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A new file structure for attribute based retrieval is 
proposed in this paper. It allows queries involving 
arbitrary Boolean functions of the attribute-value pairs 
to be processed without taking intersections of lists. 
The structure is highly dependent on the way in which the 
file is to be used and is uniquely determined by the 
specification of the allowed queries. Thus, for example, 
the structure for retrieval on the basis of ranges of values 
of a given attribute would be very different from one 
where only retrieval on the basis of a single value is 
permitted. 

The file organization being proposed is based on the 
atoms of a Boolean algebra generated by the queries. 
The desirable properties claimed for this structure are 
proved, and file maintenance questions are discussed. 
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1. Introduction 

A basic goal of file organization is to enable a large 
body of information to be accessible via its content. 
This is almost always done by creating a secondary body 
of  information which in some sense reveals the content 
of the file. For  a large class of file organization techniques 
this secondary body of information consists of lists of  
accession numbers or addresses of records. Each list, in 
turn, consists of the addresses of all the records in the 
file having some specified common property. For  ex- 
ample, for a file of personnel records the collection of all 
employees with a Ph.D. in electrical engineering may be 
such a list. 

The lists of accession numbers or addresses which 
are generated can be stored separately from the main 
file in a directory such as in inverted file structures, or 
threaded through the main file by means of pointers as 
in multilist type of information storage. Hsiao and Har- 
ary [1] have elucidated the whole spectrum of alterna- 
tives which are possible by proposing the "generalized 
file structure" which include multilist and inverted-file 
as extreme cases. In this paper we shall address outselves 
to the complementary problem of deciding what lists to 
generate in the first place. Of course, the secondary in- 
formation that needs to be generated must depend on 
the nature of the main file on the one hand and on the 
addressability that we demand of  it on the other. The 
aim of  this paper is to make clear this dependence and 
to arrive at an optimal structure. 

In a file structure where some lists of addresses are 
available, retrieval of all records belonging to a single 
list is immediate, but retrieval of records corresponding 
to a Boolean function of the lists is in general time- 
consuming and difficult. We have found a file structure 
which has some highly desirable properties. The lists of  
addresses to be stored in this structure correspond to 
atoms of the collection of all retrievable sets. As such, 
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they are pairwise disjoint so that no intersection ever 
needs to be performed. They are complete in the sense 
that every retrievable set corresponds to a union of these 
lists. Because they are generated by the specified retrieval 
requirement, they are also efficient. In particular, re- 
trieval involving ranges of  values, which is time-consum- 
ing in many file structures, is handled in a natural way in 
this structure. 

2. File Structure 

We shall adopt, with some simplification, the model 
of Hsiao and Harary for an unformatted file. A record is 
a finite collection of  attribute-value pairs. We permit the 
broadest interpretation of the terms "at tr ibute" and 
"value." For  example, for the record of a published 
paper, typical attributes include author, title, journal of  
publication, etc., but content can also be an attribute, the 
value of which is then the entire text of the paper. Each 
record is assigned a unique positive integer called its 
address. ^ f i l e  is a finite collection of distinct records. We 
shall only consider the organization problem involving a 
single file. 

Access to the records is via some of the attribute- 
value pairs. Let S be a fixed collection of some of  the 
attribute-value pairs appearing in the file. An attribute- 
value pair appearing in g will be called a keyword. We 
assume that the file can be interrogated by keywords 
only and every query is a Boolean function of keywords. 

For  example, let Kx equal Author-Hemingway and K2 
equal classification-fiction. Then K1 ^ /~2 represents a 
request for all the nonfiction works by Hemingway in the 
file. We assume that every record has at least one key- 
word. This is reasonable, since otherwise this record can 
never be retrieved. However, we do not assume that 
each record is uniquely identified by its keywords. Two 
records having identical keywords will always be re- 
trieved together. 

For  each keyword K~ we denote by R (K~) the set of  
all records containing K~. We denote the list of addresses 
of the records in R(K~) by A(Ki) .  ~ In an inverted file 
structure the lists A (K~) are stored separately from the 
main file in a directory. In a multilist structure only the 
first address of each list .4 (K~) is stored in the directory, 
and the remainder of the list is threaded through the 
main file via pointers. For  example, let a~j denote the 
j th  address in A(K~). The directory contains a a ,  the 
record at a~ will contain the keyword K~ together with 

If the records are short, a possible alternative is to store R(Ki) 
for each Ki. In general, this clearly involves redundant storage of 
some of the records. 
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the next address a~ on the list A (K~). The record at a~j 
contains the pair (K~, a~j+l), and at the last address on 
A (Ki) the record contains (K~, 0) to denote "end of 
list." Thus, in a multilist structure, the keywords in each 
record are augmented by pointers pointing to the next 
record on the list. Hsiao and Harary have proposed a 
generalized structure which amounts to breaking up 
each A (K~) into sublists, keeping the first address in each 
sublist in the directory, and threading the remainder of 
each list in the main file as in the multilist structure. 

