M is a martingale if ¢, =25, an adapted i-martingale (i=1, 2), if ¢, 2]
[1]

If ety then there exists a sequence {¢.} in 5 and that ¢,— ¢ almost
surely and ¢,= W converges uniformly with probability 1. Hence, for feny
¢o W can be defined as the uniform limit of a sequence of continuous strong
martingales (resp. i-martingales). Convergence being uniform, ¢ W is sample
continuous, We shall call (¢ W) under these conditions a local martingale (or
local i-martingale).

The integral ¢« W can be generalized still further. Let I' be an increasing
path connecting the origin to z,. For each zeR,, let z, denote the smallest point
on I" greater than z (with respect to the ordering =). The path I divides R, into
two parts, say D7, i=1,2, where D! is the area below I' and D] is the area to the
left of I i.e.,
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'Dil.- - {':Equ-' (Rr=L{rh
Di={leR.,: {;®{=(r},

We shall say a process X is [M-adapted if:

for each zeR,,, X, is % -measurable and a I'-martingale if (2.3¢p)
(Mg} X is M-adapted and

E{X(z,z']|1%, =0 whenever >z

Let .#; denote the space of functions ¢ which satisfy conditions (2.3a), (2.3b)
and (2.3cp). For ¢e3#; define

¢l.=¢, if zeD|, i=1,2; =0otherwise. (2.6)

Then ¢l e and ¢, =g+ $5, for almost all z.

Proposition 2.1. Let I be an’increasing path connecting the origin 0 to the final
point 2. Let e and define

(o W) =(d1e W), +(¢2o W), zeR,, (2.7)

Then,

{a) (¢ W) is a M-martingale.

(b) (¢ W) is a martingale (one-parameter) on the path T

(c) If I and I'" are two increasing paths connecting 0 and z, and ¢ is both I’
and I'" adapted then

(@o W)l =g W),

Proof, (a) Let X, =(¢do W) and X,,=(¢p!-W).. Suppose that zeD,. Then
F_cF' s0 that

E{X,(z 2] %,) =0
On the other hand X ,(z, 2 1=X.(zr, z"]. Hence,
E{X(z,2]|%,} =0

Therefore, E{X(z,z7]|#_}=0 and X is a I'-martingale. For zeDY the same
argument with 1 and 2 reversed suffices.
(b) Let 2'3=z and let z, Z'ell We can write

X, —X.=X(z1+X(0®z,:2:)+ X (z@0,z/®=].
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Observe that
0@z)r=(z@0),=z

so that the I'-martingale property of X implies
E{X.—-X)#&}=0, gzel.

(c) Observe that ¢! and ¢; differ only on the sets (D~ DY) and (D]~ DY),
and that for every { in these sets {p » (=0 Since ¢ iz adapted to both paths,
for every [ in these sets ¢; is measurable with respect to & =% _n#_. Hence,
for i=j

J ghdw= | B | ko

Dfnﬂr DrnD ’ D nD
and
(go Wi, —(de W)i,= [ (¢1;—di)dW;
DT Dt
+ (i —l)dW,
DL ADc
=0

Part (c) of Proposition 2.1 implies that if ¢ is adapted to more than one I the
stochastic integral (¢« W)' is independent of I' so that the superscript can be
dropped. Therefore, for ¢e# we can unambiguously define

po W=glc Wt+dlo W (2.3)

So defined, ¢ = W is a I'martingale and a one-parameter martingale on I” for
which a sample-continuous version can be chosen. Furthermore, it follows from
(2.5) that

(o W.(do W), Hr;rif d{ (2.9)

is also a M-martingale and a one-parameter martingale on I'.
MNext, we shall define multiple integrals of the form

o pefi= o o dp(l) dA(L) (2.10)

where g and i can each be W or the Lebesgue measure. Denote by # the space
of functions W, ., ({,{")eRZ , which satisfy

{a) ¢ is a measurable process and for each ({,) Yoo is F o
measurable.
(b) | ICADVEW: . didl <. (2.11)
R:Dxﬂm
For e the integral yo u i is defined as follows [6]:
(1) e is said to be a simple function if there exist rectangles A and B such
that {{,{eAxB=A[" and that y is a constant , on 4 xB and is zero
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elsewhere. For a simple function v we define
o p =g p(A)i(B).

(2) Denote by _.ﬁ" the space of functions v which are sums of simple
functions. For e o puj is defined by linearity.

