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Abstract

The purpose of this paper is to unify results
from three separate and at least superficilally un-
relited subject matters, namely, team decision
theory, market signaling in economics, and the
‘clagsical Shannon informatien theory.

1. Introduction

The study of the interaction between informa-
tion and decision in many-perscon optimization
problems called team theory was infciated by
Marschak in the '50's. More recently, this has
been extended and unified with work on decen-
tralized or nonclassical stochastic control theory
which emphasized the role of information structure
in problems involving dynamies, or sequential order
of actions. During the same period sporadic and
not too successful attempts have been made to re-
late Shannon's information theory with feedback
control system design. Again with the recent
maturity of control theory &s a subject in applied
mathematics, the two disciplines begin to exhibit
much closer connection than heretofore displaved,
e¢.g. the Viterbi algorithm and the Kalman-Bucy
filter, the recent work of Whittle and Budge [9].
Lastly, one of the current interests in mathematical
economics is associated with the role of informa-
tion in organizations and the market place.

Various Iinteresting phencmena arise as a result of
imperfect or incomplete information in person-to-
person interactions. The purpose of this paper is
to attempt to weave a common thread among these
three apparently unrelated subjects: team theory,
market signaling, and information theory. While

no particularlysignificant new results are obtained,
we believe the conceptual unity displayed here is
new and hopefully will lead to much future coopera-
tive efforts among researchers in these different
fields.
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2. Fundamentels of Informatiom Structure and De=-
centralized Decision Making

There are five
theory.

basic ingredients of decision

(1) The state of the world € = [E PR el (B b
which can be thought of as a vactur 8f randem
variables defined on a probability space
having a density (or distribution or measure)
P(E). E represents all the uncertainties in
the problem under consideration, e.g. unknown
iritial conditions, measurement molse, uncer-
tain parameters, ate.

{2) 4 set of decision variables u = [u -s ]eU
each representing one decision mak&r (oM™
One person making two decisions at different
times is regarded as two DMs in this setup.

(3} A loss (pavoff) function which is a measurable
function of u and E i.e. L{u,E). We assume L
is expressed in appropriate utility unics.

4y A aet of information functions z = niE)ed
n, (EY, ... S {E}], one for each DM. Im

othe} words z —n (E), what DM, knows, is in
general diffareni from z,, what DM, knows.
Alternatively, in place juf n{E), &E can be
given subalgebras induced by the n's o0 the
underlying prebability space. The set of n's
or the suha}se ras a knoun as the information
Sstructure o e pru

{5} A set of strategies y = [Yl,,.,,Tm]cT, une_far
each DM, where v, is a mapping from the =
space to the u -épane Thus, each DM must
choose actions m R {z.) based on different
information. 1: is in tﬁis sense the problem
is decentralized.

Since for fixed vy, E[L{u = y{n{g)),£)} is well-
defined” and depends on y, we can state the decision
problem as

Min J(r) = Min E[L{u=y{n(£)),£)]

a deterministic optimization problem in the T-space
which is usually taken to be the space of all

m o
measurable functions from F = igl Ui to Z = igl Zi.

®
provided, of course, v and n are appropriately
measurable functions
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This problem is known as the static team
problem. Tt is static in the sense that informa-
tion &, available to DM  depends only on . The
evaluakion of posterior probability such as
plEfz,) can be separately carried out from the
probleém of chogsing the actions u,. However; in
general when different DMs act at different times,
information =, received later by DM, may be
dependent upoii the action u, of DM f who acted
earlier. Thus, in general jdeﬂisi problems,
we must consider

(4)'z = n{E,u) = [n1{$.u}....,nm(E,uJ]

where n must satisfy some causality conditioms [1].
When the team problem is characterized by the in-
formation structure (4)' instead of (4), it is
called a dynamic team problem [53]. The word
dynamic is used to indicate the presence of

order of actions of the DMs.

A superficially simple example which we shall
use throughout this paper is now stated below.