File structures which involve storing the lists A (K~) 
in some form are. best suited for retrieval involving a 
single keyword. Multiple-keyword retrieval involves tak- 
ing intersections, unions and complementations of the 
lists A (K~). In special applications where certain con- 
junctions of  keywords occur frequently in queries, it has 
been proposed to store the corresponding lists obtained 
by taking intersections, in addition to the A (K~). This 
ad hoc procedure has obvious limitations. In general, 
one cannot store a list for every query that is anticipated. 
A different approach involving finite geometry has also 
been proposed for multiple-keyword retrieval [2, 3]. 
However, the full advantage of such an approach is 
realized only under rather special circumstances. 

3. Transformation of Keywords 

Let f~ be a finite set. Let e be a class of subsets of f~. 
A Boolean set operation is any finite sequence of inter- 
sections (f"l), unions (U) and complementation (-) .  If  
e is closed under complementation and pairwise union, 
i .e .A C e, B E e ~ A  U B C e, .,/ C e, and B E e ,  
then e is called a Boolean algebra. A Boolean algebra is 
closed not only under complementation and union but 
also under all Boolean set operations, since A N B can 

be reexpressed as ~ U B. If e is an arbitrary class of 
subsets of f~ then there is a smallest Boolean algebra 
containing e.  We call this minimal algebra the Boolean 
algebra generated by C and denote it by 63 (e)  [4]. 

Let ff be the file, i.e. the collection of all records under 
consideration. Let g = {K~, i = 1, . . .  , n} be the set of 
all keywords. Under the assumption that every record 
contains at least one keyword, we have 

n 

7 =  U R(K~). 
i = 1  

A keyword K~. is said to be true for a record rj if rj con- 
tains K~. It follows from the rules of propositional calcu- 
lus that each Boolean function f (K1,  . . .  , K, )  is either 
true or not true for each record. Since we have defined 
R(K~) as the set of all records for which K~ is true, 
R(K~) N R(Kj)  is the set of records for which Ki ^ Kj 
is true; R(K~) U R(Kj)  is the set for which Ki V /(j is 
true, and so forth. It will be assumed that a query is a 
Boolean function of keywords; hence, the set of records 
that are to be retrieved for a query is always a Boolean 
set operation on R(Ki) ,  i = 1, i = 1, . . .  , n. Therefore, 
if we denote 6l = {R(K~), i = 1, . . .  , n} then 63(61) is 
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just the collection of all possible sets of  records that can 
be retrieved. Each set in 63 (fit) corresponds to one and 
only one. Boolean function of keywords, which by 
definition is a query. 

Since 61 generates 63(61), every set in 63(61) can be 
obtained by Boolean set operations on sets in 61. There- 
fore, if we can retrieve every set in 61, i.e. every R(K~) ,  
then we can retrieve every set in ~ (61). This is precisely 
why by storing the lists of  addresses corresponding to 
the sets in 61 we can retrieve every set in 63 (61). Of  course, 
instead of 61, any collection C of subsets which generates 
63(61) can serve the same function provided that the 
union of the sets in e is the entire file 5:. In other words 
the lists of  addresses that we store need not correspond 
to R(K~),  i = 1, . . . ,  n. Alternatively, we can store 
lists of  addresses, each list of  addresses corresponding to 
a set in a collection t~ which generates 63 (61). Naturally, 
the flexibility thus provided should be taken advantage 
of in the organization of the file. The basic question 
is: "Is  there an optimal C?" While optimality depends 
on the criterion one chooses, we hope to show that the 
collection of atoms of 63 (61) has strong claims in that re- 
gard. 

I f  63 is a Boolean algebra of  subsets of  7, a set B C 63 
is said to be an atom of 63 if it is nonempty,  and no non- 
empty proper subset of  B is in 63. Thus, atoms are ir- 
reducible units of  a Boolean algebra. For  a simple ex- 
ample, suppose that ~: = { 1, 2, 3, 4} and there are two 
keywords Ki and Ks with R ( K i )  = { 1, 2, 3} and R(K2)  
= {3, 4}. Then, 63 is the collection of following sets: 

(the empty set), {1, 2}, {3}, {4}, {1, 2, 3}, {3, 4}, 
{ 1, 2, 3, 4}. The atoms are: { 1, 2}, { 3} and {4}. The atoms 
of the Boolean algebra 63(61) can be generated from 
R(K~),  i = 1, . . .  , n, in a systematic way as shown in 
the following theorem. 