(3) If ye# and =0 unless LA, then Yo pd is defined as the quadratic
limit of an approximating sequence in "

{4) Finally, for a general =38, we set

tr;:.c' =] I.L ':r} 'J!’;,.;'

and define Yepfi=youf.
Proposition 2.2. Let e and define

Xo= | o dWdW,

Rz= R

Y,,= J- fi’:.;'d{dm's
R:w Ry

Yoo= | W dWdl.
Rz x Rq

Then, X, Y, Y, are respectively a martingale, an adapted 1-martingale, and an
adapted 2-martingale for which almost surely sample continuous versions can be
chosen, Furthermore, let

filz, )= [ HEAL) g, - d W,
R

fizl)= [ HE AL 'J!";,.:' JW&,__
R

EL'{ZJ’];“RE HEAL Vg o dl,

g2(z, )= [ HEAL g o d L
Re
Then,
X.= J'fl[z,ﬁ'} d W
R

= [ falz, L) dW,
Ry
Y]== jglizsca]d‘lﬁ'
R
= [ falz.0)dL,
Bz

Yy.= [ g2z 00 d W,
Rz

= I j—l I:Z, C‘] d'f
R
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Proof. For fre# let {i,} be a sequence in # such that

[ — )%= J B0 =Wyl didl —=5+0
and define f), and g;, by using y_ in (3.8). Then

JE[J?MEE- O—=filz, O dL S W= I? =50
and

R_I E[gm{:! E}_gi{z1¢ ]2 d‘: EAT&E[R:} " Inﬂrn'_ Iﬁllz Wﬂ‘

Hence, if we denate X .= [ .0 dW,d W, then

Rz R

E[X.— | iz {)dW 12 S2E(X, — X,.) + 2 W —¥1* =20
R

Similarly,

E[Y;,— [ fr(z 0 A0 S2E(Y,.— Yy, +2Area(R) | — ¥ |* <= 0.
R-
These two cases are prototypical of all the others.

The martingale-properties can be proved using approximations, but they
also follow directly from the iterated integrals by using Proposition 2.1. Con-
tinuity is proved by showing that a subsequence of {i,} can be so chosen that
the resulting approximations of X and Y, converge uniformly almost surely,

Remark. Proposition 2.2 might be viewed as stochastic Fubini’s theorems.
If uss#; and v is MN-adapted, then -

X, =X+ [u d W+ o dl (2.12)
R

is a sample-continuous semimartingale on I As such the differentiation formula
for one-parameter continuous semimartingale applies. If we parameterize I' by
{z(0);0=1=1} then for a twice continuously differentiable function F

F{X:[rﬂ‘“ FiX,)=

=

F'X o) dX o+ [ (X} d (X XD, (2.13)
o

From (2.9} we know that the quadratic variation {X, X on I' is given by

(X Xow= 5 “,f df

Bzie

and (2.13) can now be expressed free of the parametrization as

F(X,)-F(Xg= [ F(X )dX,+% [ F (X )ufdl zel. (2.14)
M R
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Generalization to a collection of process X, of the form (2.12) follows in an
obvious way.
Let I' be an increasing path and consider a multiple integral

Yopji= o d p(C) d (L) (2.15)

Rzp#zg

where du(l), d{l)=d{ or d W) and e We can rewrite it as

Yeufi= [ W HEADdu(D) dall)
r@genf
+ [ e HCADY dp(0) d (D)
F=TE T

=§ [ e AL du) da(dh
R: T

@eDl

+§ [ e IEAL A dull). (2.16)

B U @CeDy

It follows that for every increasing path I'ib= WW can be expressed as
o WW=upo W (2.17)
while e Wy and gre up W (d u({)=d{) are of the form

e Wy

tﬁnﬂwzurn w+1;|r:>.u_, {213]

Therefore, a process defined by

X=X+ [¢dW,+ [B,dl+ [ o dWdW,
L& K

R-=R:
+ | fedldWet [ goodWdl (2.19)
L Regx By

where ¢pe ) and W, f, g3 can be reexpressed for any increasing I' as

X, =Xo+ [u(D0dW A+ [l d] (2.20)
R Rz

where ue #r, As such, X s clearly a sample-continuous semimartingale on I”,
Therefore, a collection of processes defined by

Xk:=an+jd}udm+jﬂﬁd|:
Ry Re
+ ] e dWdWet [ fioodldWe
Rz » R Rax Rz

+ [ gwgodWdl (2.21)

Eyx Ry
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can be reexpressed for any increasing path I’ in the form

Xie=Xpot Jul[dW+ [0 (L0dl,  k=12,...m (2.22)
R. k.

where w, (I z) and v, (I, z) are . -measurable for each zeR_,
If F: R"—R is a function with continuous mixed partials up to the second
order then the differentiation formula on I becomes

FIX)=F(Xo)+ [ B(X ) [w (L0 dW+u (L0 d(]
He
+3 [ B X o du (DO u L) dl (2.23)
B

where summation over repeated indices is implied.

