The Oscillation of Stochastic Integrals

By

EUGENE WONG * and Moshe Zakai

1. Introduction

Let $D_n=(a=t_0^{(n)}< t_1^{(n)}< t_2^{(n)}\cdots < t_{k(n)}^{(n)}=b),\ n=1,2,\ldots$ be a partition of the interval [a,b], let $\tau^{(n)}=\max\limits_{0\leq i\leq k(n)-1}(t_{i+1}^{(n)}-t_i^{(n)})$. It will be assumed throughout this paper that $\lim\limits_{n\to\infty}\tau^{(n)}=0$. Let $y(t,\omega),t\geq 0$, be the Brownian motion process (with $E\{y(t,\omega)\}=0$, $E\{y^2(t,\omega)\}=t$, $t\geq 0$). It is a well known result of P. Levy [7] that

$$\lim_{n\to\infty} \sum_{i=0}^{k(n)-1} [y(t_{i+1}^{(n)}, \omega) - y(t_{i}^{(n)}, \omega)]^{2} = (b-a)$$
(1)

in the mean and if also (from some n_0 on) D_{n+1} is a refinement of D_n then (1) holds with probability 1.

A similar result, for a class of stationary Gaussian processes was given by Baxter [1] and later generalized to a class of non-stationary Gaussian processes by Gladyshev [4]. An extension to processes with stationary independent increments was given by Kozin [6]. Berman [2] considered limits of similar forms for time-homogeneous diffusion processes.

In this paper, a result of type (1) will be shown to hold for a general class of processes $F(t, \omega)$ which can be represented as stochastic integrals (theorems 1, 1 a) (as in Berman's paper, the limits are random variables). It then follows that the sample functions of such processes are of unbounded variation (Corollary 1). These results are applied to obtain corresponding results for a general class of diffusion processes (Theorems 5, 5a) and to the mutual singularity of the probability measures induced in function space by a pair of diffusion processes.

2. The oscillation of stochastic integrals

Let $y(t, \omega)$ and D_n be as defined above. Let \mathfrak{B}_t be the σ -field induced by $y(s, \omega) - y(a, \omega)$, $a \leq s \leq t$. Let $f(t, \omega)$ satisfy:

 I_1 : $f(t, \omega)$ is real valued and measurable in ω and $t(a \le t \le b)$.

 I_2 : for each t in [a, b], $f(t, \cdot)$ is measurable with respect to \mathfrak{B}_t .

$$I_3: \int_a^b E\{f^4(t, \omega)\} dt < \infty$$
.

Theorem 1. Let $f(t, \omega)$ satisfy I_1 , I_2 , I_3 and $F(t, \omega)$ be defined by the stochastic integral

$$F(t, \omega) = \int_{s}^{t} f(s, \omega) dy(s, \omega); \qquad a \le t \le b.$$

[★] Work supported in part by the National Science Foundation under Grant GP-2413.

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 4

Then

$$\lim_{n\to\infty} \sum_{i=0}^{k(n)-1} [F(t_{i+1}^{(n)}, \omega) - F(t_{i}^{(n)}, \omega)]^{2} = \int_{a}^{b} f^{2}(t, \omega) dt$$
(2)

in the mean. If, furthermore, for some $\delta > 0$

$$\lim_{n\to\infty} \tau^{(n)} n^{2+\delta} = 0 \tag{3}$$

then (2) holds with probability one. Alternatively, if I_3 and (3) are replaced by I'_3 and (3'):

$$I_3'$$
: $E\{f^4(t,\omega)\} \le M^4$, $a \le t \le b$

$$\lim_{n\to\infty} \tau^{(n)} n^{1+\delta} = 0 \quad \text{for some } \delta > 0 , \quad (3)$$

then (2) also holds with probability one.

