
Information P. Baxendale
Retrieval Editor

Canonical
Structure in
Attribute Based
File Organization
Eugene Wong and T.C. Chiang
University of California,* Berkeley

A new file structure for attribute based retrieval is
proposed in this paper. It allows queries involving
arbitrary Boolean functions of the attribute-value pairs
to be processed without taking intersections of lists.
The structure is highly dependent on the way in which the
file is to be used and is uniquely determined by the
specification of the allowed queries. Thus, for example,
the structure for retrieval on the basis of ranges of values
of a given attribute would be very different from one
where only retrieval on the basis of a single value is
permitted.

The file organization being proposed is based on the
atoms of a Boolean algebra generated by the queries.
The desirable properties claimed for this structure are
proved, and file maintenance questions are discussed.

Key Words and Phrases: address calculation, atoms
of Boolean algebra, attributes, Boolean functions,
Boolean queries, file organization, information retrieval,
inverted file, key words, multilist, queries, searches

CR Categories: 3.70, 3.73, 3.74

* Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory. This research was spon-
sored by the Joint Services Electronics Program, Grant AFOSR-
68-1488, and the U.S. Army Research Office, Durham Contract
DAHCO4-67-C-0046.

Copyright @ 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part

of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for
Computing Machinery.

593

1. Introduction

A basic goal of file organization is to enable a large
body of information to be accessible via its content.
This is almost always done by creating a secondary body
of information which in some sense reveals the content
of the file. For a large class of file organization techniques
this secondary body of information consists of lists of
accession numbers or addresses of records. Each list, in
turn, consists of the addresses of all the records in the
file having some specified common property. For ex-
ample, for a file of personnel records the collection of all
employees with a Ph.D. in electrical engineering may be
such a list.

The lists of accession numbers or addresses which
are generated can be stored separately from the main
file in a directory such as in inverted file structures, or
threaded through the main file by means of pointers as
in multilist type of information storage. Hsiao and Har-
ary [1] have elucidated the whole spectrum of alterna-
tives which are possible by proposing the "generalized
file structure" which include multilist and inverted-file
as extreme cases. In this paper we shall address outselves
to the complementary problem of deciding what lists to
generate in the first place. Of course, the secondary in-
formation that needs to be generated must depend on
the nature of the main file on the one hand and on the
addressability that we demand of it on the other. The
aim of this paper is to make clear this dependence and
to arrive at an optimal structure.

In a file structure where some lists of addresses are
available, retrieval of all records belonging to a single
list is immediate, but retrieval of records corresponding
to a Boolean function of the lists is in general time-
consuming and difficult. We have found a file structure
which has some highly desirable properties. The lists of
addresses to be stored in this structure correspond to
atoms of the collection of all retrievable sets. As such,

Communications September 1971
of Volume 14
the ACM Number 9

they are pairwise disjoint so that no intersection ever
needs to be performed. They are complete in the sense
that every retrievable set corresponds to a union of these
lists. Because they are generated by the specified retrieval
requirement, they are also efficient. In particular, re-
trieval involving ranges of values, which is time-consum-
ing in many file structures, is handled in a natural way in
this structure.

2. File Structure

We shall adopt, with some simplification, the model
of Hsiao and Harary for an unformatted file. A record is
a finite collection of attribute-value pairs. We permit the
broadest interpretation of the terms "at tr ibute" and
"value." For example, for the record of a published
paper, typical attributes include author, title, journal of
publication, etc., but content can also be an attribute, the
value of which is then the entire text of the paper. Each
record is assigned a unique positive integer called its
address. ^ f i l e is a finite collection of distinct records. We
shall only consider the organization problem involving a
single file.

Access to the records is via some of the attribute-
value pairs. Let S be a fixed collection of some of the
attribute-value pairs appearing in the file. An attribute-
value pair appearing in g will be called a keyword. We
assume that the file can be interrogated by keywords
only and every query is a Boolean function of keywords.

For example, let Kx equal Author-Hemingway and K2
equal classification-fiction. Then K1 ^ /~2 represents a
request for all the nonfiction works by Hemingway in the
file. We assume that every record has at least one key-
word. This is reasonable, since otherwise this record can
never be retrieved. However, we do not assume that
each record is uniquely identified by its keywords. Two
records having identical keywords will always be re-
trieved together.