THEOREM 1. Let  R(K~),  i = 1, . . .  , n, be subsets o f  
such that O ~ ~=~ R(K~) = ~ and let 63(61) denote the 

Boolean algebra generated by 61 = { R (K~), i = 1, . . .  , 
n}. Le t  G ,  C2, . . .  , C2 ~ be the 2 '~ intersections o f  the 
f o r m  N ~i=1 J~(K~), where 1~ = R or R. Le t  Ci be so 
numbered that C~, C2, . . . ,  Cm are nonempty while 
Cm+x, Cm+2, • • • , C~ ~ are empty. Then, 

(a) C~ and Ck are disjoint whenever j  4= k. 
(b) B ~ 63(61) implies B n c~ = ~ or C~for everyj .  
(c) Every B ~ 63(61) is a union o f  some o f  the C~'s 
(d) {C1, C2, . . .  , Cm} are the atoms o f  63(61). 

Remark.  Although the assertions of  the theorem are 
standard results, we shall reproduce the proof  here for 
completeness. 

PROOF. 
(a) We write C~ in the form 

C ~ =  ~ R~(K,) ,R~.= R o r R .  
i = l  

I f j  4= k then there is at least one i for which R¢(K~) is 
the complement  of  Rk (K~) so that C~ n c ,  = 4~. 

(b) For  each i a n d j  

R ( K i )  n R2i(K~) = 4, if_Rs = R 
= /~i(K~)if /~i  = R. 

Therefore, for each i and j ,  R ( K i )  N Cj = Cj or ~. The 
same is true for R ( K i )  n c j .  For  R ( K i )  n R ( K k )  we 
have 

R(K~) n R ( K k )  n c i  = R ( K , )  n (Cj or ~) 
= Cj or ~b. 

It  follows that for every B E 63(61), B O Ci = Cj or q~. 
( c )  We note that 

t3 = R(K~) = U C, .  
i ~ l  i = l  

Hence, we can write for B C 6~(61) 

B =  B A ~ y =  I~ B N C i .  

Since each B n c~ is either C~ or 4,, every B in 63 (6t) is a 
union of the C~'s for which B n c~ = c~. 
(d) Each C~, being a Boolean combination of R(K~),  is 
in 63(61). Since each set in 63(61) is a union of the C's, 
no proper subset of  any C~ can be in 63(61). Thus, every 
Ci is an atom of 63 (61). On the other hand, any a tom of  
63 (61) is nonempty so that it is a union of one or more 
Ci, i = 1, . . . , m .  It cannot  be a union of more than 
one C~ because then it would contain nonempty proper 
subsets which are in 63(61). Thus, every a tom of 63(61) 
is one of theC~,  i =  1 , . . . , m .  I 

We now propose a file structure in which we store the 
lists of  addresses corresponding to the atoms C~, i = 1, 
2, . . .  , m, instead of storing the keyword lists A (K~), 
i = 1, . . .  ,n. Since each Ci corresponds to a Boolean 
function of the keywords, we can regard this process as 
one of  transforming the keywords. The advantages of  
this structure include the following: 
(a) Each address appears on one and only one list. 
Hence, the number  of  addresses to be stored is always 
less than the total number  of  addresses in {A (K~), i = 
1, . . .  , n } .  

(b) Every set to be retrieved is a union of disjoint atoms. 
We never need to take intersection, and we never need to 
eliminate duplications in taking union. 
(c) The computat ion procedure in translating an arbi- 
trary Boolean function of keywords into a union of 
atoms is exceedingly simple 