The differentiation formula takes on a special form if I is a vertical or
horizontal path. Let If§ be made up of a horizontal line across the whole width of
R,, together with two vertical segments which connects it to 0 and z,. For
simplicity we shall call [} a horizontal path. Observe that for any zel, R, D¥
and {eR,={;={®z. The functions u, and v, in (2.23) can now be written
explicitly as

w5, 0=y [T AD g o d W+ fo g U]
Rz

”t{ﬂ:f:]:e&.;‘i‘g“:':r)\g B dWe. {2.24-1)

It is now convenient to adopt the notations
wylz, O)=u (I, {),
vz, D) =velli, £).
Observe that because of the term I({" AJ) in the integral
u(z, {)=w((@z{)
o(z )=n®z0). . (2.25-1)

The differentiation formula (2.23) now takes on the form

F(X.)=F(Xo)+ | (X 0. [tz {) dW,+u,(2,0) d{]
R:
4
+31 [ FolX e ulz O iz 0 e, (2.26-1)
L&
Similarly, we can define a vertical path I} and find

iz O =u 0, O=dp+ [ IEALD W d W + 8 o 4T,
K=

iz, O =01, =0+ I HIAD o dl
Rz
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MNow, v, and v, satisfy the conditions

ﬁ#[z! {:I :ﬂ#{mg'i* ':}
filz, {) =T(z@(,0) (2.25-2)

and the differentiation formula has the form
F(X)=F(Xo)+ | RIX gl (z.0) d W, +8,(z,{) d{]
&,

+1 [ B X.gg) t(2,0) itz {) dL. (2.26-2)
R

3. Likelihood Ratio Formulas on Increasing Paths

Let ({2.%) be a measurable space and {X,,zeR_} a family of measurable
functions. Let §,,=a(X,{eR,) and assume §,, =§F. Let & and &, be two
equivalent probability measures on (£, &) such that under #,, X is a Wiener
process. Denote the likelihood ratio by

as
LFE“{E
1}

ﬁn}- (3.1)

Then L is a positive [{E’E;,},&Pﬂ] martingale. In addition, we shall assume
Eol2<w, VzeR,, (3.2)
so that we can invoke the representation theorem of [5] and write L in the form

L=1+fadX,+ | fdX dX.. (3.3)
R: s ¥Ry
Whence it follows that L can be chosen to be almost surely sample-continuous,
The square-integrability condition of L is made necessary by the fact that unlike
the one-parameter case the stochastic-integral representation for Wiener-
martingales has been proved only for square-integrable martingales and not lor
martingales in general. Because of this, it is not yet clear whether all Radon-
Nikodym derivatives on a Wiener space are sample continuous. However, we
believe that the square-integrability condition (3.2) can be weakened and that
the form that we shall derive is valid for all continuous likelihood ratios,
Equation (3.3) can be put in the form

L.=1+ J'L;-.mu[z,{’}dX,:« (3.4-1)
L
with
1
uliz,{'}=L Lo + [T AL By dX(]. {3.5-1)
8= Bs
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Alternatively, (2.4-1) and (2.5-1) can be recast into the form

L=1+ [L.gii(z,0)dX,, (3.4-2)
R:

iz, )= (ot + II AL B dXp]. (3.5-2)

s

We recognize (3.4-1) as a representation of L as a l-martingale, and (3.4-2) a
representation as a 2-martingale. Since L. =0 almost surely, we can now apply
the differentiation formula (2.26) to In L_ and get

InL,= [u(z,{)dXp -1 [ u?(z0)dl
R Rs

=£xﬁ{z, {}dX,:——%ﬁ[ i*(z, 0 dL.

It follows that we have :
L. =exp{ fu{z {rdX, —:r]' {1l _{3-5-1}
=f-‘XP{iI:ﬁ(Z,EIIfiX.;—%ﬁ[ﬁ]{Z:Udi}- (3.6-2)

Equation (3.7) is reminiscent of the exponential formula in one dimension, and
indeed it is precisely that. We note from (3.5-1) that

u(z, () =u({'®z,(')

s0 that the exponent in (3.6-1) is a semimartingale on horizontal lines, Thus,
{3.6-1) can be considered a representation of L as a positive martingale on
horizontal paths, and (3.6-2) as a representation on a vertical path, Thus, the
similarity of (3.6) to the exponential formula for one-parameter Wiener pro-
cesses comes as no surprise. Indeed, the representation (3.6) can be generalized
to any increasing path,