The proof will be based on the following result of Irô [5]: Let $f(t, \omega)$ and $g(t, \omega)$ satisfy I_1 , I_2 and also $\int_{0}^{b} f^2(t, \omega) dt < \infty$, $\int_{0}^{b} g^2(t, \omega) dt < \infty$ for almost all ω . Let

$$G(t, \omega) = \int_{a}^{t} g(s, \omega) dy(s, \omega), \quad F(t, \omega) = \int_{a}^{t} f(s, \omega) dy(s, \omega)$$

then, for almost all ω :

$$\int_{a}^{t} g(s, \omega) dy(s, \omega) \int_{a}^{t} f(s, \omega) dy(s, \omega)$$
(4)

$$= \int_a^t g(s,\omega) F(s,\omega) dy(s,\omega) + \int_a^t f(s,\omega) G(s,\omega) dy(s,\omega) + \int_a^t g(s,\omega) f(s,\omega) ds.$$

Form now on, when there is no confusion, we will omit the probability parameter ω . Before proving Theorem 1, we state and prove the following lemma.

Lemma 1. If $f(t, \omega)$ satisfies I_1 , I_2 , I_3 then for t in [a, b]:

$$E\{F^{4}(t)\} \le C(t-a)\int_{a}^{t} E\{f^{4}(s)\} ds$$
 (5)

where $C = (4 + \sqrt{18})^2$.

We first prove the lemma under the additional restriction $|f(t)| \leq M$ for all t in [a, b] and almost all ω .

By (4):

$$\begin{split} F^4(t) &= \left(2 \int\limits_a^t f(s) \, F(s) \, dy(s) + \int\limits_a^t f^2(s) \, ds\right)^2 \\ &\leq 8 \left(\int\limits_a^t f(s) \, F(s) \, dy(s)\right)^2 \, + 2 \left(\int\limits_a^t f^2(s) \, ds\right)^2. \end{split}$$

Since $E\{f^2(s)F^2(s)\} \le M^2 E\{F^2(s)\} = M^2 \int_a^t E\{f^2(s)\} ds < \infty$, it follows that

$$E\left\{F^{4}(t)\right\} \leq 8\int\limits_{a}^{t} E\left\{f^{2}(s)F^{2}(s)\right\}ds + 2\left(t-a\right)\int\limits_{a}^{t} E\left\{f^{4}(s)\right\}ds$$

therefore $E\{F^4(t)\}<\infty$ and

$$E\left\{F^{4}(t)\right\} \leq 8\int\limits_{a}^{t} E^{1/2}\{f^{4}(s)\} \cdot E^{1/2}\{F^{4}(s)\}ds + 2\left(t-a\right)\int\limits_{a}^{t} E\left\{f^{4}(s)\right\}ds \; .$$

Since F(t) is a martingale, $F^4(t)$ is a semi-martingale and for $a \le s \le t \le b$ $\mathbb{E}\{F^4(s)\} \le \mathbb{E}\{F^4(t)\}$, hence

$$E\left\{F^4(t)\right\} \leq 8\,E^{1/2}\left\{F^4(t)\right\}(t-a)^{1/2} \left(\int\limits_a^t E\left\{f^4(s)\right\}ds\right)^{1/2} + 2\,(t-a)\int\limits_a^t E\left\{f^4(s)\right\}ds\;.$$

Let $E\{F^4(t)\} = x^2$, $(t-a)\int_a^t E\{f^4(s)\}ds = \mu^2$ then the last inequality becomes $x^2 \le 8\mu x + 2\mu^2$, $x \ge 0$, $\mu \ge 0$, hence $x \le \mu(4+\sqrt{18})$ and (5) has been proved for $|f(t)| \le M$. If f(t) is not uniformly bounded, let $f_M(t,\omega) = f(t,\omega)$ for $|f(t,\omega)| \le M$, t in [a,b], and $f_M(t,\omega) = M$ for $f(t,\omega) < M$ and $f_M(t,\omega) = M$ for $f(t,\omega) < M$. By (5)

$$\mathbb{E}\left\{F_{M}^{4}(t)\right\} \leq C(t-a)\int\limits_{a}^{t} \mathbb{E}\left\{f_{M}^{4}(s)\right\}ds \leq C(t-a)\mathbb{E}\left\{\int\limits_{a}^{t} f^{4}(s)\,ds\right\}; F_{M}(t) = \int\limits_{a}^{t} f_{M}(s)\,dy\;. \tag{6}$$

For any fixed t in [a, b], $F_M(t)$ converges in the mean to F(t) as $M \to \infty$, hence there is a sequence M_j such that $F_{M_j}(t) \to F(t)$ almost surely; the result follows from (6) by FATOU's theorem.