Assertions (a) and (b) are obvious consequences of  
Theorem 1. We now justify assertion (c). A Boolean 
funct ionf(K1,  K2, . . .  , Kn ) can always be expressed in a 
disjunctive normal f o r m  as the disjunction of clauses each 
clause being the conjunction of  some of the Ki and 
K~. For  example, 

f ( Kx , K2 , K3 , K4 ) = ( K1 A K2 A ~ ) V ( K2 A ~ A K4 ) 

is a Boolean function in disjunctive normal  form. A dis- 
junctive normal  form is said to be developed, if every 
variable appears  once and only once in every clause 
either unnegated or negated (never both) .  I f  a variable 
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Ki does not appear in a clause 4, then by replacing ¢ by 
(¢ A K~) ¥ (4~ A ~ ) ,  we have obtained clauses con- 
taining the variable K~. Therefore, a disjunctive normal 
form can always be developed by successive applications 
of  this procedure [5]. A Boolean function f ( K ~ , . . . ,  Kn) 
expressed in a developed disjunctive normal form is 
of the form 

f ( K 1 , . . . , K n )  = V ( A  g j , )  
j<n i<n 

where each gi~ is either K~ or ~ .  The set of all records 
for which f i s  true is precisely 

R ( f )  = U f'l R~(gi~) 
j_<n i<n 

= U N ~j(K~). 
]~n i~n 

We recognize immediately that for each j Ni_<~ Rj (K~) is 
either an atom or it is empty. Hence, each nonvoid 
clause in a developed disjunctive normal form corre- 
sponds to an atom, and once a Boolean function is ex- 
pressed in a developed disjunctive normal form, the 
corresponding set of records is automatically in the form 
of a union of atoms. 

For  an example, consider a file with 10 records and 4 
keywords. For  the purpose of this example, we do not 
distinguish between a record and its address. Let the 
keywords be denoted by K1, K2, K3, K4 and let the rec- 
ords be denoted by 1, 2, 3, . . .  , 10. Suppose that R(K~), 
i = 1, . . . ,  4, are given as follows: 

R(K1) = 1 , 2 , 4 , 5 , 7 , 8 , 1 0  
R(K~) = 2, 7, 10 
R(Ka) = 1 , 4 , 5 , 8  
R(K4) = 3 , 5 , 6 , 8 , 9  

The atoms become obvious if we reexpress the sets 
R (K~) in a tabular form (see Table I) when an entry " l "  
means the record belongs to the set R(K~), and "0"  
means it does not. Reading the rows of the table, we can 
immediately write down the atoms as follows: 

C1 = R(Ki)  f'l R(K~) f'l R(K3) f'l R(K4) = (3, 6, 9) 
C2 = R(Ki)  n R(Kz) f'l R(K3) f'l R(Ka) = (1, 4) 
C3 = R(K~) n R(K2) NR(K~) N R(K4) = (5, 8) 
C4 = R(K~) f'l R(K2) f'l R(K3) f'l R(K, )  = (2, 7, 10) 

We have numbered the Cj's in ascending order of the 
binary expansion represented by the rows in Table I, but 
this is entirely arbitrary. 

Now, consider a Boolean function. 

f ( K 1 , K 2 , K 3 , K 4 )  = (Ki A K z A ~ )  V (K~ A ~ A  K,) 

We can develop the formula by rewriting it as 

f ( K i , K ~ , K ~ , K , )  = (Ki ^ K~ AK~ ^ ~ )  
V (K1A K2 A ~ A  ~ )  
V (K~ A K~A ~ A  K4) 
V ( ~ ^  K ~ ^  ~ ^ K 4 ) .  

Of the four clauses, only (K1 N Kz rl ~ f'l ~4) corre- 
sponds to an atom, viz., C4 = (2, 7, 10). Hence, the set 
to be retrieved f o r f ( K l ,  K~, K3, K4) is just (2, 7, 10). 

Table I. 

7 

8 

9 

~0 

R(K1) 

0 0 

1 1 

1 0 

0 0 

1 1 

R(K2) R (K3) 

1 

0 

1 0 

1 1 

E) 1 

C) 0 
I 

1 1 

0 1 

R (K4) 

0 

0 

4. Extensions 

There are many instances where certain keywords 
are never used standing alone. For  example, an attri- 
bute-value pair like classification-fiction, if used in a 
query by itself, might well bring forth half of the file. 
For  an example of another type, consider an attribute- 
value pair like (salary-S14608.25 per year) in a personnel 
file. It is unlikely that there will be a query asking for all 
employees earning exactly $14,608.25 per 3,ear. A query 
on salary will more likely be in the form of  "find all 
employees with salary between $14,000 and $15,000 per 
year." While such a query is expressible as a union of 
some 105 keywords, each of form "salary-$14,xxx.xx," 
this is hardly a reasonable solution to the problem. 

