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This paper explores an approach o queseing problems vsing the recently developed
calculus of martingales, Specific results developed in this paper include a general formula
ar virtual waiting time, and the formulation of an optimal control problem an queues. A
problem of aptimal contral with quadratic cost is solved.

1. Introduction

Standard approaches to problems in queues and congestion have been
primarily analytical rather than stochastic. By this, we mean that the analysis
is focused at a very early stage on distributions and averages rather than on
the processes themselves. Recent advances in martingales theory [1-4] have
made available a stochastic calculus for jump processes, which in turn makes
possible a new approach to queueing problems emphasizing the underlying
processes [5].

In this paper we shall introduce this approach by using it on a number of
relatively simple problems in queues. We should emphasize that the main
advantage of this approach is not so much in getting closed-form solutions as
in allowing more general problems to be formulated and analyzed. In
particular, problems involving feedback can be formulated with ease, thus
allowing optimal control for waiting line problems to be considered in a
natural way.
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2. Martingales and Poisson process

Let (1, % %) be a probability space, and let {#, t =0} be an increasing
family of sub-e-fields. A stochastic process {X,, t =0} is said to be adapted
to {F,t =0} if for each ¢ X, is F-measurable. We say {X, F,1=0} is a
martingale if

E(X..| #)=X. with probability 1 (2.1)

for every ¢, s =0. It will be convenient to assume all processes to be right
continuous,

We say {N, t =0} is a counting process if Ny =0, and N is constant except
for a finite number of jumps of size 1 in each finite interval. We say
[N, F,t =0} is a standard Foisson process if N is a counting process and
{N.— 1, #F, 1 =0} is a martingale.

A process {f,, ¢ =0} is said to be adapted to {F.} if f, is F -measurable for
every ¢, It is said to be { &} predictable if as an (w, 1) function it is measurable
with respect to the o-field of (w, t) sets generated by all left-continuous and
adapted processes. Let {f, t =0} be an integrable {#} predictable process.
Then

x=3h- fas @2)

EE1

where the summation is taken over the jumps of N, is an {%} martingale. It
is convenient to introduce the martingale

g =N —1 (2.3)
and write (2.2) as a stochastic integral
x.= [ f.da (2.4)
41

The martingale property of X then follows immediately from the definition
of stochastic integrals.
One can easily verify that the martingale definition of a Poisson process is
consistent with the usual definition of a Poisson process. For example, write
gt - = Z I:E..NJ 2 equ_}

EE1)

— ZE"N"I:E" =1j

L1

=f e"“*-(e“—l]ldq,+f ere(e* — 1)ds.
] a
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If we define F(u,t)= Ee*™, then we get
Flu, )= 1 = (" —1}'[: Fu,s - )ds
which yields the generation function

ST Y
Flu,t)=e*"""=¢'> e =5

3. A Model for single-server first-come-first-served queues

Let X, Y, 1 =0 be a pair of independent standard Poisson processes. We
assume that both X and Y are right continuous and denote by #,., &, and
F, the respective o-fields generated by {X,, s =1}, {Y. s =t} and the two
together.

Consider a single-server queue with Poisson arrivals at rate 1, and with
exponentially distributed service times, again at unit rate. Let the system
begin at = ( with no one in the system, and let Z denote the total number
of customers (waiting and being served) in the system at time t. The process
Z can now be represented in terms of a pair of independent standard
Poisson processes (X, Y) as follows: Let X represent the arrival process so
that the positive jumps of Z are given by the jumps of X. Similarly, the
negative jumps of Z can be represented by a Poisson process Y except when
Z 15 zero. Henee,

A [ 1(Z,)dY, (3.1)

where 1{z)=1 or 0 according as z is greater than 0 or equal to 0. More
generally, let f(1,z) be continuously differentiable in ¢, and let f(1,z)=
a/aif(t, z). Then

f0.2)- 10,0 = [ f(s. Z)ds + S5 2) - f(s. 2.