We turn now to the proof of the "in the mean" part of Theorem 1. Let

$$\begin{split} Q_n &= \sum_{i=0}^{k(n)-1} [F(t_{i+1}^{(n)}, \omega) - F(t_i^{(n)}, \omega)]^2 - \int\limits_a^b f^2(s, \omega) \, ds \\ &= \sum_{i=0}^{k(n)-1} \left\{ \left(\int\limits_{t_i^{(n)}}^{t_{i+1}^{(n)}} f(s, \omega) \, dy(s, \omega) \right)^2 - \int\limits_{t_i^{(n)}}^{t_{i+1}^{(n)}} f^2(s, \omega) \, ds \right\}. \end{split}$$

By (4):

$$\begin{split} Q_n &= 2\sum_{i=0}^{k(n)-1} \int\limits_{t_i^{(n)}}^{t_i^{(n)}} f(s) \left(\int\limits_{t_i^{(n)}}^s f(u) \, dy(u) \right) dy(s) \\ E\left\{Q_n^2\right\} &= 4\sum_{i=0}^{k(n)-1} \int\limits_{t_i^{(n)}}^{t_i^{(n)}} E\left\{ f^2(s) \left(\int\limits_{t_i^{(n)}}^s f(u) \, dy(u) \right)^2 \right\} ds \\ &\leq 4\sum_{i=0}^{k(n)-1} \int\limits_{t_i^{(n)}}^{t_{i+1}^{(n)}} E^{1/2} \left\{ f^4(s) \right\} \cdot E^{1/2} \left\{ \left(\int\limits_{t_i^{(n)}}^s f(u) \, dy(u) \right)^4 \right\} ds \end{split}$$

By (5):

$$E\left\{Q_{n}^{2}\right\} \leq 4\sqrt{C}\sum_{i=0}^{k(n)-1}\int\limits_{t_{i}^{(n)}}^{t_{i+1}^{(n)}}E^{1/2}\left\{f^{4}(s)\right\}\cdot(s-t_{i}^{(n)})^{1/2}\left(\int\limits_{t_{i}^{(n)}}^{t_{i+1}^{(n)}}E\left\{f^{4}(u)\right\}du\right)^{1/2}ds \tag{7}$$

$$E\{Q_n^2\} \le 4\sqrt{C}(\tau^{(n)})^{1/2} \left(\int_a^b Ef^4(u) du\right)^{1/2} \cdot \int_a^b E^{1/2}\{f^4(s)\} ds$$
. (7')

Hence $E\{Q_n^2\}$ converges to zero as $n \to \infty$ and the "in the mean" part of Theorem 1 is proved.

By (7') and the Tchebichev inequality,

Prob.
$$\{|Q_n| \ge (\tau^{(n)} n^{2+\delta})^{1/4}\} \le \frac{K_1(\tau^{(n)})^{1/2}}{(\tau^{(n)} n^{2+\delta})^{1/2}} = K_1 \frac{1}{n^{1+\delta/2}}$$
.

Since $\sum_{n=1}^{\infty} n^{-(1+\delta/2)} < \infty$, $(\delta > 0)$, it follows by the Borel-Cantelli Lemma that the set of ω for which $Q_n(\omega) \ge (\tau^{(n)} n^{2+\delta})^{1/4}$ for infinitely many n has probability zero. Therefore, for almost all ω , $|Q_n(\omega)| \ge (\tau^{(n)} n^{2+\delta})^{1/4}$ is satisfied only finitely many times. Since we assumed that $\lim_{n\to\infty} \tau^{(n)} n^{2+\delta} = 0$, it follows that $|Q_n| \to 0$ almost surely.

If also I_3' is satisfied then it follows from (7) that $E\{Q_n^2\} \leq K_2 \tau^{(n)}$. Hence

Prob.
$$\{ \mid Q_n \mid \geq (\tau^{(n)} \, n^{1+\delta})^{1/2} \} \leq \frac{K_2}{n^{1+\delta}}$$
 .

Since $\sum_{1}^{\infty} n^{-(1+\delta)} < \infty$, $(\delta > 0)$, the almost sure convergence of (2) follows by (3') and the Borel-Cantelli Lemma.