Let I be an increasing path connecting the origin and z,. For any point
zeR.,, zr will denote the smallest point on I’ greater or equal to z. We say
{h:, 2R, } is Fr-adapted if for each z ¢, is ¥, -measurable. In Section 2,
stochastic integrals for {Fp-adapted integrands have been defined. Using this
definition, we can rewrite (3.3) for zel™ as

_—1+IL url{)d X, (3.7}

where (c.f, (2.200)
ur({)= U—-f l[ﬂg+ j ﬁ.:',{ f[ﬁ')’k{}d}f;.
Ty

+ | B ICADdX,]. (3.8)
=100
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Observe that only one of the two integrals in the definition of u; is non-zero.
For {eD}, '®{ cannot be in DI, and for [eD}, {®{ cannot be in DI. So
defined u({) is §,-measurable, and an application of the one-dimensional
differentiation rule to the path I yields

L,=exp{nf ur(l) er%RJ up(0) d{} (3.9)

for all zel.

Theorem 3.1. Let (2,5, %) be a probability space and {X.,zeR.} a Wiener
process. Let §,, denote the o-field generated by {X, [ <z} and assume F=§,,..

(a) Suppose 2 is a probability measure equivalent to &, such that the likelihood
ratio

d®
L.=E, {E'%x:}

is @,-square-integrable (i.e, Eq I} <00, Yz=<z,). Then for any increasing path I
there exists an §%-adapted process uy so that for all zel

L=1+ [u (DL, dX, (3.7)
Ra

and
L,=exp{ JurQ)dX;—} [ wb(Qd0}. (39)
: e
(b) Conversely, let I' be an increasing path and up an Fr-adapted process
satisfying -

| uf(z)d{ < oo almost surely #,.
Ry,

Define for zel
LZ=EXP{J“J"|:ENX{—‘%J up(l)dc}.

Suppose that E; L, =1. Then :gi

Eo(Lyy|§x)=L,. %o

Proof. (a) Since L, is a #y-square-integrable §§,.-martingale, we can write as in
(3.3)

L5=I+!l:¢|:dx€+' j- ﬁ,:,,:-dx,:rix,:a,
Rz Ry= Ry

=L, defines a probability measure # and

Define uy by (3.8 Then (3.7) follows. An application of the one-parameter
differentiation formula to InL, on I' yields (3.9).
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(b) Conversely, if [ uf({)d{< oo almost surely (%) then M, = [ ur()dX, is
R: Rs
well-defined as a local martingale on I' with

(M, M), = [up(Q)dl.
Rs

Hence, L, =¢"+~ ¥+ defines a probability measure if EL,, =1. Since

L.=1+ [ L, u{0)dX,
R

it follows that Eq(L_ | ,.)=L., almost surely.
Let V.= j al{d X —up({)d(), where 2 is a bounded deterministic function.
R:

Then, under #,, Y, can be considered a semimartingale on I, and the one-
parameter differentiation rule (2.14) yields

L: }‘;= !- L{r[m:":}"- }Er ui"{n:l dxl:
Rz

so that L, Y, is a #-martingale on I’ Therefore ¥, is a #-martingale on I This
gives us the interpretation

E[(dX;—ur(0)d0)| §.., =0
or
ur(Q) d{=E[dX;|F.e, - (3.10)

Specializing to horizontal and vertical paths yields an interpretation for the
functions u and i in ( .6) as follows,

u(z,{)d{'=E[dX;| ¥, 0.l (3.11-1)
iz, [)d{=E[d X (|, .- (3.11-2)

A more precise statement of (3.10) or (3.11) can be made as follows: For a
fixed I' define a ' -martingale Y by the property

E{Y(z2]|§. }=0 forall Zsz

This generalizes the concept of i-martingale (adapted or non-adapted). Now, a
precise statement of (3.10) or (3.11) is given by

Theorem 3.2, Let up, X, # and #,, be as in Theorem3.1. Then
Y=X.- [ur(0)dC

Ry
is a I-martingale with respect to P

Proof. Fix two points z=<z', and for {¢:a>z and 2=I'} define

M,= | Iz<{<2)[dX;—ur(()d(].
Ra



Likelihood Ratios and Transformation of Probability 297

Since M, is a #-martingale on the portion of I from z to z, we have

E{‘Hznl E:r} = M:r

Since M, = Y(z,z] and M, =0, the desired result follows.

Before proceeding to the derivation of a two-dimen$ional exponential for-
mula for L,, consider the special case where up({)= ¢, is independent of path. In
that case the formula (3.9) becomes

L==&1P{ﬁ[ @cd}f{—% 5 ¢c2 dl}
=z Rg

which being path independent is already a full-fledged two-dimensional expo-
nential formula. Needless to say, the condition that u be independent of path is
a severe one and the circumstances under which this obtains will become
apparent in the next section.