when the sum is taken over all jumps of Z. Separating the positive and
negative jumps, we get
f{;,z,}nf[ﬂ,ﬂjzf f{s.z,jds+f [f(s,Z.- + 1) - f(5 Z,-)]d X,
(1] (1]

+J:II (s Zo—1)~ fi(s; Z-)| (2. )d Yo (3.2}
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Although the integrals in {3.2) can be interpreted as Stieltjes integrals,
they are more usefully interpreted as stochastic integrals. If we introduce the

martingales
q:1=x-a_;p Q‘,.:Yr—h
then (3.2) can be rewritien as

L}
il

fleZ) - f(0,0)= J'“I f(s.Z.)ds + J [f(5, Z.- + 1) - f(s, Z._)]ds
+[ sz~ 0= fs 22 s
+ [ 18 2+ 1)~ (5.2 )1 dg.

+f [f(5 Z-— )= f(s ZNUZ g, (33)

where the last two integrals yield martingales.
If we take f(Z,) = e™® and G(a, 1) = Ef(Z.), then (3.3) immediately yields

Gla,t)-1=(e" - 1}J" Ga, s)ds + (e - 1}fr G(a, s)ds

i nﬂ Pu(s)ds,

where FPu(s})=Prob(Z, =0). The unknown Pu(t) can be determined by
requiring that G(In z, 1) be analytic on the open disk | z | < 1. This procedure
yields the generating function for Z, which is well known and of no
particular interest in this paper.

The process Z, defined by (3.1) can be viewed as the standard queueing
process from which other queueing process considered in this paper will be
derived by a transformation of the probability measure.

4. Transformation of probability

The objective here is to define a queueing process corresponding to
general arrival and service rates. We shall do this via the standard process
introduced in the last section,

Let (£, & ;) be a probability space on which a pair of independent
standard Poisson processes (X, Y) is defined. Let F =o(X, Y.s=1). A
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process ¢y, is said to be adapted to {3} if for every ¢ & is F-measurable. A
process {¢, 1 = 0} is said to be predictable (w.r.t. {F}) if as an (w, 1) function
it is measurable with respect to the o-field generated by all left-continuous
adapted processes.

A positive random variable = is said to be a stopping time {of {F}) if
{w: T{w)=1} is F-measurable for every ¢ Let L., denote the set of all
predictable processes ¢ for which an increasing sequence of stopping times
T, exists such that lim, ;. 7. == as. and for each n

Ej"m.Jdum_

Let A and p be two positive processes in L,. and define
A =TTaTT exp[—f IR -2]1:!5} (4.1)

where 7 and s denote the times of jump for the two processes X and Y.
From the work of Doleans-Dade [5], we know that A, is the unique solution
to the integral equation

A,

1+ [ Au_[(A, = 1)(dX, — ds) + (u, — 1)(dY, — ds)]

1 +J AT = 140 + (s — 1)44u] (.2)

which implies that {A, %} is a local martingale, i.e., there exists an
increasing sequence of stopping time 7, such that =, 1 = and for each n
{A . F} is 2 martingale,

Let A =lim_. A, and assume E,A =1. Then we can define a new
probability measure 2 via the transformation

dP _
4P, A (4.3)
in which use A, = Ei{(A | %) are just the likelihood ratios corresponding to
%,. Brémaud [1] first suggested such a transformation as a means for
constructing generalized Poisson process, and he showed that under the

@ -measure
X,—j A.ds, Y, —f . ds
i i

are local martingales. This justifies the interpretation of A and p as rates for
the processes X and Y under 2.
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Once X and Y are constructed, (3.1} again generates a queuging process
Z with X and Y representing the arrival and service processes respectively.
Since the arrival rate A and the service rate u are allowed to be any L.
process for which E,A.=1, we have defined a queueing process of
considerable generality. In particular, the fact that A, and g, can depend on
{Z,5 =1t} allows control problems to be considered in a natural way.

