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TRANSFORMATION OF LOCAL MARTINGALES
UNDER A CHANGE OF LAW!

By JAN H. VAN SCHUPPEN AND EUGENE WONG
University of California, Berkeley

Girsanov showed that under an absolutely continuous change in prob-
ability measure a Wiener process is transformed into the sum of a Wiener
process and a second process with sample functions which are absolutely
continuous. This result has a natural generalization in the context of local
martingales. This generalization is derived in this paper, and some of its
ramifications are examined. As a simple application, the likelihood ratio
for a single-server queueing process with very general arrival and service
characteristics is derived.

1. Introduction. Let {W,, & ,,0 < t < 1} be a Wiener process defined on a
fixed probability space (Q, %7, &7). Let A(¢) be defined by

(1.1) A(g) = exp {§s 6. dW, — % §; 8, ds}
where {¢,,0 < t < 1} is a measurable process adapted to {5} and satisfies the
condition

(1.2) (¢, ds < co, almost surely.
If EA(¢) = 1 then
dz”
. == _=A
(1.3) =A@

defines a probability measure &', Girsanov [6] showed that the process
(1.4) W =W, — \tp,ds

is a Wiener process with respect to & measure. It should be noted that if &
is any probability measure equivalent to & then it is necessarily of the form
(1.3) [5].

Recent results on continuous parameter martingales and local martingales
have made it clear that Girsanov’s result has a natural generalization in the
context of local martingales, and the statement of the resulting generalization
may even be simpler. The objective of this paper is to obtain this generalization
and to investigate some of its ramifications. The special case of continuous
local martingales was discussed in [107.
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2. Local martingales and stochastic integrals. Let (Q, &, ) be a prob-
ability space, and consider an increasing family of ¢-subfields {&,, 0 < ¢t < oo}.
We shall assume {_&,} to be right-continuous, i.e.,

ns>t'-g-;='—g-‘t’ 0§I<OO.
A positive random variable 7 is said to be a stopping time of {F} if {w: 7(0) <
t} e &, for every t. For a stopping time 7, & will denote the o-field of all
events A for which

Anfo: (o) < tle F,.
We shall say {_&,} has no time of discontinuity if for every increasing sequence
of stopping times {z,}
Flime, = Im F_ .

A process {X,, 0 < t < oo} is said to be adapted to {7} if for each X, is .7 ,-
measurable. Now let 57" denote the g-field of subsets of [0, co) X Q generated
by the family of all left-continuous processes adapted to {&,}. F#-measurable

(¢, ») functions will be called predictable processes.
We shall adopt the following notations and definitions:

(2.1)  _# = {the set of all real-valued right continuous processes M,
with left-limits and adapted to {7} such that
M,=0 and EM,,,| ) =M, as., Vs>0}

22) A ={Me _# and M sample continuous};

(2.3) AP ={Me _# and sup,.. EM}? < o};

(2.4) A, = {M: there exists a sequence of stopping times ¢, 7 co
such that M, = M,,, e # for each n};

(2.5) A, = {Me A4, M sample continuous};
(2.6) A2, = {Me A, M™ e_#* for each n}.

Elements in _#; _#,,, etc. will be referred to as martingales and local mar-
tingales respectively, with adjectives continuous and squareintegrable added as
appropriate. Note that _#Z;, C .#,, since one can always take r, = inf {¢:
|M,| £n, Vs <t} for Me _Z,.

If X e _#, then there exists a unique predictable increasing process (X, X
such that X* — (X, X) e #,,. If X, Ye _#, then (X, Y) is defined by

LYY =HX+ Y, X+Y)—(X—Y,X— V).

Kunita and Watanabe [7] introduced the process (X, Y) and illuminated its
role in the stochastic calculus associated with _2,.

Two local martingales X and Y are said to be orthogonal if their product XY
is again a local martingale. Now, denote

2.7 A, = {Xe A, : X orthogonal to every element of _#} .
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Then, every X € _#,, has a unique decomposition

(2.8) X=X+ X¢, Xee AL, Xbe #2,.
We can now define the increasing process [X, X] for every X e ], by

(2.9) [X, X], = (X, X, + Zose (BX7)

where the summation is taken over all points of discontinuity of X and AX, =
X, — X,_[9]. For X, Y e _+4,., we set

X, Y]=HX+ Y, X+ Y]—[X—Y,X— Y]}.
If X, Y e _#2 then both XY — (X, Y) and XY — [X, Y] are local martin-

loc
gales. Hence [X, Y] — (X, Y is also a local martingale. The main difference
between (X, Y and [X, Y], when they both exist, is that (X, Y is predictable
while in general [ X, Y] is not. We note that given [X, Y], (X, Y is characterized

by the properties:

(a) (X, Y) is predictable,
(b) [X, Y] — (X, Y) is a local martingale and
(c) <X, Y) is of bounded variation.