4. A Two-Dimensional Exponential Formula

The exponential formulas for the likelihood ratio given by (3.6) and (3.9) are two
dimensional in form, but clearly one-dimensional in spirit. Our next objective is
to derive a formula which is inherently two-dimensional. The starting point is
(3.5-1) and (3.4-2). Observe that (3.4-2) is in the form of (2.20) for a vertical path
so that by considering (3.4-2) on a vertical path through ', we get

Lpge=Lp+ [ H{AL) Ly (0" ®E,{)d X, (4.1)
R .

If we denote

};.E' Fﬁ{-’ +£ I{l: /'l'\'ﬁ_q} ﬁ,:_;' dX{ {4.2_]'

then (3.5-1) acquires the form

)= (=) Yuc- (43)

as

For a fixed {', Ly g, and Y, ;. are 2-martingales, and we can apply (2.26-2) to get

u(z, )= (L! +[ICAD) B dX,

I (LAL) "*’*‘ Log #U'®L DX,

lE.'I

@) Py d]

{@{

+51{¢m[ ’“’;‘] Lo ('R, dL.
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Observe that because of the term I{{ AL") in the integrals, we have
u(z, {)=ull'®z ()

so that

Y, ;
25 (@, ) = u({' B, ).
[l 14

Then it follows that we can write for z>('

ule,)=0c + [ IEAD) PG, 1IAX BT ®T,0) ] @)
He
where
.
&, = 1‘.11 O o 45
p=u(l’, ) (Lc) (4.5)
and
o6, 0)="2 w0 94,0 “6)
rad

B}r. symmetry we can also write
iz, ) =0+ [ IEAL) p(L, () d X,
R
—RI IEAD) o, DY@ 4L (4.4-2)

Equation (4.4-1) yields
Wz, () =042 [ LA (0@, p (O dX — (' @, dl]
Rz

+ [ IEAL) P 0L ’ (4.7)
R

Putting (4.4-1) and {4.7) into (3.6-1) yields
L=exp{ [0, dX —} [62dU'~% | pPQL)dLdl
¥ Rs

R:* K.

+ [ pll.OVAX,—a({'®L D dLdX, —u(l'®L ) AT} (4.8)
R-=R.
which is the two-dimensional exponential formula that we have sought.
Given p and 8, (4.4) can be viewed as a pair of linear integral equations with
unknowns u and . Indeed, if we set u{a®b,a)=hia,b) and d{a@b, b)="hia,b),
(4.4) can be rewritten in the form

hia,b)=hola,b)+ |  Gu({{VA(E,0dLdL,

Bage™ Bamp

ha,b)=hola,b)+ [  GLOVR(C, 0 deaL.

Raan* Rg@p
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If p is bounded then so are G and G, in which case Picard iteration converges,
and the existence and uniqueness of h and h are not in question. Therefore, if p
is assumed to be bounded then {4 8) can be viewed as an expression of L_ in
terms of 8 and p.

Summarizing, we have the following:

"

Theoremd.1. Let {L_,zeR_ } be an almost surely positive square-integrable mar-
tingale defined on (£, %) where § is generated by a Wiener process
{X.,zeR. ). Let Ly=1. Then, there exist functions 8, p, u and i satisfying (4.4)
such that L, can be expressed by (4.8). Further, L satisfies

L,=1+ L 6,dX,
Rz

+ jn Loge[pC.O)+uil @O @ 0] dX dX,. (4.9)
Razx e
Conversely, let 8, be an §,,-measurable function defined for zeR,, and
glz,2) be an §,...-measurable function defined for all z, 2’=R, such that z.Azl
Suppose that {4.4) has unique solutions for w and & and when @, p, v and @ are
substituted into (4.8), it yields an L, satisfying E; L, =1. Then, L, is a positive
martingale which is the unique solution to (4.4). :

Corollary. Let {X.,zeR, } be a Wiener process defined on (2,1, %) and denote
Foo=0(X;,(<z). Let @ be a probability measure on (Q,&) such that the re-
strictions of P and &, to §,., are equivalent. Suppose that the likelihood ratic

dF*

L;.- - E|I:I E:!)

is @, square-integrable. Then, it satisfies (4.8) and (4.9).

