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The Oscillation of Stochastic Integrals
By

EvceEveE Wone* and MosHE Zagal

1. Infroduction

Lot Dp=(a =t <t® <t <, <b),n=1,2,... be a partition

of the interval |a, B], let 7(® = max (#%, — t!). It will be assumed throughout
lZizk{a)—1
this paper that lim 7i® == 0. Let y{f, w), = 0, be the Brownian motion process

T O

(with E{y{t, w)} = 0, E{y2({t, w)} = ¢, ¢ = 0). It is a well known result of P. LEvy

[7] that
Efni—1

lim 3 [y{t o) =y, o) = (b —a) (1)
fi—roa =i
in the mean and if also (from some ny on) Dy 1s a refinement of Dy then (1) holds
with probability 1.

A similar result, for a class of stationary Gaussian processes was given by
Baxrer [[] and later generalized to a class of non-stationary Gaussian processes
by GLaDYsHEY [4]. An extension to processes with stationary independent inere-
ments was given by Kozix [6]. BErMaw [£] considered limits of similar forms for
time-homogeneous diffusion processes,

In this paper, a result of type (1) will be shown to hold for a general class of
processes F (£, @) which can be represented as stochastic integrals (theorems 1, 1a)
(a8 in BERMAN'® paper, the limits are random variables). It then follows that the
ssmple funetions of such processes are of unbounded variation (Corollary 1), These
resulta are applied to obtain corresponding results for a general class of diffusion
processes (Theorems 5, 5a) and to the mubual singularvity of the probability
measures indueed in function space by a pair of diffusion processes,

2, The oscillation of stochasfic integrals

Let y{t, @) and Dy, be as defined above. Let B; be the o-field induced by
yl#, ) — yla, w), a = s = §. Let (I, w) satisfy:

L1 fit, @) is real valued and measurable in w and (o = § = b).

Iy foreachtin [a, b, f{t, +) is measurable with respect to B,

b
Ia: jE{f‘H{E, w) it << oo
&
Theorem 1. Let fiE, o) satisfy Iy, Ta, I and F{t, ) be defined by the stochastic
indegral
[
Fit, w) =[5, w)dy(s,); a=t=b.
[
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Then

&li)—1 ']
lim Y [P, 0) — FEP, o))t = [t o)d 2

w—es {=10
in the mean. If, furthermore, for some & = 0
lim girtp24d < 0 (3}

LT
then (2) holds with probability one. AUernatively, if Is and (3) are replaced by I; and
{37:

,

IL: E{fit,w)} =M%, a=t=bh _ ;

lim gim pled = for some § = 0, : (3 1

oo |

then (2) also holds with probability one. |
The proof will be hu-sed on the followmg result of ITo [5]: Let f{t, w) and g{t, w)

satisfy 17, Tz and also Lf“['l w)dt < oo, J‘g“[t w)dt <2 eo for almost all . Let |
[

1

Git, w) = j'ﬁ{a.w}dy{m w), Ft,w)= J'Hs, w) dy (s, w)
then, for almost all
£ i
[ (s, w)dy(s, ) [ (5, o) dy (s, o) 4

I i F I
= [gls, ) F(s, w)dy(s, w) + [f(s, 0) Os, w) dy(s, w) + [g(s, w) [(s, w) ds . ;

Form now on, when there is no confusion, we will omit the probability parameter
e, Before proving Theorem 1, we state and prove the following lemma.,
Lemma 1. If f(E, w) satisfies Iy, 1o, Iy then for ¢ in [a, b]:

1 M
E{Fi0} = Ot —a) [ B{f(s)}ds 5"
® 5
where € = (4 + /18)2
We first prove the lemma under the adx:hinonal restriction | f(t)| = M forall¢in

[, b] and almost all a.
By (4):

t 3 2
F*u;=(ﬂ {6 Fie)dy(s) + jmsm)
i a3 £ a
<3 @ns}ﬂs} dy :s}) + 2(;;2 (s crs) .

