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Riemann-Stieltjes Approximations
of Stochastic Integrals*

E. WonG and M. ZaKal

Summary. We consider the space C[(), 1] together with its Borel s-alpebra o and a Wiener measure
# Letwdenote a point in C[0, 1] and let x(cs, 1) denote the coordinate process. Then, {x(w, (), t2[0,17)
i .

is @ Wiener process, and stochastic integrals of the form [wiw, 1) dx(ew, t) can be defined for a suitable
[

clazs of @. In this paper we consider a sequence of Stieltjes integrals of the form
I
1= [ oo fe), 1) dx{e ), 1)
o

where {w"(w)} is a sequence of polygonal approximations to w, Conditions are found which ensure the
quadratic-mean convergence of {1}, and the limit is expressed as the sum of the stochastic integral
1

[ i, t)dxies, 1) and a “correction term™.
]

1. Introduction

Let x(w, 1) t=0 be a separable Brownian motion defined on a fixed, but as yet
unspecified, probability space (£, &7, #). Because a Brownian motion is almost
surely of unbounded variation, integrals of the form

1
(@)= | ®(w, 1)d, x(w, 1) 1
U]

require special definition. One definition, and until recently the only definition,
is that due to Ito, and will be referred to as the stochastic integral in this paper.
The definition of a stochastic integral proceeds as follows: [1, Chap.9; 2, Chap. 7].
Let @(.,.) satisfy

(A) @ is a (w, t) function measurable with respect to .« = & and for each t &(., 1)
is .o/, measurable, where .o is the smallest sub-g-algebra of w sets with respect to
which {x (e, 5), s=t} are all measurable, and # is the g-algebra of one-dimensional
Lebesgue measurable sets.

L

(B) [|®{w, )P dt<eo  for almost all
o

or
1

(B [E|@(ew, ) dt < oc.
1}
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The stochastic integral is first defined for & functions which are step functions in
t for almost all w-by the Riemann sum

i
I{d)= E@T{m:lli.tl:w,I\.+|]—.‘f|:ru.f1.]]|. {2)

For more general @, let &, be a sequence of step functions such that

1
[#{w, 1) =P (w, 1) dt ———0  almost all w
o

or
i
[E|®(w,1)=®,(w,0)]* dt = 0
0

according to whether (B) or (B') is satisfied. The stochastic integral I({&) is then
defined as the limit in probability (resp. limit in quadratic mean) of {4 ).

While the definition of 4 stochastic integral is entirely self~consistent, it need
not have any connection with ordinary integrals. Indeed, as is shown by the familiar
example [1, p. 444]

1
§x(en, 1) dox (o, ) =4 [x* (w, 1)— x*(w, 0)] -4, i3

o

a calculus based on the stochastic integral cannot be entirely compatible with
L
that corresponding to ordinary integrals which must surely yield jx:!] dx(f)=

0
3 [x*(1)—x*(0)]. These considerations motivated Stratonovich [3] to suggest a
symmetrized definition for (1), which resulted in a calculus compatible with
ordinary calculus. In a similar vein we have suggested in earlier papers [4, 5] that
in applications one is frequently concerned with the limit ol a sequence of Riemann-
Stieltjes integrals resembling a stochastic integral but with a sequence of “smooth ™
approximations {x,{w, t)} replacing the Brownian motion x{ew, t). It was found
that this limit, when it existed, differed in general from the stochastic integral
having the same form. For example, il {x,(w,t)} have piecewise continuous ¢
derivatives, then clearly

1
§ x (o, 1) d, x, (e, =1 [x7 (o, 1) = x5 (w0, 0] ===+ [x* (o, 1) — 5% {0, 0)]
o

which differs from (3) by a “ correction term ™ equal to §. These earlier papers [4, 5]
established the relationship between the limits of such sequences of Riemann-
Stieltjes integrals and the corresponding stochastic integrals. However, these
results as well as those of Stratonovich [3] were restricted to two special cases:

{a) @lw, 1)=F(x(w,1), 1) _
{b) @leo, t)=F(y(e, 1), 1), and yle, 1) is a diffusion process related to x{w, t)
through a stochastic differential equation.
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This paper extends the results of [4, 5] in considering more general integrands
@(w, t), while retaining the idea of approximating the Brownian motion by dif-
ferentiable processes. It will be shown that the “correction term™ between the
limit of a sequence of Riemann-Stieltjes integrals and the corresponding stochastic
integral can be expressed in terms of the Frechét differential of @(-,t). In those
special cases where the earlier results [3, 4, 5] apply, results of this paper reduce
accordingly.