For each keyword K~ we denote by R (K~) the set of
all records containing K~. We denote the list of addresses
of the records in R(K~) by A(Ki) . ~ In an inverted file
structure the lists A (K~) are stored separately from the
main file in a directory. In a multilist structure only the
first address of each list .4 (K~) is stored in the directory,
and the remainder of the list is threaded through the
main file via pointers. For example, let a~j denote the
j th address in A(K~). The directory contains a a , the
record at a~ will contain the keyword K~ together with

If the records are short, a possible alternative is to store R(Ki)
for each Ki. In general, this clearly involves redundant storage of
some of the records.

594

the next address a~ on the list A (K~). The record at a~j
contains the pair (K~, a~j+l), and at the last address on
A (Ki) the record contains (K~, 0) to denote "end of
list." Thus, in a multilist structure, the keywords in each
record are augmented by pointers pointing to the next
record on the list. Hsiao and Harary have proposed a
generalized structure which amounts to breaking up
each A (K~) into sublists, keeping the first address in each
sublist in the directory, and threading the remainder of
each list in the main file as in the multilist structure.

File structures which involve storing the lists A (K~)
in some form are. best suited for retrieval involving a
single keyword. Multiple-keyword retrieval involves tak-
ing intersections, unions and complementations of the
lists A (K~). In special applications where certain con-
junctions of keywords occur frequently in queries, it has
been proposed to store the corresponding lists obtained
by taking intersections, in addition to the A (K~). This
ad hoc procedure has obvious limitations. In general,
one cannot store a list for every query that is anticipated.
A different approach involving finite geometry has also
been proposed for multiple-keyword retrieval [2, 3].
However, the full advantage of such an approach is
realized only under rather special circumstances.

3. Transformation of Keywords

Let f~ be a finite set. Let e be a class of subsets of f~.
A Boolean set operation is any finite sequence of inter-
sections (f"l), unions (U) and complementation (-) . If
e is closed under complementation and pairwise union,
i .e .A C e, B E e ~ A U B C e, .,/ C e, and B E e ,
then e is called a Boolean algebra. A Boolean algebra is
closed not only under complementation and union but
also under all Boolean set operations, since A N B can

be reexpressed as ~ U B. If e is an arbitrary class of
subsets of f~ then there is a smallest Boolean algebra
containing e. We call this minimal algebra the Boolean
algebra generated by C and denote it by 63 (e) [4].

Let ff be the file, i.e. the collection of all records under
consideration. Let g = {K~, i = 1, . . . , n} be the set of
all keywords. Under the assumption that every record
contains at least one keyword, we have

n

7 = U R(K~).
i = 1

A keyword K~. is said to be true for a record rj if rj con-
tains K~. It follows from the rules of propositional calcu-
lus that each Boolean function f (K1, . . . , K,) is either
true or not true for each record. Since we have defined
R(K~) as the set of all records for which K~ is true,
R(K~) N R(Kj) is the set of records for which Ki ^ Kj
is true; R(K~) U R(Kj) is the set for which Ki V /(j is
true, and so forth. It will be assumed that a query is a
Boolean function of keywords; hence, the set of records
that are to be retrieved for a query is always a Boolean
set operation on R(Ki) , i = 1, i = 1, . . . , n. Therefore,
if we denote 6l = {R(K~), i = 1, . . . , n} then 63(61) is

Communications September 1971
of Volume 14
the ACM Number 9

just the collection of all possible sets of records that can
be retrieved. Each set in 63 (fit) corresponds to one and
only one. Boolean function of keywords, which by
definition is a query.

Since 61 generates 63(61), every set in 63(61) can be
obtained by Boolean set operations on sets in 61. There-
fore, if we can retrieve every set in 61, i.e. every R(K~) ,
then we can retrieve every set in ~ (61). This is precisely
why by storing the lists of addresses corresponding to
the sets in 61 we can retrieve every set in 63 (61). Of course,
instead of 61, any collection C of subsets which generates
63(61) can serve the same function provided that the
union of the sets in e is the entire file 5:. In other words
the lists of addresses that we store need not correspond
to R(K~), i = 1, . . . , n. Alternatively, we can store
lists of addresses, each list of addresses corresponding to
a set in a collection t~ which generates 63 (61). Naturally,
the flexibility thus provided should be taken advantage
of in the organization of the file. The basic question
is: "Is there an optimal C?" While optimality depends
on the criterion one chooses, we hope to show that the
collection of atoms of 63 (61) has strong claims in that re-
gard.