This allows us to generalize the definition of the process (X, Y} to those cases
where X, Y are not in _#Z2,. Let X, Ye_#,. Then, there exists at most one
predictable adapted process of bounded variation (X, Y) such that [X, Y] —
(X, Y is a local martingale [2]. This serves to define (X, Y) whenever it ex-
ists. Later, we shall give some examples of cases where (X, Y is well defined,
but X, Y ¢ _#2.

Let %7 denote the set of right-continuous, finite, increasing processes adapted
to {#,} and set F= {B: B= A" — A~, A%, A~ € ¥'}. Semi-martingales are
processes of the form

(2.10) X,=X,+ M, + B,, Mec_#,Bec Z.

If M e _#,, instead of _#; we shall call X a local semi-martingale. The repre-
sentation (2.10) is by no means unique. However, the continuous component
Me of M is independent of the decomposition. Because of this we can define
for local semi-martingales

(2.11) [X, X]t = <Mc’ Mc>t + Zast (A’Ys)2 .

The definition for [X, Y] follows in the usual way.
For a local martingale M a salient feature of the definition of a stochastic

integral
(H : M)t = 53 HadMa

is that H . M is again a local martingale. For this to be possible H must be a
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predictable process. Define the following classes of integrands:

(2.12) Ly = {all predictable H: there exists a sequence of stopping
times 7,1 co such that sup,, L solH,,.,| < oo
foreach n}. Processesin L, aresaid to be locally
bounded.

(2.13) L M) = {all predictable H: {3 H?d{(M, M), < oo, almost surely}.

THEOREM 2.1 [4]. If Me _#,, and He Ly, there is one and only one process
H . Me _#,, such that
(2.14) [H .- M,N],=\{H,dM,N],, VNe #, -
If Me #3, and He LM), there is one and only one H - M e _#2, satisfying
(2.14). Further, the existence of {M, N) implies the existence of (H - M, Ny and
(2.15) (H - M,N), =\t H d{M, N), .

We note that if Me _#,, n Z#and He L, then H - M is againin _#,, N <&
and the stochastic integral coincides with the Stieltjes integral. If Me _#,, N
<7 the Stieltjes integral §¢ H, dM, may well exist even if H is not predictable,
but the Stieltjes integral is no longer a local martingale and the stochastic
integral is not well defined.

If X is a local semi-martingale
(2.16) X, =X,+ M, + B,, Me A, Be B,
and H ¢ Ly then we define the stochastic integral H - X by setting
(2.17) (H-X), = (H. M), + \i H,dB, + H X,
and H - X is again a local semi-martingale. For local semi-martingales X and
Y, we have

(2.18) [H-X,Y], = \{H,d[X,Y],.

If X is a local semi-martingale (by assumption right continuous) then X,_ is
a locally bounded predictable process. If y: R — R is a twice continuously
differentiable function then y(X,) is a local semi-martingale and we have the
differentiation formula

(2.19) r(X) = 1(X) + §67'(X,) dX, + § §i7"(X,) d{X°, X0,
+ Lose [1(X) — 1(X,0) — 7'(X,0)AX,] .
An interesting special case is -
(2.20) XP = X2+ 2 §5 X,_dX, + (X, Xy, + 3, (X,
= X + 2§t X,_dX, + [X, X],
which shows that if Xe _#,, then X* — [X, X]e _#,.
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Equation (3.14) can be extended to a function of a vector valued X,. How-
ever, the only special case that we will need is
(2.21) XY, = X, Y, + §¢X,_dY, + §{Y,_dX, + [X,Y],.

3. Transformation of local martingales. If {W,, &,,0 < t < oo} is a Wiener

process and ¢ e L*(W) then a simple application of the differentiation formulas
(the original Itd version will suffice) shows that

(3-1) A, = exp (§i ¢ dW, — § §i 6. ds)
must satisfy
(3.2) A, =14 §iA,0,dW,.

McKean [8] showed that (3.2) characterized A, and Doléans-Dade [3] has
extended the result to local martingales.

THEOREM 3.1 (Doléans-Dade). Let X be a local semi-martingale such that
X, = 0. Then there is one and only one local semi-martingale A which satisfies

(3.3) A, =1+ §§A,_dX,
and it is given by
(3:4) A, = exp (X, — 3<X%, X))o [1ase (1 + AX)e™ %

ComMENTS. (i) It is clear from (3.3) that Xe _#{,, implies A — 1 e _#,.
However, stronger conditions do not always lead to stronger conditions on A.
For example, Xe _# does not imply A — le 2 If Xe_7, it is not even
known if A — 1l e _Z2,.

(ii) It is clear from (3.4) that for A to be strictly positive almost surely, it is
necessary and sufficient to require
3.5) AX, > —1 with probability 1 for all .