2. A Statement of the Problem

For integrands of the form ®{w, )= F(x(w, ), t) or @{w, t}=F(y{m, 1), 1), an
approximation of x{ext) by x,(w, 7) induces automatically an approximation
e, )= F(x (e, 1), 1) or d(w, t)=F(y,le2. 1), ). One of the difficulties in ex-
tending our earlier results [4, 5] is that it is unclear as how @ {m, 1) is to be affected
in general by an approximation of the Brownian motion. Roughly speaking, the
dependence of #(cw, t) on the sample function x {w, -] must be kept the same, while
x(m, «) undergoes an approximation. The approach taken here in overcoming
this difficulty is to choose the basic space £2 in such a way that approximating the
sample functions of the Brownian motion is equivalent to approximating elements
of £, thus inducing an approximation of @, 1) in a natural way.

Let 2=C[0, 1] be the space of all continuous real valued functions defined
on [0, 17, and denote by x{w, t) the value of w at 1. Let .o be the a-algebra of Borel
| = Baire) sets with respect to the {uniform) topology induced by the norm

= % tlf- 4
flea] Drgﬁglllliru, | _ (4)

It is well known [6, 7] that the finite dimensional distributions of a standard
Brownian motion (Gaussian, zero-mean, cov(s,f)=min(s,t)) can be uniquely
extended to a measure # on (@, &), and this is the Wiener measure. Defined in
this way, x(w,t) is necessarily separable. In what follows, we denote by & the
class of Lebesgue measurable sets and pf-) the Lebesgue measure. Almost surely
{a.s.) shall mean either for all {w, ) except a set of # = y measure zero, or for all w
except a set of & measure zero; which one it is is always clear from the context.
Now, let ®{w, t) satisfy the following hypotheses.

H,: @ is a complex valied (i, 1) function measurable with respect to of x @ and
for each td@(-,1) is o measurable, where o o s the smallest s-algebra with
respect to which {x(w, 5), st} are all measurable,

H,: For each (v, 1)eQ » [0, 1]. there exists a unigue continuous linear functional
Fo, o t) on £ such that

[P+, )= Dlw, 1) — Flo'; o, )| K e |21+ e "+ o] F) (3)

where K, o, f are finite positive constants independent of o, o, £
The linear lunctional F{-, w, 1}, which is necessarily the Frechét differential
of @{-, 1) at ., admits the Riesz representation
1

Flen'; o, t)= [1 (e, 51, fls;w, ) (6)

i
where fi., s, 1) has bounded variation.

T
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H.: We assume that | and & satisfy

1
f1d, fis;: 0, )| £K <0
[4]

|[B(0, t) =K < oo

where K may be assumed to be the same as that in (3) with no loss af generality.

A function @(-..) which satisfies H,, H, and H; can be shown to satisfy
conditions (A) and (B") of the introduction. Hence, the stochastic integral
1

[®(w, 1) d, x(w, 1) is well defined as a quadratic-mean limit. Furthermore, a
:cquencf: w"(w)e 2 can be so chosen that

F: |-l —-—=0

Py: x{w" 1) has piecewise continuous t-derivative

and
1

jrif'[cu, 0)d, x(w, 1)+4 | Plw, 1) de.

a

N o

1

Py [@(w(w), 1) d, x(w"(w), 1)
(1]

1 1

In B, the integral, ]'df'(u t)d, x{w, t) is a stochastic integral, but jl;iﬁr!‘ X c.u (), r]

is an ordinary mmgra] because of B. The function ¥(ew, 1) is def' ned by
Pleo, th=f{tT s w, )= {75 e 1), (7)

Proposition Py is the main result of this paper and extends the results of [4, 5],
especially [4].
The details of the proof of our main result are not particularly illuminating as
1

to how the correction term 1 _[ Wiew, t) dr arises. It may be worthwhile to give a

L]
heuristic explanation for it. The Ito definition of a stochastic integral is basically
one involving forward difference approximation, i.e.,

ted
_]F drw, t')d, xlow, t)~ e, 1} [x(e, 1+ A)— x(ew, 11].