I f 63 is a Boolean algebra of subsets of 7, a set B C 63
is said to be an atom of 63 if it is nonempty, and no non-
empty proper subset of B is in 63. Thus, atoms are ir-
reducible units of a Boolean algebra. For a simple ex-
ample, suppose that ~: = { 1, 2, 3, 4} and there are two
keywords Ki and Ks with R (K i) = { 1, 2, 3} and R(K2)
= {3, 4}. Then, 63 is the collection of following sets:

(the empty set), {1, 2}, {3}, {4}, {1, 2, 3}, {3, 4},
{ 1, 2, 3, 4}. The atoms are: { 1, 2}, { 3} and {4}. The atoms
of the Boolean algebra 63(61) can be generated from
R(K~), i = 1, . . . , n, in a systematic way as shown in
the following theorem.

THEOREM 1. Let R(K~), i = 1, . . . , n, be subsets o f
such that O ~ ~=~ R(K~) = ~ and let 63(61) denote the

Boolean algebra generated by 61 = { R (K~), i = 1, . . . ,
n}. Le t G , C2, . . . , C2 ~ be the 2 '~ intersections o f the
f o r m N ~i=1 J~(K~), where 1~ = R or R. Le t Ci be so
numbered that C~, C2, . . . , Cm are nonempty while
Cm+x, Cm+2, • • • , C~ ~ are empty. Then,

(a) C~ and Ck are disjoint whenever j 4= k.
(b) B ~ 63(61) implies B n c~ = ~ or C~for everyj .
(c) Every B ~ 63(61) is a union o f some o f the C~'s
(d) {C1, C2, . . . , Cm} are the atoms o f 63(61).

Remark. Although the assertions of the theorem are
standard results, we shall reproduce the proof here for
completeness.

PROOF.
(a) We write C~ in the form

C ~ = ~ R~(K,) ,R~.= R o r R .
i = l

I f j 4= k then there is at least one i for which R¢(K~) is
the complement of Rk (K~) so that C~ n c , = 4~.

(b) For each i a n d j

R (K i) n R2i(K~) = 4, if_Rs = R
= /~i(K~)if /~i = R.

Therefore, for each i and j , R (K i) N Cj = Cj or ~. The
same is true for R (K i) n c j . For R (K i) n R (K k) we
have

R(K~) n R (K k) n c i = R (K ,) n (Cj or ~)
= Cj or ~b.

It follows that for every B E 63(61), B O Ci = Cj or q~.
(c) We note that

t3 = R(K~) = U C, .
i ~ l i = l

Hence, we can write for B C 6~(61)

B = B A ~ y = I~ B N C i .

Since each B n c~ is either C~ or 4,, every B in 63 (6t) is a
union of the C~'s for which B n c~ = c~.
(d) Each C~, being a Boolean combination of R(K~), is
in 63(61). Since each set in 63(61) is a union of the C's,
no proper subset of any C~ can be in 63(61). Thus, every
Ci is an atom of 63 (61). On the other hand, any a tom of
63 (61) is nonempty so that it is a union of one or more
Ci, i = 1, . . . , m . It cannot be a union of more than
one C~ because then it would contain nonempty proper
subsets which are in 63(61). Thus, every a tom of 63(61)
is one of theC~, i = 1 , . . . , m . I

We now propose a file structure in which we store the
lists of addresses corresponding to the atoms C~, i = 1,
2, . . . , m, instead of storing the keyword lists A (K~),
i = 1, . . . ,n. Since each Ci corresponds to a Boolean
function of the keywords, we can regard this process as
one of transforming the keywords. The advantages of
this structure include the following:
(a) Each address appears on one and only one list.
Hence, the number of addresses to be stored is always
less than the total number of addresses in {A (K~), i =
1, . . . , n } .

(b) Every set to be retrieved is a union of disjoint atoms.
We never need to take intersection, and we never need to
eliminate duplications in taking union.
(c) The computat ion procedure in translating an arbi-
trary Boolean function of keywords into a union of
atoms is exceedingly simple

Assertions (a) and (b) are obvious consequences of
Theorem 1. We now justify assertion (c). A Boolean
funct ionf(K1, K2, . . . , Kn) can always be expressed in a
disjunctive normal f o r m as the disjunction of clauses each
clause being the conjunction of some of the Ki and
K~. For example,

f (Kx , K2 , K3 , K4) = (K1 A K2 A ~) V (K2 A ~ A K4)

is a Boolean function in disjunctive normal form. A dis-
junctive normal form is said to be developed, if every
variable appears once and only once in every clause
either unnegated or negated (never both) . I f a variable