Let £ = [x,v] where x ~ N(0,1) and
v & N{0,0%), x,¥ independent.

z

(6) L{u,E) = % (x + au, + buzjz +-% cuy

4y, b, ¢ > 0

zl-x

=gx+hu, +v g,h>0, h =ga

2 1
One interpretation of the example is that x is
the initial condition; the state after DM, acts
is x Ex + au, gimilarly Hy =X + buz; z; iz

1

the measurement of the initial state by s and
z, 1z a noisy measurement of a linear transforma-
tion of x, = x + au, by DM,. The objective is

to minimiZe the findl state x, and the energy,

aor prBr,%-cui of DHl.a control-theoretic
problem. HNote that this information structure

is dynamiec and that DM, can signal or control the

knowledge of x to Dt-l2 through his action ul-Tl{x}.

A rather different interpretation can be given if
we take a =g =0, b =-1, h =1, In this case,
DM, , lmowing x, is trying to transmit a decision
u.+ subject to energy constraints, through a noisy
media so that can act based on g, in order te
minimize the difference (distortion)“between x
and Yo If DHl is called the "apcoder™ and DM
the decoder",” then the' information-theoretic
gignificance of this interpretation is obvious
[7]- In any case, this example appears to be the
simplest type of team decision problem which in-
corporates dynamic information structure*[2] and
all its attendant complexicies.

With regard to the general team problem, the
conditions for optimality are (letting m = 2 for
simplicity)

¥
dynamic in the sense of (4)7.
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Find Yf.vg ¥

(P-1J
JOrfard)as Jlvyavy) ¥ oypay, €T

A necessary condition for Tf and yE to satisfy
(P-1) is that they solve

etk
Find v§,v% 3
- w ek 3
(P=2) JOfav8) = Ilvysvy) ¥y e T
& ik %
JOFv8) £ JOrfoyy) ¥y e T
which is known as person-by-person optimality (pbpo)

or equilibrium solutions. The reason for the latter
terminology becomes clear if we realize that, in

- general, DM, need not necessarily have the same

loss functiton or criterion of performance as DH2'
For i=1,2, let J, be the priterion of DM,, and
let J.#J.. No conceptual difficulties a}a in-
volved 1f we extend (P-2) to

&l
Find v§,v} ¥

(P=2)"' JI(*E’?E} = JI(TI:TE} ¥y, el

* * *
thflﬂz} 2 1,0%y,) ¥y, el

This iz known as Mash equilibrium in the parlance
of game theory. If J_#J_, the problem is called
a momzero-sum (NZS) g&ma? If J ==J, & J, the
problem is a zero-sum (Z3) game becduse JI+J2-0'
(F-2)" becomes

Find (v{.v}) ?
(P-3)
w W ark w
J{Tl:-'l'z} = J‘:Tl!Tz._} = ‘-T‘:Tll'fz:’

the saddle point condition. With this condition,
the example problem now admits a game-theoretic
interpretation. DM, wishes to act to cancel out

x without using too much energy, but his action
reveals the knowledge of x to DM, through =z,: BHQ
wighes to maximize the terminal State x + aul + buz
which he can do if he knows x well.

More will be gaid sbout (P=2)' amd (P=3) later
on in sec. 4 and elsewhere [3]. For the moment let
Us return te (P-1) and (P-2)}). The principal dif-
ficulties introduced by dynamic information
gtructure (4)' are twofold:

{1} The observation z, is not & well-defined ran-
dom variable u.ntif the strategy 1 iz gpecified.
This makes the various probabilit¥ measures
required in the solution process sclution-—
dependent. There is & vicious circle and
the problem of estimation is no longer
separable from that of control.

(ii) The optimization problem TH%n J(Tl'TE} is not

necegsarily convex im vy, . ll'ﬁis ia because ¥y
enters in J(y ,1(2('-,'1)) glzo through Yz{zz} =
12{53: + h\rl (x‘} +7%), Since there iz no Feason



to expect y, to be convex, there is no
assurance tﬁat J is convex in Yy even though
L may be comvex in ug -

Both difficulties were. fully investigated by
Witsenhausen [4] for the case of (P-1) with a = g
= h = 1. BSince his seminal work, other efforts
have been made to isclate cases where these dif-
ficulties can be circumvented [5]. In fact, it
can be argued that whatever success we have in
optimal stochastic control theory is based on
the exigtence result under the special informa—
tion structure of perfect memory which bypasses
the above mentioned difficulties [6, p. 461].