Suppose we consider instead a backward approximation

r+4

| e, ) dy x(w, 1)~ P, 14+ 4) [x (o, 1+ 4)— x(w, 1]

the difference between the two is [${w, t +4)—Piw, t)] [x{w, t + 4)—= x(w, 1)]. For
a (-, satisfying H,, Hy, Hy, @ (o0, 1 + A)— @ (o0, 1)~ [x (oo, t + A)— x (e, 1)] Plew, 1)
+0{), hence the difference between a forward approximation and & backward
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approximation is ~ ¥(w, t) [x(w, t+ 4) - x(w, t)]* +o(A)~ ¥(w, t) A. The factor §
in P, represents an average of these two approximations.

3. Proof of the Main Result

First, some simply verifiable consequences of H,, H, and H; are stated below.
(@) 1@(w, ) SK{1+ ol + o] T (1+ o)} S 3K+ |w]'***7). (8)

{b) Since x{w, t} has independent increments and x{w, 0)=0 for almost all w,
it follows that [1, p. 363]

Elw|"£8E[x(w, 1), y2I. 9)
(c) Hence, .
E|®{w, 1)
1 <M<w. (10)
[E|®{w, 0)]* dt
(4]

(d) Therefore, (see [1, pp. 440—4417), there exists a sequence of partitions {"'}
of [0, 1] such that

max [}, — "] 5=~ 0 (11)

and if we define
&, (1)=max {f}", (" = ¢}
: (12}
f, () =min {, " =1}
then '

1
[E|®(w, 1) — @(w, 2, (1)1 dt =5~ 0. (13)
1]

(e} Because @(w, t) is & measurable, xiw', 5)=x(w, 5) s =t implies P{w', [)=
&, t). Hence (6) can be written

Flo', w,1)= fx{w'. s)d, fls; w,t) (14)
i}

provided that f(s; e, f) is made continuous from the right.

() Let {@!} be any sequence from 2= C[0, 1] satisfying

12 gl =x(0hs 1) 5z 0, (15)
1 i
E-’fiﬁﬂmﬂﬁ*ﬂ. s<t (16)

then for every wefl

l I
[+, 1) — P (e, ] =[xl Hedll, s, Fis; ot
A 1= Jxle : : (17)

+0(ll @bl *) === ¥, 1).

N T
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(g) Since
1 ' .
mﬁwwm+mﬂ—¢Mﬂ§IxMNmmﬂiﬂﬁmﬂ
H 0
+ K b= (1+ l I° + lewlt®) (18)

< [P(@/ @kl + e, 1) = P (e, )]+ 2K(2+ o)
SOK 2142 +P (] 4 |wf T2+ h),

it follows by dominated convergence that

E|%¥(w, t)]?
1 M <o, (19)
[E|®P(w, 1) dt
1]

(h) For some sequence of partitions {1}, which can be assumed to be the
same one as in (d),

1
| E|®(e, )= Plo, o, (1)) 2 dt —— 0. (20)
0

&, (1} being defined by (11).

Given a sequence of partitions {0=1J"<r™-.- <t}y'= 1} and defining =, (1), £, (1)
as before, we can define a corresponding sequence of polygonal approximations
to the Brownian motion as follows [8]: For every we Q= C[0, 1] define w"(w) by

=0y {IJ

m [I [w'r ﬁn[;}]_x{w1 I:EH{I]}]_ [’2”

x (" (), t)=x (e, a, (1)) +

Now, if, as is the case for (d) and {h) above,

]Tﬁcﬁ Eﬁn“}_ :fn{”] A= 0
then B
lew® ()= ew|-=2 Sup |x({w, 1)—x(w, &) 55=0 as. (=
0z '

Our main result can now be stated as

Theorem. Let @, t) satisfy Hy, H, and H;. Then, there exist a sequence of
partitions af [0,1] and a corresponding sequence of polygonal approximations
" (en) defined by (21) such that

1 1 ]
[ @ (). 1) d, x (0 (), 1) 22 [@(ow,0d, x(o,0)+1 [Plo,0d (23)
b 0 i

where the first integral on the right hand side is a stochastic integral (but because
of (21) the left hand side is an ordinary integral ).
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Proof. According to (d) and (h) we can always choose a sequence of partitions
so that (12), (13} and (200 are satisfied. Because of (13) and the definition of a
. stochastic integral

T @, 6 ) [xfoo, 1) = x (oo, £ )]
rel (24)
j (o, 2, (1) df, x(c0" (), 1) —22s jfiﬁfw 1) d, x (o, 1).