Corollary 1. Under the conditions of theorem 1, let F(t) be the continuous version of $\int_a^t f(s) dy(s)$. Then with probability 1, either $F(\cdot, \omega) \equiv 0$ in [a, b] or $F(\cdot, \omega)$ is of unbounded variation in [a, b].

Proof:

$$\sum_{i=0}^{k(n)-1} [F(t_{i+1}^{(n)}) - F(t_{i}^{(n)})]^{2} \leq \max_{0 \leq i \leq k(n)-1} \big| F(t_{i+1}^{(n)}) - F(t_{i}^{(n)}) \big| \sum_{i=0}^{k(n)-1} \big| F(t_{i+1}^{(n)}) - F(t_{i}^{(n)}) \big|. \tag{8}$$

Consider only the continuous sample functions $F(\cdot, \omega)$. Because of the continuity of $F(\cdot, \omega)$; $\max_{0 \le i \le k(n)-1} |F(t_i^{(n)})| - F(t_i^{(n)})|$ converges to zero as $\tau^{(n)} \to 0$. Let D_n be a sequence of partitions such that the "almost sure" part of Theorem 1 holds. If for a given $\omega f(t, \omega) = 0$ for almost all t in [a, b] then $F(\cdot, \omega) = 0$, if not then the right hand side of (2), hence the left hand side of (8) are strictly positive. Hence it follows from (8) that $\sum_{i=1}^{k(n)-1} |F(t_{i+1}^{(n)}) - F(t_{i}^{(n)})|$ must diverge to ∞ as $n \to \infty$ and $F(\cdot)$

is of unbounded variation.

We consider now the following generalization of Theorem 1. Let $Y(t, \omega) = (y^1(t, \omega), \ldots, y^q(t, \omega)), t \ge 0$, be a q-dimensional Brownian motion (that is, the components $y^P(t, \omega), 1 \le p \le q$, of $Y(t, \omega)$ are one dimensional Brownian motions and $y^P(t, \omega), 1 \le p \le q$, are independent processes). Let \mathfrak{B}_t^q be the σ -field induced by $Y(s, \omega) - Y(a, \omega), a \le s \le t$.

Theorem 1a. Let each $f_p(t, \omega)$ satisfy I_1 , I_2 (with respect to \mathfrak{B}_t^q), I_3 and let $F(t, \omega)$ be defined as

$$F(t, \omega) = \sum_{p=1}^{q} \int_{a}^{t} f_{p}(s, \omega) dy^{p}(s, \omega); a \leq t \leq b.$$

Then

$$\lim_{n\to\infty} \sum_{i=0}^{k(n)-1} [F(t_{n+1}^{(n)}, \omega) - F(t_i^{(n)}, \omega)]^2 = \sum_{p=1}^q \int_a^b f_p^2(t, \omega) dt$$
(2a)

in the mean. If, also, for some $\delta > 0$

$$\lim_{n\to\infty} \tau^{(n)} n^{2+\delta} = 0 \qquad (3a)$$

then (2 a) holds with probability one. Furthermore, if for some finite M

$$I_3''$$
: $E\{f_p^4(t)\} \le M$, $a \le t \le b$, $1 \le p \le q$

and if for some $\delta > 0$

$$\lim_{n \to \infty} \tau^{(n)} n^{1+\delta} = 0 \quad (3'a)$$

then (2a) holds with probability one.

Proof:

$$\begin{split} &\sum_{i=0}^{k(n)-1} \left\{ \left[\sum_{p=1}^{q} \int_{t_i^{(n)}}^{t_{i+1}^{(n)}} (t) \, dy^p(t) \right]^2 - \sum_{p=1}^{q} \int_{t_i^{(n)}}^{t_{i+1}^{(n)}} f_p^p(t) \, dt \right\} \\ &= \sum_{i=0}^{k(n)-1} \left\{ \sum_{p=1}^{q} \left[\left(\int_{t_i^{(n)}}^{t_{i+1}^{(n)}} (t) \, dy^p(t) \right)^2 - \int_{t_i^{(n)}}^{t_{i+1}^{(n)}} f_p^2(t) \, dt \right\} + \\ &+ \sum_{i=0}^{k(n)-1} \sum_{r+p}^{q} \sum_{p} \int_{t_i^{(n)}}^{t_{i+1}^{(n)}} f_r(t) \, dy^r(t) \cdot \int_{t_i^{(n)}}^{t_{i+1}^{(n)}} f_p(t) \, dy^p(t) = Q_n^{(q)} + R_n^{(q)} \, . \end{split}$$