3. Signaling and Information Theory

In view of the difficultlies mentioned above
and in [4], it is somewhat surprising that, in
fact, something can be done for (P-1). Suppose
we take instead the information-theoretic
interpretation of the problem (6} with a = g = 0,
b==1, h =1 (the problem in [4] is the same
except that a = g = 1), but with average signal
power constrained to be less that or equal to
1 (that is, choose ¢ in (6) appropriately). Then
the problem becomes#®

2
TT%$2 E[{x—yz(;1{1}+VJ} 1
s.t. E[y;(x)]7 <1
(a)

with zl .= x
-
Zz 'I.ll L'
with optimal solutions ?i(x} = x and Tﬁ{zz} =

E(x/z.) = 1 25+ But (A) is recognized as

2 1+32 B
a special case of Shannon's Iinformation-theoretic
problem involving & memoryless Gaussian source
and an additive memoryless Gaussian channel where
the source rate and channel rate are equal. In
the language of (A), this means we require the
dimengions of x and u., if regarded as a vector,
to be equalf{and in thid case of (A), equal to 1} .
The encoder v;{z,), and the decoder y (z.}, are
instantaneous and ]Iinear. Here is & siiua ion
where information theory provided a solution to a
dynamic team problem which, in the absence of this
knowledge, would have been most diffieult te selve.+

This interesting connection between team and
information theory can be further exploited by
conaidering several wvariants of (A). First, con-
gider the general case with dimension (x) = n
and dim {u,} = m. In other words, the source
has block }Ength n and the channel block length
m. - Then (A} becomes

*a gimilar setup has been proposed by Witsenhausen
[7], Whittle and Rudge [9], and Wyner [&]. ;

*
There exist no general sufficiency conditicns to

verify tlﬂ.e ogtimal:[.ty of a solution besides the
Shannon bounds.

Min %‘E[{x¥2{Y1(X}+v)]TiH—T2{T1Ex}+v)}]

W
p I 1 T
B.Ea ;EITL{}:} Yl(x}]_,':_l
i 11 .
z, = x =l JA : » X, % N(0,1), x, and x

1 + F . £ i B

(a)' independ
. i pendent for ig¢j
In
U1t %91
Ty =upw=| . M) . v 5(0,07),
*w z' v, and v
Y - Yim independént for
i%g

The variants of (A)' thaf we will consider are as
follows:

general n and m

(a-1) 9
let n+e=, but e constant .
(4-2) n=m
(4=3) n=1, m=2
(A-4) n=2, m=1
: : {x ]
n=l, m=2, but z =
. 1 =
(A-5) -
Then W= Tll(x} :
Mg = Ypalazgy)

Problem (A=1) is a statement of the well-known
Shannon information theory problem [8, p. 911]

where one is only concerned with the rate of
information transmission(n/m = constant) but

initial delay is acceptable (m*=). The optimum
performance (minimum distortion) J* is known and

is obtained when one equates B__(B), the equivalent
source rate for a given distor g, to the equiva-
lent channel rate Eeéu} for a given signal power
level a [8]., That is, J*=f#%, where p* is defined by
R (f*) = C (o). However, the encoder and decoder
(%a,y*) pai?qto reallze J* is still unknown.
Pr%hlgn (4-1) can be generalized considerably by
allowing memory in both the source and the channel.
But even with memory, within the linear (memory
structure)-quadratic (distortion)-Gaussian (source
and channel) setup (LOG), the minimum distortion
can still be obtained from Shannon theory (see
Whittle and Rudge [9]).