If A is a uniformly integrable positive martingale (not merely a local martin-
gale) then
(3.6) A, =lim, A,
exist and E(A,|.%,) = A,, a.s. It follows that EA,, = EA, = 1. Given such
a positive martingale (A,, {<#}), we can define a transformation of the prob-
ability measure 2 by the formula
a7 _ A .
a7
We note that .&” is equivalent to Zif A, > 0 for almost all w(F-measure).
Our primary interest in this paper is to investigate the transformation of local
martingales when the underlying probability measure undergoes a change of
the form given by (3.7).

THEOREM 3.2. Let M e #, (F, {F,}) be such that the solution A, of
A, =1+ §iA,_dM,

(3.7)
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is a uniformly integrable positive martingale with respect to (Z, {F}). Let & be
defined by (3.7). Let Xe #,(F, {F}). Suppose the process (X, M) exists,
then
Z, =X, — (X, M,
belongs to ;. (T, {F,}). Furthermore, if (X, M), is sample continuous then
[Z, Z] = [X, X] under either probability measure.
Proor. Because

B(Z,,|5) = E(Ami,h |57
t

to prove Ze A, (F, {F)), it is sufficient to prove ZA € A, (F {F ).
Since Z and A are both local semi-martingales with respect to (&, {F}) we
can write
ZAN, =\ Z,_dA, + SEA,_dZ, 4 [Z, A],
=\tZ,_dA, + \§A,_dX, — \§A,_d{X, M), + [Z, A], .
We can now use (3.3) to find [Z, A], and get
Z AN, =\ Z,_dA, + SEA,_dX, + SEA,_d{[X, M], — (X, M)}
+ §§ A, d[<X, M), M], .
It remains only to prove that the last term is a local martingale.
Since the continuous local martingale component of (X, M is zero, we have
[KX, MY, M], = 3},<. (AKX, M) ,AM,) .

We note that (X, M) is of bounded variation so that A(X, M) is certainly
locally bounded. Further, since (X, M) is predictable its jumps occur at pre-
dictable times. Hence, {;A{X, M) dM,* is a compensated sum of predictable
jumps and is equal to 3, (A(X, M),AM,). Therefore, [(X, M}, M] is a local
martingale with respect to (&, {&}) and §§ A,_ d[{X, M}, M], is also a local
martingale. The proof that Z is a local martingale with respect to (&, {#})
is now complete.

To prove [Z, Z] = [X, X] when (X, M) is sample-continuous, we first assume
2 to be the underlying measure, and write

Z, = X7 + X;* — (X, M),

where X¢ ¢ Az, X e A2 and (X, MY € B
By definition (cf. (2.15))

[Z, Z], = <X° X, + s [AX,? — AKX, M)T.
If (X, M) is continuous, then '
[Z’ Z]t = <Xc’ Xc>t + Zast (AA,ad)2 = [X7 X]t .
Under &7, the same conclusion follows from writing
X, =Z'+Z2 4+ (X, M),.
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Since [Z, Z], is the L,-limit of quadratic variations };, (A,*Z)* for some sequence
of partitions of [0, ¢] and since I’ ¢ &, it is easy to show that on the set A >
0, [Z, Z] and [ X, X] are independent of which probability measure is chosen.

A special case of Theorem 3.2 which is worth isolating is the following.
Suppose (X, X') exists and M = ¢ - X. Then we have the result that

Zt = Xt - 33 ¢a d<X’ X>s

is a local martingale with respect to (&, {<&}). Specializing still more, we
can take X to be a Wiener process with respect (&, {#,}) then (X, X}, = tand

Z,=X,— \ip,ds

is a continuous local martingale with respect to (&, {&}). Since [Z, Z], =
[X, X], =1, Z is in fact a Wiener process under .&”-measure. This is the
theorem of Girsanov [6].

4. Some applications. Let {N,, 0 < t < oo} be a Poisson process with rate 1
under the probability measure &, Let &, denote the o-field generated by {N,,
s < t}. The process X, = N, — tis a (&, {&}) locally square-integrable mar-
tingale with (X, X, = taad [X, X], = N,. Let & be a probability measure
equivalent to & and set
@4.1) A,:E(‘W"

d

Then A is a (&, {&,}) martingale and has a representation

(4’2) At = 1 + S(t) ¢: dX:

for a predictable and integrable ¢.> Since A, > 0 with & -measure 1, we can
define

(4.3) 6. = A2,

and

(4.4) M, = (i, dX,.

Equation (4.2) now reads

(4.5) A, =14 §A,_dM,.

Since from (4.4) we have

(4.6) X, My, = §i ¢, d(X, X,
= §i¢.ds;

Theorem 3.2 implies that
4.7) Z, =X, — \i9,ds
= Nt — t — S{,¢,ds

2 For A e M? this representation is due to Kunita and Watanabe [7]. The generalization to
non-square integrable A is due to P. P. Varaiya, unpublished.
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is a (7, {#}) local martingale. Because A, > 0 for all ¢ requires AM, > —1
for all ¢, we have
o, > —1 for all ¢.