Since E{f*(s)F2(s)} = M E{F2(s)} = M® fE{F{.ﬂJ}ds < oo, it follows that ¢

[ ]
{F4(t)} =8 [ E{f2(s) F2(s)}ds + 2(t — a) [ E{f*(s)}ds
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sherefore B {F4(t)} < co and
E‘{F‘J i} =8 _fE”Z {fils)} - BV2IPY(s)}ds + 2(¢t — a) JEE{f'i (#)}ds .

gince F(t) i= a martingale, F4{f) iz a semi-martingale and for a = s =t =
E{F4(s)} = E{F4(t)}, hence

B{F'()} S 8 BVE{F4()}(— aJW(f B{p [s}}da)m +20—a) [E{p)}ds.

£
Let E{FL{t)} = 22, (t — a) [ E{f4(s)}ds = p? then the last inequality becomes
[+

p=8ur+2uta=0 =0 hence z = u(d + ]f"ﬁj and (5) has been proved
for [f(t)] = M. If f{f) is not uniformly bounded, let far(t, w) = f(t, ) for
|fit. w)| = M, tin [s, b], and farif, o) = M for f{t, w) = M and fy{t, w) = — W
for fit, w) < — M. By (5)

E{Fut) = C —ﬂ}JE{ﬂffﬂ)}i“ = G[‘“G}E[fﬁiﬂdﬂ} Fa(t) = Ifw 8)dy .
& (6)

For any fixed ¢ in [a, 8], Far(t) converges in the mean to F(f) as M — co, hence
there is a sequence My such that Fyy, (£) — F(t) almost surely; the result fui]u‘ws

from (6) by FaTou’s theorem.
We turn now to the proof of the “in the mean" part of Theorem 1. Let

Eim)—1 [
Qu =2 [F i, w) — F (", @) — j 12 (s, w)ds

=1

Jiein:l -1 (0
{(tj’ﬂ& w)dy (s, ﬂ-‘?) —"_LF'[-‘-* w}'ﬁ}

By (4):
kimi=1 4%

=25  [1(s) L [Hw) dycm) dy(s)

i=p im

kini—1 o™ z
B(G) =13, J'E{Ffsl( me}dy{u}) ]d-s

Tnup inp

48" fhuegeey - pe { ( { Hu) dy{u}ﬂ ds

pa :
=0 4w

By (5):
Bimi-1 03 o ra
B{Q 40T [B{je) 6~ ‘““‘”E(IE{’H }du) =
im0 gim i

E{Q} =4)/C {-;m];.uz( fEfl () .:Su)m -j:JEUB {f+(s)}ds . (7)

Hence E {;} converges to zero as n — oo and the “in the mean® part of Theorem 1
is proved.
Lk
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By (7") and the Tchebichev inequality,

Ky (zinytin 1
Prob. {l Qﬂ = (T n2+4$}1.fd.} = TrivipieniE = ¥ R v PRETTI N

Singe > n—1+¥2 < oo, (§ > 0), it follows by the Borel- Gantelh Lemma that the
=1

get of @ for which Qg (w) = (Ti®n2+6)L4 for infinitely many » has probability zero.
Therefore, for almost all w, | @u(w)| = (z!® n2+9)1/4 is satisfied only finitely many
times, Since we assumed that lim tintn2+¢ = 0, it follows that |Qy| — 0 almost
surely. L

If also I; is satisfied then it follows from (7) that E{Qi} = E;t'™, Hence

Prob. {| Qu| = (zmnt+0)i2} < 3%

Sinee » n~0+% < oo, (§ = 0), the almost sure convergence of (2) follows by (3')

1
and the Borel-Cantelli Lemma.
Corollary 1. Under the conditions of theorem 1, let F(t) be the condinuous version

of ff(.s]dy{s]l. Then with probability I, either F (-, w) = 0 in [a, b] or F -, w) is of

ssboundid parsibion in Gx. 5

kin)=
z [F @) —F"E s max | F(@,) —F™ | 2 iFtc‘"‘* — F ).
i 0Ei=kn—1 im0 (8)

Consider only the continuous sample functions F (-, w). Because of the continuity

of F(-, w); max | F(t{",) — F(t™)| converges to zero as 7i%) — 0. Let Dy be a
05is k-1
sequence of partitions such that the “almost sure” part of Theorem 1 holds. If for

a given wf(t, w) = 0 for almost all ¢ in [, 8] then F(-, w) = 0, if not then the

right hand side of [2}, hence the left hand side of (8) are strictly positive. Hence it
Eni—1

follows from (8) that > | F(#%,) — F(£{") | must diverge to co as n — oo and F()
i=10

is of unbounded variation.