The file structure proposed in the last section is flex- 
ible enough to accommodate such situations. Suppose 
that instead of permitting any Boolean function of the 
keywords to be a query, only certain Boolean functions 
are allowed. We note that a single keyword Ki may or 
may not be a permissible query. For  example, we may 
only allow keywords involving salary to appear in 
unions spanning $1000 intervals. Each allowable Bool- 
ean function corresponds to a set of records in the file. 
Let e denote the collection of all sets of records corre- 
sponding to allowable Boolean functions. Let 63 (e )  de- 
note the Boolean algebra generated by e.  In general 
63 (e)  is smaller than the algebra 63 (e)  generated by the 
individual keywords. The atoms of 63 (e)  give a coarser 
partition of the file than the atoms of 63 (6l). This is pre- 
cisely what is wanted. Lists of addresses corresponding 
to the atoms of 63 (e)  will now be stored and made use 
of in retrieval. We note that in this way we can answer 
queries involving ranges of attribute values without tak- 
ing the union of a large number of sets, provided the 
increments of the range can be specified a priori. 

Since only sets in e, rather than 63(e), are ever re- 
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trieved, one might ask whether even a better scheme 
exists. The answer is "no"  in the following sense: One 
can show that the atoms of ~ (e )  give the coarsest par- 
tition of the file such that every set in e is a union of the 
subsets of  the partition. Furthermore,  if the union of the 
sets in e is the entire file 5, then every atom of 6~(e) 
appears in at least one set of  e.  I f  the union of sets in 
is not ~y, then there is one a tom (viz., 5 minus union of 

) which will not be used and it can be deleted from the 
lists to be stored. 

5. Address Calculation 

Thus far, we have emphasized the use of  atoms in 
constructing a directory of address lists. Actually, the 
main advantage of a file structure based on atoms may 
well be that a directory is no longer necessary. One of the 
reasons for maintaining a directory of address lists in an 
inverted file structure is to permit set manipulations to 
be done with ease. Since atoms are disjoint, set manipu- 
lations are no longer necessary. If  the file is so organized 
that records belonging to a single atom are stored to- 
gether, then the procedure for representing a Boolean 
function in a developed normal  form yields a means for 
direct address calculation from the queries. 

The number of  atoms can be much larger than the 
number  of  generating sets. In the extreme case, the num- 
ber of  atoms is equal to the number  of  records, each 
atom being a single record in that event. I f  the number  of  
atoms is large, searching a directory of addresses may be 
time-consuming, although it is no more so than search- 
ing an address table generated by any identifying at- 
tribute (i.e. an attribute which has a unique record cor- 
responding to each of its values). For  such situations the 
ability to bypass the directory, afforded by organizing 
the main file according to atoms, is especially valuable. 
We note that the query-directed address calculation 
scheme, suggested by the file structure based on atoms, 
works well even when every atom consists of  just a single 
record. In that case the correspondence, mapping rec- 
ords to atoms, represents an identifying attribute, and 
the structure that we have proposed can be viewed as re- 
ducing the general Boolean retrieval problem to one in- 
volving a single identifying attribute. 

In practice, it may well be useful to consider a two- 
tier system in which the main file is organized to cor- 
respond to the atoms of the Boolean algebra generated 
by all queries, but the directory is organized to corre- 
spond to the atoms of the Boolean algebra generated by 
a small subset of  the queries. This would allow some fre- 
quently occurring queries to receive special treatment.  

6. File Maintenance 

In general, the structure proposed here is not more 
difficult to update than the usual structure. It  will often 
be easier. For  example, each record belongs to one and 
only one list so that the addition or deletion of a record 
requires only knowing which a tom it belongs to. I f  the 
atoms are generated by keywords then the a tom to which 
a record belongs is simply that corresponding to the con- 
junction of all keywords in the record and the negation 
of all keywords not in the record. For  example, if 
Ki ,  K2, K3, K4 are the keywords and if rl has K1 and K4 
but not the others, then r~ must be in the atom R(K1) r) 
R(K2) f) R(K3) r) R(K4).  I f  the atoms are generated by 
a general set of  Boolean functions of  keywords, as in the 
case discussed in Section 4, the situation is more com- 
plicated. To discover which atom a given record is in we 
have to determine which of the Boolean functions in the 
generating set are true and which are false for this record. 
The desired a tom is then found by taking the conjunc- 
tion of all the generating Boolean functions which are 
true together with the complement  of  all the generating 
Boolean functions which are false. 

Updating which involves changes in keywords (more 
generally, changes in the generating set of  Boolean func- 
tions of keywords) is more difficult. Additions involve 
breaking up of some of the atoms, and deletions involve 
coagulation of some of the atoms. Procedure for doing 
so is routine but may be time-consuming. 
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