Once we leave problem (A-1), it may be argued
that we have entered the realm of "real-time infor-
mation theory." In problems (A-2) through (A-3),
we are not allowed to encode a large number of
messages (x's) together before transmission.
Arbitrary delay is not permitted. Equivalently,
the block length is fixed. . The emphasis here is
more decision-theoretic. However, much information-
theoretic insight can still be borrowed to provide
solutions or partial selutions to these problems,
as the following discussion will show.
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As mentioned earlier, Problem {4-2) corresponds
to the situation where the channel rate and source
rate are equal. The asymptotic results are the
game ag if the vector, or block, lengths are £ixed:
the optimal encoder and decoder are linear [9],
[21]. This is not true if n#m, as will now be
discussed.

Problem (A-3) is the prototype of situations
where one is allowed to signal more than once for
each piece of information he wishes to send. In
the language of communication, we are allowed to
trade bandwidth for performance. Both of the fol-
E
X
The latter clearly shows tha

lowing are optimal linear strategies: u =
and u = ﬁux.

the only gain is in Increasing power amnd not in
making use of the expanded bandwidth. Hence,
far better nonlinear strategies must exist, and
a construction of a near-optimal strategy in the
gmall noise case can be obtained by using
Shannon's twisted modulation idea [22], [23].

It should be pointed out that the optimm J* is
not even known in this case, although a lower
bound is possible via the Shannon theory.
Whether or not a better bound :is possible with a
different definition of mutual information in the
gpirit of Ziv and Zakal [10] is an open question.

Problem {A-4) is thé opposite of (A-3) and
is representative of source coding, where data
compression is desired. In many respects, it
is similar to a problem in optimal quantization.
From topological comsiderations, we know that If
the mapping is to be invertible in the absence
of noise, then it cannot be comtinuous. Hence,
even without considering the effect of noise in
detail, we know that an optimal mapping must be
nonlinear*. Similar remarks on J* apply here as
in (A-1). :

Problem (A-5) is the same as (A4-3) except that
noiseless feedback is allowed. is allowed to
send the second signal based om x dnd =z_.. It turns
out that the solution to this problem is known.

The best (Y*-Yﬁ) ig linear for (A-5) and realizes
the Shanpnon bound in real time [11,.12, 13]. The
golution consists of sending x as the first signal,
then sending an amplified inmovation term
z-E{xIaZ z v which iz independent of z,, as the
second S5Ignal, resulting in Epy ™ kv + Vo where
2 :

s (1+g )1f2

- 4 :
E(k"™v") = 1. Heuristieally, this result can be
understood in terms of our knowledge of (A) where
dim x = 1 = dim u. Since the innovation term is
independent of the first received signal Zg90 the
gender, in sending the second signal, ESSER%S.E]..L]"
faces a new {A) ctype of problem which is knowm to
possess linear solutions. Roughly speaking, we
have transformed via noiseless feedback a problem
of wnequal source and channel rates to that of
*Sge the Appendix for examples of (A-3) and (A-4)
where explicit nonlinear schemes are illustrated
and which are better than the best linear
schemes.

is the amplification factor such that

equal rates.

4, Zero—and Honzero—Sum Versions of Sipnaling

While none of the results in the previous
sections taken by themselves are particularly
significant, taken together they do provide con-
giderable ingsight inte the relationship between
nonclasgical decision and control theory on the
one hand and Shannon's information theory on the
other. We see how knowledge in one subject pro-
vides solutions in another. In fact, results in
(4-1) - (A-5)} form a significant portion of all
the nontrivial knowledge concerning explicit
solutions to dynamic information structure problems.
Information-theoretic results play a crucial role
in the solution or partial solution of these
problems. On the other hand, viewed in this light,
we alsp rerlize that the information theory
problem is a very special kind of problem in
dynamic teams. In a sense, it is the simplest
kind of such problem: omnly two DMs are involved
and are explicitly and exclusively concerned with
signaling. As we have mentioned briefly din
section 2, 2 nmatural gemeralizatiom to other
classes of dynamic infermation structure problem
exigt. This development will be pursued now.

Once we consider the nonzero- or Zerp-—sum
version of the signaling problem, (P-2)' and
{P-3) beceme the governing conditions of optimality.
This permits & considerable simplification. Either
one of the two inegualities of (P-2}' or (P=3)
defines a one-person decision problem for fixed
strategy of the other DM, The difficulties of
golution-dependent convexity discussed in section
2 are largely ameliorated. One still has to
solve a pair of implicit equations im (v ,v,). But
this is a much simpler task as the discussion below
will show.