Let ¥, =o(Z,s=1t) and denote

L, = Ea{A, | F.). (4.4)

It was shown in [2] that L satisfies the integral equation

L= 1+ [ L[~ 1)dgu + (- = DIZ-Mg, ] (4.5)
where

A =E(x| F) (4.6)
and

=Bl | Fo) (4.7)

“are predictable processes by construction.
If A, and g, are known functions of {Z,, 5 = t}, then L, is a known function
of {Z,, s =t}. Indeed, by the formula of Doléans-Dade, we have

L= [1 Aot exp[ - J: [(A = 1)+ (d, - 1)1{2,-}];13} (4.8)

where 7 and o denote the times of the positive and negative jumps of £
respectively. Given any %, -measurable random variable &, the formula

Ed = E L

provides, at least in principle, a means of computing E¢ by using the known
distribution of Z relative to the %, measure.
Alternatively, (4.5) can be combined with (3.2) to yield

AZIL = (0= [ LK [Z-+ 1)~ f(Z.-)lda.
+ @ lf(Z- = 1)~ f(Z.)]dgy,
K f LoAMf(Z-+ 1) = f(Z.)]

+ i [f(Z.-= 1) = f(Z.)]U(Z,- ) ds (4.9)

‘which in turn yields the formula
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Ef(Z)= [+ [ B2+ 1) - (2]
+iL[f(Z,--1) - f(Z.)UZ.-)lds. (4.10)

If A, and 4, are functions of only Z_, then (4.10) gives rise to the
Kolmogorov differential-difference equation usually encountered in the

queueing literature.

5. A formula on virtual waiting time

Let o, be the time that a customer would wait before he is served if he
joins the queue at time + , is called the virtual waiting time [6]. Suppose
that at time ¢ there are n persons in the system. Then =5, is of the form

n=2ntn—(—1) (5.1)

f=1
where 7, 72, ..., 7. are the service times of the n persons in the system at 1,
and 1, is the time at which service began for the person being served at 1. A
sample function of n is illustrated in Fig. 1. The jumps of n occur at the
arrivals, i.e., the jumps of X. Between jumps 7, decays with slope — 1.
Therefore, we can write

n=Fa- [ 1zZ3s (5.2)

isr
where @, is the service time for one arriving at s and the summation is taken
over the jumps of X. Tt is tempting to write (5.2) as

m= J'n % —L' 1(Z..)ds. (5.3)

However, &, is not % -measurable and it is not clear that the first integral in
(5.3) can be interpreted as a stochastic integral. Of course, it can always be
interpreted as a Stieltjes integral (which is just (5.21)) this does not make
available the martingale calculus for computing En..

K

Fig. 1.
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Theorem 5.1. Let G, = F,.v F... Let P, and P be defined by (4.3) and (4.2).
Suppose that (a) p, is F,-measurable, and (b) Ea,_A, <=. Then 7 is a
(# {G.}) semimartingale and

En = Jﬂ Fu(s)ds — 1 +J” E(a,-A,)ds (5.4)
where Py(t)= P({w: Z(w)=0}).

Remark. (a) Equation (5.4) generalizes similar formulas derived under more
restrictive conditions. (See e.g., [6].)

(b) The condition that g, is F,.-measurable is a non-trivial condition. It
means that the service rate u, cannot depend on the arrivals. In particular,
this condition excludes the case where p involves feedback so that u,
depends on {Z, 5 =}

Proof. First, we observe that «, is the time interval between the Z,-th and
(Z, + 1)-th jumps of Y after «. Hence, a is G,-predictable. Under @y, X and
Y are independent standard Poisson processes, so that (X, — 1) is a (P, G.)

martingale.
Now, @ is defined by (4.3), and we can write
d® .
P A =A.rA,
where

A exp”' (In AdX, — (A, — I]ds]]

and ;
Ap = exp{ﬂ [InpdY, — (g, — l}ds]}.