595 Communications September 1971
of Volume 14
the ACM Number 9

Ki does not appear in a clause 4, then by replacing ¢ by
(¢ A K~) ¥ (4~ A ~) , we have obtained clauses con-
taining the variable K~. Therefore, a disjunctive normal
form can always be developed by successive applications
of this procedure [5]. A Boolean function f (K ~ , . . . , Kn)
expressed in a developed disjunctive normal form is
of the form

f (K 1 , . . . , K n) = V (A g j ,)
j<n i<n

where each gi~ is either K~ or ~ . The set of all records
for which f i s true is precisely

R (f) = U f'l R~(gi~)
j_<n i<n

= U N ~j(K~).
]~n i~n

We recognize immediately that for each j Ni_<~ Rj (K~) is
either an atom or it is empty. Hence, each nonvoid
clause in a developed disjunctive normal form corre-
sponds to an atom, and once a Boolean function is ex-
pressed in a developed disjunctive normal form, the
corresponding set of records is automatically in the form
of a union of atoms.

For an example, consider a file with 10 records and 4
keywords. For the purpose of this example, we do not
distinguish between a record and its address. Let the
keywords be denoted by K1, K2, K3, K4 and let the rec-
ords be denoted by 1, 2, 3, . . . , 10. Suppose that R(K~),
i = 1, . . . , 4, are given as follows:

R(K1) = 1 , 2 , 4 , 5 , 7 , 8 , 1 0
R(K~) = 2, 7, 10
R(Ka) = 1 , 4 , 5 , 8
R(K4) = 3 , 5 , 6 , 8 , 9

The atoms become obvious if we reexpress the sets
R (K~) in a tabular form (see Table I) when an entry " l "
means the record belongs to the set R(K~), and "0"
means it does not. Reading the rows of the table, we can
immediately write down the atoms as follows:

C1 = R(Ki) f'l R(K~) f'l R(K3) f'l R(K4) = (3, 6, 9)
C2 = R(Ki) n R(Kz) f'l R(K3) f'l R(Ka) = (1, 4)
C3 = R(K~) n R(K2) NR(K~) N R(K4) = (5, 8)
C4 = R(K~) f'l R(K2) f'l R(K3) f'l R(K,) = (2, 7, 10)

We have numbered the Cj's in ascending order of the
binary expansion represented by the rows in Table I, but
this is entirely arbitrary.

Now, consider a Boolean function.

f (K 1 , K 2 , K 3 , K 4) = (Ki A K z A ~) V (K~ A ~ A K,)

We can develop the formula by rewriting it as

f (K i , K ~ , K ~ , K ,) = (Ki ^ K~ AK~ ^ ~)
V (K1A K2 A ~ A ~)
V (K~ A K~A ~ A K4)
V (~ ^ K ~ ^ ~ ^ K 4) .

Of the four clauses, only (K1 N Kz rl ~ f'l ~4) corre-
sponds to an atom, viz., C4 = (2, 7, 10). Hence, the set
to be retrieved f o r f (K l , K~, K3, K4) is just (2, 7, 10).

Table I.

7

8

9

~0

R(K1)

0 0

1 1

1 0

0 0

1 1

R(K2) R (K3)

1

0

1 0

1 1

E) 1

C) 0
I

1 1

0 1

R (K4)

0

0

4. Extensions

There are many instances where certain keywords
are never used standing alone. For example, an attri-
bute-value pair like classification-fiction, if used in a
query by itself, might well bring forth half of the file.
For an example of another type, consider an attribute-
value pair like (salary-S14608.25 per year) in a personnel
file. It is unlikely that there will be a query asking for all
employees earning exactly $14,608.25 per 3,ear. A query
on salary will more likely be in the form of "find all
employees with salary between $14,000 and $15,000 per
year." While such a query is expressible as a union of
some 105 keywords, each of form "salary-$14,xxx.xx,"
this is hardly a reasonable solution to the problem.

The file structure proposed in the last section is flex-
ible enough to accommodate such situations. Suppose
that instead of permitting any Boolean function of the
keywords to be a query, only certain Boolean functions
are allowed. We note that a single keyword Ki may or
may not be a permissible query. For example, we may
only allow keywords involving salary to appear in
unions spanning $1000 intervals. Each allowable Bool-
ean function corresponds to a set of records in the file.
Let e denote the collection of all sets of records corre-
sponding to allowable Boolean functions. Let 63 (e) de-
note the Boolean algebra generated by e. In general
63 (e) is smaller than the algebra 63 (e) generated by the
individual keywords. The atoms of 63 (e) give a coarser
partition of the file than the atoms of 63 (6l). This is pre-
cisely what is wanted. Lists of addresses corresponding
to the atoms of 63 (e) will now be stored and made use
of in retrieval. We note that in this way we can answer
queries involving ranges of attribute values without tak-
ing the union of a large number of sets, provided the
increments of the range can be specified a priori.