A current problem of interest in economics is
that of market signaling by Spence [14]. Imn terms
of our basic formulation, the problem cam be stated
as follows. An emplover must hire someone for a
job without knowing how prodective that individual
will be. In other words, the employer has imper-
fect information about an individual's ability.
Spence suggests that the employer can improve
his information by looking on the job application
for some signal, such 83 educatiomal level. The
employer offers wages based on the sigmal he
sees; that is, a person with more education is
offered higher wages, because the employer believes
that the higher education indicates higher ability.
The individual applying for the job, on the other
hand, knowing he will receive wages based on his
educational level, must decide how much education
to get, taking into consideration that education
is costly. Let DM, = all potential employees con-
gidered together, = the employer, x = an
individual's ability” (known to that individual,
but not to the employer), uy = educational level,
and u, (or u, + noise) = wages. The payoff or
loss Eunctinn of is [x=u ]2; he does not wish
to overpay or underpay with Eeapect to x. The
payoff of DM is simply the net profit uz-r_‘{ul,x}
where ¢ is the cost of signaling. Thus, we have
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precisely the following example, where the
appropriate optimality conditions are (P-2)'.

max J; = E[Tzizzl - EF¥1(21},X}]

min J, = Elfr,(z,) - x}zl

{B) { where =

1

2

pix,v) Given

X

or u, + v

= 1

|

4 reasonable specisl case of (B) is for efu %) =
u

u_l’ plx,v) = plx)p(v) each being s wniform dis-

tribution, U, = a discrete set, and I.T2 = R+.
Under this a%d other similar set-ups, equilibrium
solutions T*,Iz can be obtained. The details
and acnnmﬂii terpretations are available
elsewhere [3], [21]. Two noteworthly features

of the solution are worth mentioning.

(i) There are multiple equilibrium solutions
(T*]_'Y*}' This is a phenomenon that seems
to ucgur only with dynamic information
gtructure. Essentially, the equilibrium
conditions are not sufficiently constraining,
go that a large number of (y,,y,) pairs can
gatisfy them. It is for the same reason
that team solutions satisfying (P-2) do not
usually produce solutions which also satisfy
(P-1) in the case Jl =J,. (P=2) is far
from sufficient a nnn.dil:%un. On the other
hand, in static tesm problems, (P=-2), under
reagonable conditions on J, often turns out
to be necessary and sufficient [2].

There are threshold phenomena in market
signaling. If the cost of signaling is too
high, or the signaling channel too noisy,

or the underlying sigmal x itself too pre-
dictable, then signaling will suddenly cease
altogether, i.e. u, = 0. This phenomencn
may be due to the fionzero—sum nature of the
problem. In the cooperative case of informa-
tion theory, it is always worthwhile to send
some message, at least in the Gausslan case.

{1d)

= -1,

Finally, we can consider the case of J
} "anti-

Ag dascribed earlier, we have a situation o

signaling". A prototype problem can be formulated
by slight modification of {(6)

Find the saddle point pair (T*,TE} for

1 2 ol ok G

Liu,£} = 3 (x+au1+bu2) + 7% "3 Y%

Z. = X
€< *

zZ, = BX + hul + v

g, b, 8, h > 0 c, d =0

x v N{0,1) v H{D,Uzj, x,v independent

{C) is different from (&) only in the addition of
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the - L u2 term in L{u,£) and maximization with
respect t0 u, =y_{(z.) instead of minimization.
addition to fhe gdentags of solving only for
equilibriwm solutiong, we have the added structure
of J. = -J,. Any saddle point solution is as good
glnbilly a; any other solution on the product set

of admissible {Yl,v ) solutions by virtue of inter-
changability [15, p’ 66]. Linear or affine saddle
point strategies can be obtained for (C). In faet,
{C) can be generalized considerably to include

state (as well ag information) dynamics resulting

in a stochastic differential game problem and soclved
gimilarly [16, 17]. Other non-LOG setups are also
possible [18, 19]. The underlying idea of solutions
is apparently a tradeoff between "revealing
knowledge of % through ul“ vs. "achieving some
desirable payoff thrnugh-ul“.