Under condition (a), A,- is G,-measurable for all ¢ Hence,
g = Eu(A | G.)= A=Ed(A- | G).

Because A,- satisfies

A-=1+ rm,(is - 1)d{X, = 5)

and (X, — 1) is a (P, G,) martingale,
EoA:~ | G)= Eo(As= | F) = Aw

Therefore, g satisfies
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g =Apdy = -"1-)"[1 +I Au(A = 1)A(X, —J)]
I :

= Sn"‘J;I S,{J’l, = ]}I’.{{X’ = S;].

It follows from the results of Van Schuppen and Wong [7] that X, — [ 4, ds
i5 a (P G,) local martingale. Let {5.3) be rewritten as

o = J‘ a,-(dX, - A.ds)+ f A ds — '( 1{Z, )ds.
L1l L]

o

The first integral 15 a (P, G,) martingale, Therefore,
Ex, =f El(a,-A)ds —f E[1{Z.-)]ds
(] ]

and (5.4) follows.

6. Optimal control for queueing processes

In this section we shall consider the problem of controlling a queue by
ahserving the past of the queue-length and by varying the service rate. For
simplicity we will consider the case of a constant arrival rate, but peneraliza-
tion to any Markovian arrival process poses no difficulty. Related results
have also been obtained by Boel and Varaiya [8].

Let (§2, #, @) be a probability space. Let X, Y be a pair of processes
representing the arrivals and the service processes respectively. Let Z be the
gueue-length process defined asin (3.1). We assume that under 2, Xand Y
are independent standard Poisson processes. Define

pi= I v I mrenp| - [ 0+ = 2)07] 6.1)
e i
where A, = A has been assumed to be constant for r £[0,1].

Let %, = a{Z,.5 =t). A nonnegative process u with value in £ CR is

said to be an admissible control if it is &, -predictable and satisfies

Ewpofp)=1. (6.2)

We denote the set of all admissible controls by 4. We say an admissible
eontrol is Markov if there exists a measurable function [ such that

o= fln Z). (6.3)

We denote the set of all Markov contrals by At
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If w is an admissible control, then we can define a probability measure #,
by

o= ol (6.4)

The cost is then given by

1 1
Hu)= E“J c(s, Z.-, b, )ds = Eq [p;'}[ c(s Z,.-, p,,}dsJ, (6.5)
(] L]
The control problem is to find an admissible & * such that

J{p*)=inf J{u ).
HEN
First, we shall try to determine an optimal Markov control. Define
1
W, = inf E, [J (5, Zoey s )d5 | .ﬁ;_]. (6.6)

oL R

" Since dP, [dP,= pi(w), we have

w =zziE°{p°{”L{{:f{ il

= int Eufpl0) [ €62 p)ds | Fu ). 67)

Since p is Markov in (6.7) and Z is Markov under #,, W, is a function of Z_
and not of its past, i.e.,

W, = V{1, Z.). (6.8)

From (6.6) we can write

f4h

1
C{Ssz:—s#r}di +J- ‘:{5: zr-1 Pl's}ds | gﬂ'"}

r+h

wiz= g

= int E, “Wc(s, Z, . w)ds + V(t+ o Zoo) | il-]

wEH

or

infiE: [[ Vit +h Zeas)— V(L Z,0)]

==}

+f+hc[3, Z.,p)ds | 9,,_J=n. (6.9)
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The differentiation rule (3.2) now yields

V(+ b Zin) = V(6 Z)= [ (V)6 Z)ds + (M2 M2)

(6.10)
where we have adopted the notation
(L)t 2) ='£-V|{a‘,z}+ A[V(Lz +1)— V(2)]
+ [ Vi z —1)— Vit z)]1(z) (6.11)

and

M* = j [V(s, Zo + 1) = V(s Z)JdX, — Ads)

"eps J’ur [Vi5 Zi-—1)— V(5 2. )W Z)AY, — p,ds).