We consider now the following generalization of Theorem 1. Let ¥ (f, w)
= (yl{t, @), ..., y2(t, @)}, ¢ = 0, be a g-dimensional Brownian motion (that is, the
components yP(t, w), 1=p=gq, of ¥, w) are one dimensional Brownian
motions and y%(f, w), ] = p =g, are independent processes). Let B be the
g-field induced by Fis, w) — Yo, w),a =8 =t

Theorem 1a. Let each fglt, w) satisfy Iy, Iz (with respect to BY), I3 and 1
Ft, w) be defined as

Fl,w)= 3 [fpls eldy?(sw)iaStSb.
p=la

Then

Hmt%_[}u‘*"l w) — F{sE—“hmuﬂ=§; ff.ice, w) dt ﬁﬂai

R—ta (=0 pr=lea
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in the mean. If, also, for some d = 0
lirn i p2+d = () {33}

i DD

then (2a) holds with probability one. Furthermore, if for some findite M
Iy: B{A}=M, a=t=h, 1=p=qg

and if for some & = 0
lim T pl+é = () (3'a)
=3
then (2a) holds with probability one.
Proof:

Emi=1 ¢ uH gnd
> ”E J-fm{ﬂd!d'p“}J 2 jffm:ﬂ}

] p=1 = p=1 08

-1 [ g [f4n e
=2 { 2 [(Ifn{ﬂdy?[-!}) nj'fgm.:u} 3
i=0 p=1{,

il fimt
-!M' ti ]

{hre)dyr(t)- f fp(dy? () = @0 + RO

™

Erl—1 0 4
222
i=0 r+4p

From equation (7') it follows that E {(QW) *} = Ko(z)12 (where Ky is in-
dependent of n). From (7) it follows that under I, E{[Q"’}}f} = rin - K.
In order to evaluate {[Rﬂ”}lﬂ} we use the following result of It [5]: forr + s

j felt) - dyr it) - j fs(6) dye ()

[ b a
= f frit) (ﬂjf: () dy? {-u}) dy" (£) + [ fs(6) (uf fr () dy w}) dy*(8) .

Following the steps that lead to equations (7) and (7') we obtain: E{{R{)%}
< (7i™)2 K, and under Iy, E{(R")?} < v'® K4;K; independent of n. The rest
of the proof is the same as the proof of Theorem 1.

3. Some related results

Theorem 2. Let { (¢, o) and F(t, w) be as in Theorem 1. Let Dy be o sequence of
partitions such that: (a) from some ng on Dyep 45 @ refinement of Dy, (5) (2) holds
with probability one. Let g(t, w) satisfy Ii, Is and I3 and let the sample functions
gi-, w) -!Ja continuous in [a, b] with probability one, then

lim z gt:‘“”llF{sE’ﬂl Fts’”le—Imt}fﬂ{t)dz (9)

p—eoa {=
with probability one.

Bermaw [2] considered the special case f{t) = 1 and g(t) = w{w(t)) where |-
is continuous. The proof of Theorem 2 is precisely the same as the proof given by
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Bunsas and is, therefore, omitted. It follows by the same arguments that if @)
has & continuons derivative then, a. 5.,
Efn}—1 &
lim 3 (@F ) — DFENE = [(D(FON2FE .
fi—rea (=) L3
Theorem 3. Let g(l, w) satisfy Iy, In and let E{g%(t, w)} be continuous in [a, b].
Then

kini—1 ]
lim Y g () (y (%) — g ()2 = [glt)dt (10)
n—ens =0 L .

in the mean.
Einy=1 [
Proof: > g(t™) (¢}); — ) converges in the mean to [ g(t)dt.
=1 . -3
Let =i, — ", =yl -y ")

{("Saumay

== {2 > ™) g (6 [n™)2 — ™1 ln™)? — :5“}]} +

iad

i=0
Consider a typical term in the double sum, assume j > i. Then »{ is independent
of all the other random variables in this term and E {(n{™)2 — 7™} = 0. There-
fore the expectation of the double sum is zero. Since 7{™ is independent of g (")
we have

Ein)=1
+E { > (™) [(niM)E — ri“’F] :

kin}—1 3 kinl—1
E ( > g™ [(ni™)2 — wilz) ={Z E (g2 (i)} B {(nf™)2 — ™)}
i1=10 =0
ri—1 ki

ki
=3
i

SE{ ) R S 200 3 B ) )
=0 b

which converges to zero,
i
Theorem 4. Let g (£, o) satisfy Iy, Ig (for almost all t in [a,b] and [ B {g?(t)}dt < oo
&
Let gu(t, @) be a sequence of approrimations fo g(t, w) with the following properties
[reference 3, p. 4391: (1) For each n exists a partition a = " < £ < - < ), =b

(independent of w) such that gult, w) = ga (™, w), (M = ¢ < %) and z™ -0
s 1 == oo, (2] ga (t, w) satisfies Iy and To. (3):

[
lim [E{(g(t) — gn ()2} dt = 0.