From equation (7') it follows that $E\{(Q_n^{(q)})^2\} \le K_a(\tau^{(n)})^{1/2}$ (where K_a is independent of n). From (7) it follows that under I_3'' , $E\{(Q_n^{(q)})^2\} \le \tau^{(n)} \cdot K_b$.

In order to evaluate $E\{(R_n^{(q)})^2\}$ we use the following result of Itô [5]: for $r \neq s$

$$\begin{split} &\int\limits_a^b f_r(t) \cdot dy^r(t) \cdot \int\limits_a^b f_s(\theta) \, dy^s(\theta) \\ &= \int\limits_a^b f_r(t) \left(\int\limits_a^t f_s(u) \, dy^s(u) \right) dy^r(t) + \int\limits_a^b f_s(\theta) \left(\int\limits_a^\theta f_r(u) \, dy^r(u) \right) dy^s(\theta) \; . \end{split}$$

Following the steps that lead to equations (7) and (7') we obtain: $E\{(R_n^{(q)})^2\}$ $\leq (\tau^{(n)})^{1/2}K_c$ and under I_3'' , $E\{(R_n^{(q)})^2\} \leq \tau^{(n)}K_d$; K_d independent of n. The rest of the proof is the same as the proof of Theorem 1.

3. Some related results

Theorem 2. Let $f(t, \omega)$ and $F(t, \omega)$ be as in Theorem 1. Let D_n be a sequence of partitions such that: (a) from some n_0 on D_{n+1} is a refinement of D_n , (b) (2) holds with probability one. Let $g(t, \omega)$ satisfy I_1 , I_2 and I_3 and let the sample functions $g(\cdot, \omega)$ be continuous in [a, b] with probability one, then

$$\lim_{n \to \infty} \sum_{i=0}^{k(n)-1} g(t_i^{(n)}) |F(t_{i+1}^{(n)}) - F(t_i^{(n)})|^2 = \int_a^b g(t) f^2(t) dt \qquad (9)$$

with probability one.

Berman [2] considered the special case f(t) = 1 and $g(t) = \psi(y(t))$ where $\psi(\cdot)$ is continuous. The proof of Theorem 2 is precisely the same as the proof given by

Berman and is, therefore, omitted. It follows by the same arguments that if $\Phi(\cdot)$ has a continuous derivative then, a. s.,

$$\lim_{n \to \infty} \sum_{i \, = \, 0}^{k \, (n) \, - \, 1} (\varPhi \, (F \, (t_{i+1}^{(n)})) \, - \, \varPhi \, (F \, (t_{i}^{(n)})))^2 = \int\limits_a^b (\varPhi' \, (F \, (t)))^2 \, f^2 \, (t) \, dt \; .$$

Theorem 3. Let $g(t, \omega)$ satisfy I_1 , I_2 and let $E\{g^2(t, \omega)\}$ be continuous in [a, b]. Then

$$\lim_{n \to \infty} \sum_{i=0}^{k(n)-1} g(t_i^{(n)}) (y(t_{i+1}^{(n)}) - y(t_i^{(n)}))^2 = \int_a^b g(t) dt$$
(10)

in the mean.