Since only sets in e, rather than 63(e), are ever re-

596 Communications September 1971
of Volume 14
the ACM Number 9

trieved, one might ask whether even a better scheme
exists. The answer is "no" in the following sense: One
can show that the atoms of ~ (e) give the coarsest par-
tition of the file such that every set in e is a union of the
subsets of the partition. Furthermore, if the union of the
sets in e is the entire file 5, then every atom of 6~(e)
appears in at least one set of e. I f the union of sets in
is not ~y, then there is one a tom (viz., 5 minus union of

) which will not be used and it can be deleted from the
lists to be stored.

5. Address Calculation

Thus far, we have emphasized the use of atoms in
constructing a directory of address lists. Actually, the
main advantage of a file structure based on atoms may
well be that a directory is no longer necessary. One of the
reasons for maintaining a directory of address lists in an
inverted file structure is to permit set manipulations to
be done with ease. Since atoms are disjoint, set manipu-
lations are no longer necessary. If the file is so organized
that records belonging to a single atom are stored to-
gether, then the procedure for representing a Boolean
function in a developed normal form yields a means for
direct address calculation from the queries.

The number of atoms can be much larger than the
number of generating sets. In the extreme case, the num-
ber of atoms is equal to the number of records, each
atom being a single record in that event. I f the number of
atoms is large, searching a directory of addresses may be
time-consuming, although it is no more so than search-
ing an address table generated by any identifying at-
tribute (i.e. an attribute which has a unique record cor-
responding to each of its values). For such situations the
ability to bypass the directory, afforded by organizing
the main file according to atoms, is especially valuable.
We note that the query-directed address calculation
scheme, suggested by the file structure based on atoms,
works well even when every atom consists of just a single
record. In that case the correspondence, mapping rec-
ords to atoms, represents an identifying attribute, and
the structure that we have proposed can be viewed as re-
ducing the general Boolean retrieval problem to one in-
volving a single identifying attribute.

In practice, it may well be useful to consider a two-
tier system in which the main file is organized to cor-
respond to the atoms of the Boolean algebra generated
by all queries, but the directory is organized to corre-
spond to the atoms of the Boolean algebra generated by
a small subset of the queries. This would allow some fre-
quently occurring queries to receive special treatment.

6. File Maintenance

In general, the structure proposed here is not more
difficult to update than the usual structure. It will often
be easier. For example, each record belongs to one and
only one list so that the addition or deletion of a record
requires only knowing which a tom it belongs to. I f the
atoms are generated by keywords then the a tom to which
a record belongs is simply that corresponding to the con-
junction of all keywords in the record and the negation
of all keywords not in the record. For example, if
Ki , K2, K3, K4 are the keywords and if rl has K1 and K4
but not the others, then r~ must be in the atom R(K1) r)
R(K2) f) R(K3) r) R(K4). I f the atoms are generated by
a general set of Boolean functions of keywords, as in the
case discussed in Section 4, the situation is more com-
plicated. To discover which atom a given record is in we
have to determine which of the Boolean functions in the
generating set are true and which are false for this record.
The desired a tom is then found by taking the conjunc-
tion of all the generating Boolean functions which are
true together with the complement of all the generating
Boolean functions which are false.

Updating which involves changes in keywords (more
generally, changes in the generating set of Boolean func-
tions of keywords) is more difficult. Additions involve
breaking up of some of the atoms, and deletions involve
coagulation of some of the atoms. Procedure for doing
so is routine but may be time-consuming.

Received November 1970; revised February 1971

References

1. Hsiao, D., and Harary, F. A formal system for information
retrieval from files. Comm. ACM 13, 2 (Feb. 1970), 67-73.
2. Abraham, C.T., Ghosh, S. P., and Ray-Chaudhuri, D. K. File
organization schemes based on finite geometrics, Inform. Contr.
12 (1968), 143-163.
3. Chow, D.K., New balanced-file organization schemes. Inform.
Contr. 15 (1969), 377-396.
4. Halmos, P.R. Measure Theory. Van Nostrand, Princeton,
N.J., 1950.
5. Quine, W.V., The problem of simplifying truth functions.
Amer. Math. Monthly 59 (1952), 521-531.

597 Communications September 1971
of Volume 14
the ACM Number 9