Jj—sDo
Then
Eimi—1 b
Lim 2 gt (3 — ") = [g@)at
p—oa i=1 ‘&
and

Ein)—1 [
Lim X ga (™) (y(68) — g ()2 = [g () dt:

n—roz i=10
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Proaf:
bin) =1t Elar=1 03
{( > [gh —gatty ch ] S(b—a)> JB{glt) —gnl)?}ds.

im0 i =0 g

i This proves the first assertion. From the proof of Theorem 3 it follows that
kinl—1 2
B {( S a0 L E22) — y )2 — 6, — sﬂ“}n) } =
G kin)—1
2t ¥ B {gg (")} 6, — ™)
i=1

which converges to zero since T/ — () and

Eind—1

b B
2B @ — M) = [B{gridt =2 [E{g(t)}dt +
i=0 i@ T

h
+2 [ B {{ga(t) — g (02} dt
[
Remari: The results of this section can be written in the symbolic form:

] [i]
Jatt) (dy(e)E = [git)dt

] ]

(g (dF ()2 = [git)f2it)de.

4. Applieation to the sample funetions of diffusion processes
Lemma 2, Let fp(t, w), 1 = p = q, satisfy the conditions of Theorem I1a. Let
glt, w) satisfy Iy and Tz Let

4
Q) = [gls)ds

and
Hity= Gty + Ft)
then
Efni—1 g b
lim > [H{f) —HEMPE= 2, [ftd (11)
A—+oa i=10 p=1la

in the mean. Furthermore, if for a given sequence of partitions Dy, (2) converges with
probability 1 then (11) also converges with probability 1.
Proof:
kin)—1 Ein)—1 Bni—1
2 (H{E2) — H{t)? = _Zﬂtﬂ{t&’ﬂl — G+ 2 (F (3 — F ™) +
i=0 i
Bim)—1
+ EEZDIG (1) — GE™) (Fef,) — F ™).

The expectation of the square of the last sum is dominated by

B{r}—1 2 Eimi—1 z
( >R —F {GEMIIJZ) } = 2 {( > ( _FJ 9] 'ﬁ)z) }
£ () =0 e

4 e
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Therefore, by Theorem 1a, it is sufficient to show that

Eimi—1 {05 2
2 (’IE{#JEI#) (12)

=10

converges to zero in the mean and with pruba,hﬂit}r 1. Sinee

t[ﬂ-:‘ 1 inl ‘-2
{ S (_f g{s}d-s)
im |ym

4 2
™) [ g2 (a) d‘&}

i=0 !E"?'

Eimi—1 Eimi—1/ 0 Ve
<"S ", — S ( foro)
i=0

temd 4 yim

= (z™)2(b — a) }Pg‘ (s) ds.

It follows that (12) converges in the mean and with probability one, which comple-
tes the proof of the lemma.

Theorem 5. Let x (8, w) be the solution to the stochastic differential equation

i §
x(t) = z(a) + [m(z(s), 8)ds + [o(z(s),£)dy(s) (13)
where ’
[miz,6) —m(E8)| =k|z— &|;|miz.6)| k(1 + 2312
|o(x,t) — a(5,0)| = k|z— &|;| oz, 8] = k(1 + 222 (14)
and let
E{J‘:‘i[ﬂ}} < ea,
Then
kin)—1 b X
lim 3 (z(¥,) — (6")2 = [ o (x(t), t)dt (15)
Rron fe=I(] a

in the mean, and if lim (" nl¥e = 0 for some & > 0 then (15) holds with probability
e *. == 2

Proof: If E{x*(t)} is bounded in [a, 5] then the result follows by applying -
Lemma 2 to the right hand side of equation 13. It remains only to show that nnder
the assumptions of the theorem, E {z1(t)} is bounded in [a, b]. The proof of this
will follow closely the proof of existence and uniqueness of the solution to (13) by
sucoessive approximations (reference 3 p. 281).