Proof. The fact that L, satisfies (4.8) has already been proved by the steps
leading to (4.8). To obtain (4.9), we return to (3.3) and use (4.5} and (4.6) to
identify  and f. Finally, to go from (4.8) to (4.9), we rewrite (4.8) using (4.4) to
get back to (2.6-1), viz.,

L==E1p{leu[z,uf']:z'X{.—%iuz[z,{’]d.-:‘}.
If Eg L., =1, this implies (3.4-1), ie
=1 +J Lyg.u(z,{)dX
Now, we can use (4.1) and (4.4-1), whence [4.9) follows.
We observe that if p=0 then (4.8) degenerates into the form given at the end

of Section 3. In that case u(z, [)=1(z,{) =4, and u, is indeed independent of the
path. This situation arises when and only when L, satisfies the equation

L., L+jHLdXJ— ol 5 e

2% Ry
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5. Interpretation of the Functions 8 and p

The interpretation of 6 comes immediately from those of u and # and the
relationship 8({)=u(L,)=4({,{). We have from (3.11)

B()dl=E(dX|§.;). (5.1)

The interpretation of p is more obscure. A hint as to what it should be comes
from cump:’iring (4.9) with Equation(4.12) of [4]. (In the latter equation the
factor § is due to a slightly different definition of the stochastic integral of the
second type.) These equations are similar, and the comparison suggests that
while u and & are conditional expectations of d X given o-fields of various kinds,
p should be the covariance of such conditional expectations. Specifically, we
should have

u({'@C, () dl=Ed X |F. a0 (5.2-1)
@O Al =Ed X F.r a0 (5.2-2)
p(L.0)dldU=E[dX—a({'@LONd X —u({" DL D) &0 o) (5.3)

for all £, {" in R, such that {A{". We note that because [ AL", '®{ can be
replaced by { v (' as is done in [4].
To verify (5.3) precisely, we must show that if

L= | fCOHMEX—a({'®L0d0]

EBg= Ry
[dXp—u(@E ) dl]—p(L 0)dL AL} (5.4)

where f i3 any bounded deterministic function, then Y is a weak martingale with
respect to ({§,.}. #), or equivalently, ¥, L, is a weak martingale with respect to
tHAR ;?u} To do this we follow the pmczdure of Section 2, by first writing Y,
and L, in the form of (2.22) for I and then representing the integrands as
stochastic integrals of the form (2.24-1).

Define

v(z,{)= | I{iA:‘JI[;,-Q’}[dX{ =@, 0 dl], (5.5-1)
R

wi(z, ') jf{,»’k WD)

[u{'@L N X —al" @, ) dl) —pll, 0 dL]. (2.6-1)
Then,

Y= [ [v(z,{)d X, +w(z,{)dl]. (5.7-1)
Ra -

Similarly, we can also write

Y= [ [8(z.0) d X +W(z.0) d{] (5.7-2)
Ry
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with

Bz, )= [ ILAD) S ONdX p —u(l'®L, 0 4T, (5.5-2)
R

wiz, )= [ ILAD)S(LL)
Re
ARl @LOMAXy —u(l'R ) A) = p(L, ) dT'). (5.6-2)

Using (3.4.1) and applying the differentiation rule for l-semimartingale, we
get

L. Y,= | Lyg.[v(z{)+u(z,{) Y 5.]dX;
R,
+ | Lpg [wiz {)+ulz,{) v(z, ()] 4T (5.8)
R.
From (5.5-1), (5.6-1) and (4.4-1), we get
w(z, I +ulz, ) v(z, ) ¥
= [ ILAL) (L @R, L) p(8, Y+ 218 OVl @, L]
Ry
[dX—a(l'®L, () dl].
It follows from (4.1) that

Log [wiz,{)+ulz,{) v(z,{')]
= [ I{AL) Lege[@{uv+w)+{vp+2fu)] dX,
R,

where the arguments of the functions in the integrand are ({,{") for f and p,
('@, for w, v and w, and ({'®L, L) for i, Thus, (5.8) can now be written as

LY= J Lyg.[v(z.0)+u(z,l) Y9 dX o+ Rj Gz 0 dX,.
Symmetry dictates that G(z, {) must be such that
LY= RI!L;f@,{v{z, O+u(zl) YoedX,
+ [ Liac[0(z.0+(z0) V.ol dX; (5.9)

which is clearly a weak martingale with respect to #,.

6. Random Signal in Additive White Gaussian Noise

The following situation often arises in signal processing problems. The obser-
vation is represented by a process £,
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L.=0.+n,

where ¢ is a random process representing the signal and # is a white Gaussian
noise. To deal with such a model, we can integrate both sides of the equation

and get

X,=[8,dl+W, zeR, (6.1)
Rs

where X represents the observed process and W is a Wiener process. Let
(L2, %, 2°) be the probability space in which the processes X, f# and W are defined.
For problems in signal detection and filtering it is useful to introduce a
probability measure &, on (£, %) with respect to which X itself is a Wiener
process.