Hence, we can define a positive predictable process 4, = ¢, + 1 and rewrite
(4.7) as

(4.8) Z,= N, — §§4,ds

which is a local ma'rtingale with respect to (&, {F}).
Since (X, X}, = t is continuous, the second half of Theorem 3.2 yields

(4.9) [Z,Z], = [X, X], = N, .
Because N, — §¢{ A, dse # (F,{F}) and {Z, Z) is unique, we have
(4.10) (Z, Zy, = \t A, ds .

These results can be summarized as follows: [1]

THEOREM 4.1. Let N,, t = 0, be a standard Poisson process with respect to (&,
{F)) and let &, = o(N,, s < t). Let S be a probability measure equivalent to
. Then with respect to (F', {#}), N, has a unique decomposition

(4.11) N, = Z, + §{4,ds

where Z ¢ A, (P, {F}), A is a positive predictable process, and (Z,Z), =
§¢ A, ds. Furthermore, the likelihood ratio is given by

(4.12) A, =E (%i%) = (ILsst 4) exp (—§5 (4, — 1) ds)

where the product is taken over all jumps of N.

A straightforward generalization of the above yields the following result. Let
N, be a vector process with components which are independent Poisson processes
with respect to (&, {F7}), and let &, = o(N,, s < 7). Let F” be a probability
measure equivalent to . Then

N, =2Z, + {¢4,ds

where the components of Z belong to _#,.(Z”, {#,}) and the components of
4, are almost surely positive for all . The likelihood ratio is given by

(4.13) Ay = I [(TL,se A2 )(exp (= §§ (A — 1) d9)]

where ], . 4; is taken over all jumps of N

As a second example, consider a queueing process with a single server.
Suppose that under probability measure & the arrivals are Poisson (rate 1) and
the service times are independent and exponentially distributed with rate 1.
We also assume that under .7” the service and arrivals are independent. If we
denote the length of the queue at ¢ by {, then we can write

(4.14) dg, = d§, — 1(¢,.) dy,
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where ¢ and 7 are a pair of independent standard Poisson processes, and 1(z) = 1
or 0 accordingas z > O or z < 0. Now, let &' be a probability measure equiva-
lent to . Our interest is to find an expression for the likelihood ratio

(4.15) ,:E(jg'lfm)

where &, denotes the g-field generated by {{,, s < 1}.
Observe that &, is & ,-measurable, since &, counts the positive jumps of { up
to . Similarly, §§ 1({,.) dy, is F ,-measurable, but not 5,. Now, define

(4.16) Xtr=¢ —1t, X, = 1, )[dy, — ds].
Then, X* are (&, {F,}) martingales with

(4.17) (X, X+, =4, [X°,X7],=§1(.)d,
and
(4.18) (X*H, X+, =1, (X7, Xy, = (1, ) ds.

We can also write

(4.19) Co= Xt 4+t — [X,” + §i1(E,-) ds]
=Xt — X, 4 §§0(,) ds

where O({) = 1 if { < 0 and is zero otherwise.
Because L is a positive (&, {#,}) martingale it has a representation (see
footnote after (4.2))

(4.20) Lo=1+ §{L, [¢,*dX,* + ¢, dX,"]

where ¢* are predictable processes with ¢,* > —1 for all .
Theorem 3.2 now yields the result that

(4.21) ZF =X} — \to,tds
Z,~ = Xt- - S(t) ¢3_1(C8—) ds
are (9”, #,}) local martingale.

From the vector version of Theorem 4.1, we know that under 7%’ there exist
positive predictable processes 4, and g, such that §, — §{2,ds and », — {¢ p, ds
are (9, {&,}) local martingales where &, denotes the o-field generated by
{&,s 1, 8 < 1}, If we define

A, = EQ2,| F )

by = E(p | F )
and if we can choose measurable versions for these processes, then &, — ! 2, ds
and §;1({,_)[dy, — £,ds] are (&, {F}) local martingales. If measurable

versions cannot be found, the definitions for 1 and £ need to be modified by
considering the families of measures on [0, 1] ® # 7, defined by 2 and ¢ and by
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finding the Radon-Nikodym derivatives. It follows from (4.16) that

(4.22) Xt — (4, — Dds, X7 — 1)@, — 1)ds
are (7, {Z,}) local martingale. A comparison of (4.21) and (4.22) yields
(4.23) pr=4-1, - =p—1.

The likelihood ratio can now be found by using (3.4). We find

(4.24)  Lo=exp(=§[(4 — D) + 1C)A — D145) IL. s 42
where s and 7 in the product denote the positive and negative jumps of {
respectively.
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