In termg of information-theoretic ideas, a
possible further tie with discussion in this paper
is through the problem of crytography [20] which
clearly embodies the concept of "anti-signaling".
However, we shall leave the formulation and unifica-
tion of these ideas to future work of interested
parties.

In

5. Conclusion

The previocus discussions can be summarized
in Figure 1. Considerable obvious and easy
generalizations of the results to {(A-1) - (A=5)
are pogsible., However, nothing conceptually
new is added.

Several conclusions can be drawn from this
study:

(1) Simple two-person decision problems with
dynamic informatiom structure have many
interesting areas of application, such as
real-time (fixed block length) encoder and
decoder design, economic theory, and (pos=
sibly) cryptography.

(ii) Dynamic Information structure leads to a new
kind of deterministic optimization problem

in which composition of functions is involved,
namaly, J(y_ .¥.{y.)). HNo reasonable algorithm

seems to ex s:zfo; this class of problems.

Figure 1 follows the references.
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Appendix®

I. _l.'_'g.\-]-}: One Sample to Two Signals Encoding
apd Decoding

x e N(0,1)

LT 'H{CI,UEIE}

Iivide x into four equiprobable regions, as
shown in Figure 2. TFor the encoder, let u11
represent the region ri(x) that x is from
and u, be a linear transformation of x in a
stretcﬁe& out version of this region (see
Figure 2). More precisely, uy = crix) and

2x
Uy, = B{_E + 5 = Ixr(x}),

whare ¢ and B are chosen so that the power con—
straint iz satisfied. Let the estimates ba:

f = arg max p(tfizl}, Zyy = er + vy

plxl
- 2 3 4
* 5
\-_——1,-'-_":1“—""_"0“‘— “ph — =
=ET
L T
- o -
- 3
- > A
I .
- . - Uy
=8 4] B
FIG.2 STRETCHED MAPPING OF x TO TWO DIMENSIONS
+
i B P
Then inverting the expression for Uyg vields
u
A 12 -
£ = 2 (: 5 5 + 2F)

For small nolse, the mean square error distortion
with this scheme iz better than with any linear
schema,

II. (A-4): Two Samples to One Signal Encoding

and Decoding

x v N(0,I) v v R(0,00)
Transform £, £o Ei - % tan_l X i=1,2. Then
8; e [=1,1]%

*SEﬁ Appendices III-B and III-C in [21] fer
details.

Map all points in the resulting square to the dotted
lines.r = 1, 2, 3, 4, as shown in Figure 3, where

T

1 lew<-3
2 Lo g, =0
- 2 2=
&,) =
s 3 0 < <-l
#2272
4 T8kl
 Ga

rel

Efm ]
-
]
,—.3/_______% ________ o
E 4}
1T, S I I —
-4
L
=2
e e e Y e ——
a

FIG. 3

* &)

TRAMSFORMATION OF SQUARE TO DOTTED LINE

Straighten out the dotted line and compress it to
fit into the interval [=1,1], and call the variable
U, az showvm in Figure 4. Then it can be shown that

u

1
Let the estimates be d, = z, = 4. + v and
1 1 1 1
1 if f<ﬁl
21f 0= 4@ -:l
s 1-2
31f-%<ﬁliﬂ
R 3
4 4f ﬂl = 2
P
{-1) {4&1-5+ﬂr}, -1 E_ﬁl =1
31 = =1 . ﬂl 4 =1
1 i ﬂl > 1

=1 reinT o
it [{=1) B +5 ar].

so that 8 e [-1,1]. Then let 0, = (5-2¢)/4 and
Again, gur small noise,

= /2 dan 8., 1=1,2.

i
t%e mean squard error distortion with this scheme
iz better than with any linear scheme.

8=l

8 =1

gy =1 By==1

F
=1

ﬂl"‘
4
+ 1

-k a

i 1

n 2 FI - | :

red

FIG 4
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