Let 4 (t) be any process satisfying Iy, I and

Eizd =My, ast<h. (16)

Consider the sequence of successive approximations

i t
Ene1(t) = xla) + [m(za(s),s)ds + [o(re(s),s)dy(s).

* After this paper was submitted for publication we learned that o similar theorem has -
heen proved by 8. BERMAN: Sign-invariant random variables and stochastic processes with
gign invariant increments, Theorem 4.1. To be published in Trans. Amer, math. Soe.
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Then &x () converges with probability one to x () which is the solution to (13). It

~ follows from (14) and Lemma 1 that if B {z}(t)} is bounded in [a, b], so are

B {{m(za(0), 003}, B{lo(za(t). )} and E{al,,(t)}.

Let
Aaz(t) = a(t) — 241 (f)

Agm(t) = mizall), £) — m(@a-1{t),1); Ano(f) = o {2, (8),8) — o (2n_1(£),1).
by (14): [Aam(t)| = K| daz(t)] ;| dnoit)| = K | daz(t)] .

£
K {[dwx{ij}“} =168 {( ;d#_lm (%) [f,g)‘l} + 16K {( Ié] n—10 (&) dy ig])d}
=18(t— a]aff‘le{fﬂ#_lﬂ-‘(ﬁjl}“ de} 4+ 16 (¢ — a) K4 J}E A p-1xia) ida

t
= Ky [E {{dn-1x(s))4} ds.

By (16)
O e 12

Now

szjmm) (Zz - zz:fm,:c}ﬂ)

=1 - F=1

5(224) S 23 (4
f=1 i=1

Henes

E{anlt) —w@)} =K > @RI < Rpetiis,
2

Hence, for some K4 < oo E {a}, (1)} < K4 for all ¢ in [a, b] and all m. Since z (t) —z(f)
with probability one, it follows from Farou's theorem that E{z!(t)} is bounded
in [a, ].

Theorem ba. Let Y(f, @) = (yL{t), ..., y?(t)), t = 0, be the g-dimensional
Brownian motion. Let X(t, w) = (zL(t), ..., 22 (t)} be the solution fo the vector
stochastic differential equation:

r*’[f}—ﬂfa}+fmﬂixfs}sds+2 J'a?"{XI:s} sldyr(s) p=1,2,.

F=1g
where
i
1 X = Z(ﬂ’[-‘]‘}s
pe=1
[e?r (X)) —or (X t)| =K | X1 — X5l =pr=¢q
asted lef
E{|X{a)|*} <oo.
Then
kinp=1 7, ir
Z(rr.{cﬁ*ﬂ —2P(ME =3 [(oPr (X (t),£)2dt (17)

A—sos i=] r=1 a
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in the mean, and if lim timpl+d = 0 for some o = 0 then (17) holds with probability
one. The proof is the same as the proof of Theorem § and is therefore omitted,

Baxrer's result [1] was applied by Suepraw [§] to the problem of detection of
noise-type signals, A similar application of Theorem 5 is the following. Consider
the processes @y (t, w) and xg(f, w) defined by

Ty (t, ) = z4(a) 4 fmu (% (8), 8} ds + fcru (w2 (). 5)dy (s), t=t=bh

[ t
zg(t, w) = xg(a) + [mg(zg(s), s)ds + [ag(wg(s), 5) dy (s), e =1=0,

where g (2), zg(a), ma, mg, 0y, op satisfy the conditions of Theorem 5. Let oy, g
o i

be such that there exists a fixed fy in [a, b] for which | o (z(s), s)ds + fuﬁ (x(s),8)ds
3 3

for all eontinuous =(s). A sample 20 (t), @ = ¢ = b, is available to an observer and it
is known to him that zq(t) is either a sample from the system with subseript « or
with subseript 5. The observer is to decide whether g (f) came from a or from f.
Let py(pg) be the probability that the observer decides that the sample came from
e () when indeed it came from §{x). If the result of Theorem 5 is used az a test (in
the interval [a, {p]), then p; = pg = 0; namely, the probability measures indueed
by @y (t) and zs{f) on the space of functions are mutually singular.
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