Proof: $\sum_{i=0}^{k(n)-1} g(t_i^{(n)})(t_{i+1}^{(n)} - t_i^{(n)}) \text{ converges in the mean to } \int_a^b g(t) dt.$

Let

$$\begin{split} \tau_i^{(n)} &= t_{i+1}^{(n)} - t_i^{(n)} \,, \quad \eta_i^{(n)} = y \, (t_{i+1}^{(n)}) - y \, (t_i^{(n)}) \,. \\ E \left\{ & \left(\sum_{i=0}^{k(n)-1} g \, (t_i^{(n)}) \, [(\eta_i^{(n)})^2 - \tau_i^{(n)}])^2 \right\} \\ &= E \left\{ \sum_{i+j} g \, (t_i^{(n)}) \, g \, (t_j^{(n)}) \, [(\eta_i^{(n)})^2 - \tau_i^{(n)}] \, [(\eta_j^{(n)})^2 - \tau_j^{(n)}] \right\} + \\ &+ E \left\{ \sum_{i=0}^{k(n)-1} g^2 \, (t_i^{(n)}) \, [(\eta_i^{(n)})^2 - \tau_i^{(n)}]^2 \right\} \,. \end{split}$$

Consider a typical term in the double sum, assume j > i. Then $\eta_j^{(n)}$ is independent of all the other random variables in this term and $E\{(\eta_i^{(n)})^2 - \tau_i^{(n)}\} = 0$. Therefore the expectation of the double sum is zero. Since $\eta_i^{(n)}$ is independent of $g(t_i^{(n)})$ we have

$$\begin{split} E\bigg(\sum_{i=0}^{k(n)-1} g(t_i^{(n)}) \left[(\eta_i^{(n)})^2 - \tau_i \right]^2 \bigg)^2 &= \sum_{i=0}^{k(n)-1} E\left\{ g^2(t_i^{(n)}) \right\} E\left\{ (\eta_i^{(n)})^2 - \tau_i^{(n)})^2 \right\} \\ &= 2\sum_{i=0}^{k(n)-1} E\left\{ g^2(t_i^{(n)}) \right\} (\tau_i^{(n)})^2 \leq 2 \, \tau_i^{(n)} \sum_{i=0}^{k(n)-1} E\left\{ g^2(t_i^{(n)}) \, \tau_i^{(n)} \right\} \end{split}$$

which converges to zero.

Theorem 4. Let $g(t, \omega)$ satisfy I_1 , I_2 (for almost all t in [a, b] and $\int_a^b E\{g^2(t)\}dt < \infty$.

Let $g_n(t, \omega)$ be a sequence of approximations to $g(t, \omega)$ with the following properties [reference 3, p. 439]: (1) For each n exists a partition $a = t_0^{(n)} < t_1^{(n)} < \cdots < t_{k(n)}^{(n)} = b$ (independent of ω) such that $g_n(t, \omega) = g_n(t_r^{(n)}, \omega)$, $t_r^{(n)} \leq t < t_{r+1}^{(n)}$ and $\tau^{(n)} \to 0$ as $n \to \infty$. (2) $g_n(t, \omega)$ satisfies I_1 and I_2 . (3):

$$\lim_{n\to\infty}\int\limits_a^b E\left\{(g(t)-g_n(t))^2\right\}dt=0\,.$$

Then

$$\underset{n \to \infty}{\text{l.i.m}} \sum_{i=1}^{k(n)-1} g_n(t_i^{(n)}) \left(t_{i+1}^{(n)} - t_i^{(n)} \right) = \int\limits_a^b g \left(t \right) dt$$

and

$$\begin{array}{l} \text{l.i.m} \sum\limits_{n \to \infty}^{k(n)-1} g_n(t_i^{(n)}) \, (y \, (t_{i+1}^{(n)}) - y \, (t_i^{(n)}))^2 = \int\limits_a^b g \, (t) \, dt \, ; \end{array}$$

Proof:

$$E\left\{\left(\sum_{i=0}^{k(n)-1}\int_{t_i^{(n)}}^{t_{i+1}^{(n)}}(g(t)-g_n(t))\,dt\right)^2\right\} \leq (b-a)\sum_{i=0}^{k(n)-1}\int_{t_i^{(n)}}^{t_{i+1}^{(n)}}E\left\{(g(t)-g_n(t))^2\right\}dt\;.$$