Lemma. Let (2, §, #) be a probability space and let {{,,zeR,} be a family of o-
fields such that 8, is §.-measurable for each z and {W,,zeR, )} is a standard
Wiener process with respect to {.}. Define

Vi=exp{— [ 0, dW,—4 [ 62 d() (6.2)
R, Ry

and assume that |6 (w)|=c for almost all ({,w). Then for a=1 we have

e

1<EVi<exp [( )H Area{R,]]. 63)

—a
2 s
Proof. Using the differentiation rule (B.2-1), we can write

Vi=1— Vg, O dW +4(a? —a) | 87 V5%, dL.
R * Rs

Now set
I(z)=1 if sup(Ve,)2n
=0  otherwise
and define
Vee=14(2) V..

If we denote

U“=Exp{— ,[ H{ I‘,‘E-@Z] d“’z-—i' J. H{l In{‘i.@z}di}
R, R

then because [, (z)=1 implies I ({@z)=1 for all { in R,, we have
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Vie=L(2) Vi=1{z) I}
=0
=1- | Uia. 0, (L @z} d W,
Ee

+3He? o) | Ulre, 82 1, ({®2) dL
Ry

j -.@sﬂrdﬁi"'ﬂﬂ ""1}!-'9 nc&:d'r

and
E[{umzél'i'%[az'_x IE r!-.ﬁs
or

EVs £I+—{|:c rc:}r_[EV,t,,dcr

n,st =

and
o
Eﬂ“xrﬂexp?{uz—&] ts

and the right hand side of (5.3) follows from Fatou's lemma,
Since J'E [V%: 6% d{ <o, the stochastic integral [ V%, 6,d W, has zero
Ry

mean 50 that

EVEm143(?—a) [ BB Vi) dl2 1.
L

Theorem 6.1. Under the conditions of the above lemma, define a measure &, by
AP, '
kel ey v
de¢ =

where V, is given by (6.2). Define X, by (6.1). Then,

(a) &, is a probability measure,
(b) X, is a Wiener process under &,

(c) &~ and
dZ
ﬁ—a}tp{ _F lq dX _ER'EUHC dlz {6.4}

Proof. (a) From (6.3) we have EV, =1. Since ¥, is clearly positive, &, is a
probability measure,
(b) To prove X, is a #,-Wiener process it is enough to show that

Egexpi | u{amg}#xp{—éj () di)

Rzy



304 E. Wong and M. Zakai

for all bounded deterministic w. Now,

Eqexp{i [ u({)dX }=E[V, exp{i [ u({)dX}]
3

By 0

=’31P{—%R_F u({)dl} E[exp{— [ [8,—iu({)]dW,—3 | [6;—iu({)]* dL}].
I R R

o 0

Since u is bounded (by u, say)

Iew{—ﬂf (6, — iu({)] JHE—%RI [6;—iu(()]* dl}]

In

=[V, lexp[} | u*(0) d{I =V, exp{}uj Area(R,,)}.
Rz,

Hence,
exp{— [ [8;—iw({)]dW,—% | [0, —iu({)]* dC}
Re R

is a square-integrable #-martingale and

Eoexpli | u(()dX ) =exp{~4 [ u3(0)dl}
R

L T

as was to be proved.
ic) Since X is a #,-Wiener process and # is bounded

S-=exp{ [ 64X~} | 6} d0)
z B Ry
must satisfy {3.3} withk: E;, replacing E and % replacing V.. Thus,

E, (Vi) =1

In

and part (c) 1s proved.
MNow, let §§,. denote the s-subfield generated by {X,{eR.} and denote

i?
L.=E; |-— : :
= Eo (T 5-) 65)
Let
l . . 4
A,=—=éxp{ [0,dX,—} [ 6240} (6.6)
I{; Rz ’ R=

which is of the form (3.8) with p=0. Hence, (3.9) and (3.4) yield
Ay=1+ [ A B dX+ [ ApgclfpdX dX, ' (6.7)
Ra

Ryx Ry

which was also derived in [4].
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Mow, denote
diL|2)=E(6;] §..) (6.8)
and
R(L,L'|2)=E[(6;— (L |2))(6,. — 0(C"|2))].