We note that M% is a local martingale respect to (%, %, ). Therefore,
using (6.10) in (6.9), we get formally

B U:'“{{_sfﬂwu, Z' Y+ ela Zos V] | ?,.,} =0

nEA
ar

i {q_nf,v:](r, Z )+ et Zooy i)

e
r4+h
+Eg [ (G V+a)s 20~ (B + )0 Z-1ds) =0,
Hence, continuity of £,V + ¢, yields the Hamilton-Jacobi equation

inf {(LV+e)z)=0. (6.13)

[I= ]

In turns out that if (6.13) has a solution, then it is not only an optimal
Markov control but optimal in general,

Theoretn 6.1. Suppose there exists a continuwously t-differentiable function
Vit z) which satisfies
EViLz)+elnz,v)=0 forall v €3,
FENV(L2)+e(tz,o)=0 for v=p*1z), (6.14)
Vil,z)=0
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where ¢ is a non-negaitive function. Then, p*(t, Z,_) yields an optimal contral,
ie.,

J(p*)=minJ(u)= V(0,z).

Proof. Let J; denote V({}, z}. Then

= Ju = EFLI dVisnZ_ }=E, U;I (£.V)(s, Z,)ds + (MT}}
[
T Bt E,L[L' LV(s, Z,)ds +_,wf}.

Using {6.14) and the fact that M* is a local martingale, we get

Tar,
= EU LV(s, Z,)ds + ,w,:,,,} =

_— E_['LIHHELV{;,Z,_N;] <E, [Lm'c{s,zj-.y,}ds]

for an increasing sequence of stopping time 7. T . Letting n —= yields
!
Ju = E.‘j c(s Z,-p, )ds

with equality for g = u ™.

7. An example
Consider a cost function which is quadratic in the control, viz.,
c(r,z,;x}=§;+f(az}. (7.1)
Equation (6.14) becomes for this case
TV 2)+A(V(hz+1)- Vi 2)]+f(t2)
+ min [U[V{!, z— 1= Vi, z}]l{zj+:—2] =0

which vields
o oprhz)= —LAY V(L z - 1) = V(L 2))1(z)
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and V must satisfy the differential equation
LV 2)+ AV 2 +1)= V2)]+ (1 2)

= 1(2)[V(Lz—-1)=- V(t,z)f=0. {7.2)

with ¥V(1,z)=10.
We observe that if
flt,zy=al(t)z®+ B()z + (1) + 1{z)d (1)
then (7.2) vields a solution of the form

ViLz)=a(t)z*+B(t)z + (1)
provided that d{t) bears a certain relationship to a and b Specifically, by
equating like terms, we gel

a—Aai+a=0
E—AaB+(b—1)+(aA +17=0
v+AB+c=0

d =128 - a).

The first two equations can be solved for @ and 8 in terms of @ and b. The
next two equations determine y and d. The optimal control is then given by

p(t2) =327z )[2ez + (B — )]
For example, suppose that a =1, b = ¢ = 0. Then we find

a(t)= — 1 tanh A (1= 1)

,B[I}EJ Eﬁiﬂ-ﬂ—-} [Aa®(t")+ 2Aa (1)) dt’

cosh A(r

= —H‘mh——f—_—ﬁ{sinh At = 1) = tan~"[sinh A (¢ = 1)]
+2—2cosh A(t — 1)}

1
y0)= [ A8@)ar
ks N __ - .
- In[cosh A(r = 1)] [Ian sinh At = 1)J

+%tan"sinhﬁ[r -D+2(1-1)
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and

d(t)=2-(B - a)

_—1._.___ =1ya: Ly T i F3
= ot A= lj[tan (sinhA{t = 1))+ 2cosh A (t — 1) —2]%.

In the average number of arrivals in the interval [0, 1] is large, say A =10,
then d(r) is nearly zero throughout the interval [0, 1], which means that the
control

p(,2) =5 A%1(2) (202 + (B - a)]

is very nearly optimal for the guadratic cost function

clt,z, ut=pul+z%
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