P
1]

Hence, we only need to prove

LR

1
E(w)= [ [®[w"(w), t) = Plo, 2, ()] d, x(e{w), ) 22 4 f Pies, t)dr. (23
1] al

Now, let £, (w, )22 be defined by
x(,lw, 1), 8)=x(w"(w), min(s, %, (1)), O0=s=1 (26)
and rewrite (25) as
1
F(w)= [ [®(w"(w), )= B(E, (w, 1), 1)] d, x(es" (), 1)
0
1
+ [[®(E, (), 1) = Dlas, o, (0)] d, % (" (), 1).
(1]

The integrand of the second integral is &, ;,, measurable and

E {[x(e, B,(0)) = x (e, , ())]* ], (28)

o
Il
[ -

"[r” {ﬁn[rj_an“}l

Therefore,

i 2
E ‘ F[®(E,(w, t), t)— P, 2, (1))] 4, x[@"(w), 1)
o

“E{EE[ x(w, 1) = x(w,t M,}][_x[w,r:}:;c[w,:n_lq

t—f, [

j dt I ds[ (S, (w, 1), t) = Plon, t, )] [P(Salw, ) s)— Plu t, 1}]}

=E{EEE[.MM.““-L.J,_,,J} 29)

2
=E{ .._._.._.‘ I [®(,(w, 1), 1) —Plw, t,_,]] :Ir‘ }

{'r =i 1}

I
< [ E[@ (&, (w, 1), 1) = @{a, =, (o)) dt
0

=4 {_[E|'if'|:uf (e, 1), £} = P (e, r}|1de.‘+j'E|¢J[~:rJ =@, a frj]llf!!} P )

LIE

by virtue of dominated convergence and (13). Thus, (25) reduces to

] L
I[Pl (), 1) =P (S e, 1), 1] d x (0" (), 1) 25§ [Pleo, de. (30)
0 Q
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From H,, (14) and (26) we can write
P (" (w), r] [, (w, 1), 1)

T x(ew, Bul)) = x (e, &, (1))
Tk B0 =2, (1) ]un!”'[s o, (1) d, [ (55 &0, 1), 1)
+|x(w, B, (1) = x (e, 2, (1)) ** G, (w, 1)

[ xle, Balt) = x(w, 2,(0) ] ¥ g .

L RO ]f, [A(t; Ealer, 00 )= f(5: Eulen, 0).1)] ds - (31)
+|x(ew, B,(0)) = x(@, &, ()] ** Guleo, 1)

[ x (e, Balt)) = x(e0, 2, (1) -
L B (6)— 2, (1) J (t = o, (1)) P(E, (e, 1), 1)

+ [x{e, Bal) = x (e, @ (1))] Hyleo, 1)+ | x{ew, By (1)) —x (o2, 2, ()] ** G0, 1)

where |G, (w, 1), |H,{w, 1)| are both dominated by K'(1+ [l **),y=>0, H,(w, 1) is
#f,,,,y measurable and —— 0 a.s. Henee, it is easy to show that (30) reduces to

[ x(0,Bu(0) = x{o, % 0) T, . L 1 ﬂ
nj[ Balt) =2, (1) ] (e~ () ¥(Cale, 1), 1) de 0 J‘f‘{w. f)dt (32)

! [x{w, Bul0) = x(@, 2(0)] } t—a )
c!-{ Falt)—a,(1) 1 [ﬁ_m_unm]'.F{é’Jw,:Lr]d:

! I—II,,{T} I
o] [m] [¥(E (@, 1)) — (e, 2, (0)] dt (33)

]‘[‘P{m,a (1) — Pleo, )] d1 2= 0.

I—l-\:!\l

Denoting the three integrals in (33) by I,, I, and I,, we find that because
W(E, (e, t), 1) is .o, ,, measurable and

o { P (0. Ba(0) = x (e, 2, ()]

Balt)— 2, (1) =}

-%..m} =0 i34
by using arguments similar to those of {29}, we can show that
EIf =2 max [f,(1)—2 fr}]jEW{“fm i) f)|?dt ——0.