Then our principal results on the likelihood formulas can be summarized as
follows:

Theorem 6.2. Under the conditions of Theorem 6.1, the likelihood ratio L, defined
by (6.5) has the alternative representation

L=1+[LAOI0dX,
R

+ | Leg0¢I®DACIC@D+RE IR dX, dX,. (6.10)

Rz R

and
L,=exp{ﬂf§[{|.:}dX;-—%jr?’{ﬂ{}d{—é I} RI{E,C'IE'E;DHJE'
2 Rg

K= R,

+ [ RGUI®DEX -0 @D d[dX — | @ d T} (6.11)

Re= B

Furthermore, the conditional mlamem i satisfies the equations
i1 @) =010+ Ei HEALD) REGEIC @[, — 010 @0 dL]
Bl z@0 =010+ [ IEAL) RGO @A X o — B |0 @) AT (6.12)
R ;

Proof. First, we note that L,=E,[A,|%.]. Hence, from (6.7) we have

L =1+Ey J- O A dX (| %]
E

Z0

+Es[ | 0,0, Ag dX dX | %]

R,DKRSD

Let S, be a sequence of rectangular partitions of R_, ie,
S.={05} (i =(a™ b
with

max(max(af}, —af"),  max(be, —b{) =0,
f i)

For {={!% denote .{1{={§_‘§:'},£}'1’ 1,j+1)- Then,
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Eo[ | 6, A,dX,|%. ]=E,[limq.m. Y 0 A X(4)1#.,]
R

o R=m el

=limqm. Eo[ ¥ 6 4 X(d)| %]

A= & Lely

=limqm. } Eq(f; A;|%.) X(4).

H— Fef,

Write &, =5, v # . Because under &%, X is a Wiener process, & and # are

&, independent. Hence,

Eo(6; Al #zp) = Ep(8; Af| )
=010 L.
MNow, rather than defining dic [£) as a Radon-Nikodym derivative of

;;[A}=£E{[m]?(dw]l, AeFy

with respect to 2 for a fixed {, define #({|{) as a Radon-Nikodym derivative of

JA)=[8(z,w) P(dw)dz, AeG,
A

with respect to d % d z measure, where G, is the o-field of (z, w) sets generated by
{4 ) progressively measurable processes. Then, # is by definition progressively
measurable with respect to {$#,} and

Eol [ 8, A,dX | %, J=limqm. ¥ §(|0) L, X(4])
R, A-m g8,

= [ QI L d X
Ry
Similarly,

Eol [ 00p Apgrd X dXp|%,]
Bog® Ry
=E,[lim g.m. ‘Z_ 8,0, Apgp X(AL) X(AD)|F.]

Lal
[ a7

=limqm. } Eo[f;0; Apqfl %.] X(40) X(40)
nmm g

LC'e5n
=limq.m.} E,[6; 8 Ap gl Fpar X (4) X(AL)

M= a0

=limq.m.} L g; E[6; 6;| Fp o X(40) X(4L)

A= m

= [ LoglfilII'@0CIC®D+RECII®D]IdX dX,.
Ry w Ry !

Hence, (6.10) is proved, and (6.11) follows from (4.8) if we compare (6.10) with

(4.9],
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We note that the functions #, 1 and @ in (4.9) are now identified as follows:
B =8(L10),

w(l'®L L) =0 I'@0)

a({'®@L D=0 @)

Therefore, (4.4) takes on the form of (6.12).
Finally, if # and W are jointly Gaussian under £ then R({,I'|{"w{) is a
deterministic function. By using (6.12-2) in (6.12-1), we get for z, >z,

0(z]z,,25) =0(z|2)

+ [ [R@ zlzx OLdX,—B(C|0) dC]

0 zz

-{ [?Rf{’,zlzxc*}

faRg {'mizg,z3) LO
RILLIC %) dca} I RATIT I

which is a linear equation in {f(z|z,,2}), zeR,,, z3>z,} with a deterministic
kernel. Hence, given {f(z]z), zeR, )}, {0(z|z,,25), zi>z,, zeR, )} is uniquely
determined, and by symmetry so is {f(z|z},z,), 2} >z, zeR, }. It follows that
{L.,zeR, } is completely determined by fiz|2), zeR,. This implies, for example,
that a detector for testing between the hypotheses:

H: X,= | ¢,d{+ W, and W is a Wiener process,
Re
H,: X, is a Wiener process

can be implemented by a filtering operation which yields 8{(z|z), zeR,, . Equa-
tion (6.12) represents a constraint on the various conditional moments. The
existence of such a constraint is surprising and could hardly have been predicted
a priori. As such, (6.12) has considerable interest in its own right.

We observe that a natural concommitant of the likelihood ratio formulas is
the behavior of martingales under such transformation of measures. Theorems
of the Girsanov type [2], representation theorems for martingales and weak
martingales are all to be expected. Much of this body of results is already in
hand and will be reported in a subsequent paper.
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