The last integral [y in (33) converges to zero in quadratic mean because of (201
Thus, it only remains to prove

]
J [ﬁiir; mﬂiﬂtx}}[”“‘”’ 0, 1) = ¥, 2, (0)] dt =250 (35)
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which can be further reduced to

ﬁr [ﬂn{r}—:«:nit}][”g“{m“']‘ t)= ¥lo, )] dt 15 0. {%6)

To prove (36), we note that from {f) we can find for every £ in [0, 1] a sequence
{ipl} satisfying (15} and (16) and in addition

lll gngugllﬁn{s}—mnlis}l* (37)
so that for almost all w o
W(E,(w, 1) :J—[ Gl )+ @, )= B(Ealer, ), 1) ] i (8]
flenll
Wi, )= cﬁl{wﬂp,l,l;l;rl}:—@{m, i) e, (39)

Further, because x(w, 5) is 2 Brownian motion, we have
Max |x(E,(m, t), 5)— x (e, 5)| DM ax |3 (e (), 5)— x (e, 5)|
L = Z5=

[ ETT
fnl T Max B (-0

zuséggi |x{a:, 5)—x (@, o, (s))]

a0
Max (0=, ()

[x{e, 5) = x{ew, o (s))
2232*251{ ls—a, (s)|* ——10 a.s.

(40)

In the last step we made use of the modulus of continuity of Brownian motion
[9, p.547]. Thus, for all r and almost all w

(& (w, )+, t)— Plow+ @), 1)

1
A EEM )
ﬁ(én[m,r}‘f}i—*ﬁ{m.:} o S o
[l A
Whence .
P&, (e, 1), 8)— Pl t) ———0 as. {43)

and (36} follows by dominated convergence (using the bounds provided by (18)).
The proof for the theorem is now complete.

Corollary, Under the hypothesis of the theorem, a sequence of partitions exists
for which

o= G

1 1 | ]
jqﬁ[w"{m!, £} d, x (i (o), 1) =22 I-:i?[{u. thd, x(ew, ?]+7 E Wier, el dr.  (44)
0 a T

Proof. This result is obvious since every g.m. convergent sequence has an a.s.
convergent subsequence with the same limit,
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4. Examples and Applications

First, consider a class of examples corresponding more or less to the situation
in [3,4, 5]. Let

@ e, t)= My (e, 1),1) [45)

where .
yilew, )= j v, 5) d, x{w, 5) (46)

I:‘.

15 a stochastic integral and My, 1) is twice y-differentiable. It is easy to show that
if (-, - ) satisfies H,, H, and H, then so does (.. . ). Furthermore, by virtue of (17)

P, t)= Ilm [®(w+ ), 1) —@(w, 1)]
x |l@ II (47)
e ' eqia DMLY )
=v(w, 1) M'(y(w, 1), 1) (M L'””'_"_ay )

Much weaker conditions on v(-,.) also suffice to yield (47), but this fact would
require a more lengthy discussion. Applying the main theorem to the example
considered earlier (see (3)), we find

1
[ x{w" (w), 1) d, x (" (w, 1) 22— j’x[w t)d, x(w, f}+——~ j’d.r
& 25
i (48)
- [x2(ew, 1)— x* (0, O)]
as it should.

From the point of view of many physical problems, application of stochastic
integral to differential equations is important. It is well known [1, pp.273—-201]
that under suitable conditions on a{-,+) and m{.,-), the following stochastic
differential equation has a unique solution:

dy view, =m(ylw, 1), ) dt + o (y(w, 1), 1) d, x (e, 1). (49)

Here, a solution y(.,t) is interpreted as an ./, measurable function satisfying
P P

vie, )=yiw, 0)+ [ m(ylew, s), s)ds+ [ a(viw, s),s)d,x(w, s) {50)
] 0

where the last integral is a stochastic integral. Let

D, (w, s)=c(vlw, 5),5). 5=t
(31)
=0 5>1

then in view of our discussion preceding (47), we can expect that under suitable
conditions on ¢+«

ju‘*:w (en), 5) d, x (0" (w), 5) 22— _[ ylew, 5), 5) d, x (e, 5)
(52)

u] —

j &' (v(e, 5), 5) o (riew, 5), 5) ds.
(1]
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This was the basic motivation of the results given in [4, 5]. If, as in the references
4, 5], we define

Voo, 1) =y(w, 00+ [ mly, (o2, 5), 5) ds+ [ &y, (w, s) s} d, x(w"(w), 5) (53
o 0

where " (co) is defined by (21), then even il y, (e, £) has & limit as 1 —» oo, the limit
is not the solution of (50). Rather, we expect the limit {{w, 1) to satisfy

Fley, t)=ylw, 0)+ [m{F{w, s), s)ds+ [ o(i(w, 5), 5) d, x(w, 5)
(] o
(54}

+% [ a(ilw, ), s)a' (e, 8)) ds.
0

Qur main theorem can be used to prove (54). However, the conditions given in [4]
on a{-,-) need to be strengthened to accomodate H,.
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