This proves the first assertion. From the proof of Theorem 3 it follows that

$$E\left\{\left(\sum_{i=0}^{k(n)-1} g_n(t_i) \left[(y(t_{i+1}^{(n)}) - y(t_i^{(n)}))^2 - (t_{i+1}^{(n)} - t_i^{(n)}) \right] \right)^2\right\} \le$$

$$\le 2 \tau^{(n)} \sum_{i=0}^{k(n)-1} E\left\{ g_n^2(t_i^{(n)}) \right\} (t_{i+1}^{(n)} - t_i^{(n)})$$

which converges to zero since $\tau^{(n)} \rightarrow 0$ and

$$\begin{split} \sum_{i=0}^{k(n)-1} & E\left\{g_n^2(t_i^{(n)})\left(t_{i+1}^{(n)}-t_i^{(n)}\right)\right\} = \int\limits_a^b E\left\{g_n^2(t)\right\}dt \leq 2\int\limits_a^b E\left\{g^2(t)\right\}dt + \\ & + 2\int\limits_a^b E\left\{(g_n(t)-g(t))^2\right\}dt \end{split}$$

Remark: The results of this section can be written in the symbolic form:

$$\int_{a}^{b} g(t) (dy(t))^{2} = \int_{a}^{b} g(t) dt$$

$$\int_{a}^{b} g(t) (dF(t))^{2} = \int_{a}^{b} g(t) f^{2}(t) dt.$$

4. Application to the sample functions of diffusion processes

Lemma 2. Let $f_p(t, \omega)$, $1 \le p \le q$, satisfy the conditions of Theorem 1a. Let $g(t, \omega)$ satisfy I_1 and I_3 . Let

$$G(t) = \int_{a}^{t} g(s) ds$$

and

$$H(t) = G(t) + F(t)$$

then

$$\lim_{n \to \infty} \sum_{i=0}^{k(n)-1} [H(t_{i+1}^{(n)}) - H(t_{i}^{(n)})]^2 = \sum_{p=1}^{q} \int_{a}^{b} f_p^2(t) dt$$
(11)

in the mean. Furthermore, if for a given sequence of partitions D_n , (2) converges with probability 1 then (11) also converges with probability 1.

Proof:

$$\begin{split} \sum_{i=0}^{k(n)-1} &(H(t_{i+1}^{(n)}) - H(t_{i}^{(n)}))^2 = \sum_{i=0}^{k(n)-1} (G(t_{i+1}^{(n)}) - G(t_{i}^{(n)}))^2 + \sum_{i=0}^{k(n)-1} (F(t_{i+1}^{(n)}) - F(t_{i}^{(n)}))^2 + \\ &+ 2 \sum_{i=0}^{k(n)-1} (G(t_{i+1}^{(n)}) - G(t_{i}^{(n)})) \left(F(t_{i+1}^{(n)}) - F(t_{i}^{(n)}) \right). \end{split}$$

The expectation of the square of the last sum is dominated by

$$4\,E^{1/2}\left\{\left(\sum_{i\,=\,0}^{k(n)\,-\,1}(F\,(t_{i\,+\,1}^{(n)})\,-\,F\,(t_{i}^{(n)}))^2\right)^2\right\}\cdot E^{1/2}\left\{\left(\sum_{i\,=\,0}^{k(n)\,-\,1}\left(\int\limits_{t_{i}^{(n)}}^{t_{i+1}^{(n)}}g\,(t)\,dt\right)^2\right)^2\right\}\,.$$

Therefore, by Theorem 1 a, it is sufficient to show that

$$\sum_{i=0}^{k(n)-1} \left(\int_{t_i^{(n)}}^{t_{i+1}^{(n)}} g(t) dt \right)^2$$
(12)

converges to zero in the mean and with probability 1. Since

$$\begin{split} \left[\sum_{i=0}^{k(n)-1} \left(\int\limits_{t_i^{(n)}}^{t_{i+1}^{(n)}} g(s) \, ds\right)^2\right]^2 & \leq \left[\sum_{i=0}^{k(n)-1} \left(t_{i+1}^{(n)} - t_i^{(n)}\right) \int\limits_{t_i^{(n)}}^{t_{i+1}^{(n)}} g^2(s) \, ds\right]^2 \\ & \leq \sum_{i=0}^{k(n)-1} \left(t_{i+1}^{(n)} - t_i^{(n)}\right)^2 \cdot \sum_{i=0}^{k(n)-1} \left(\int\limits_{t_i^{(n)}}^{t_{i+1}^{(n)}} g^2(s) \, ds\right)^2 \\ & \leq (\tau^{(n)})^2 \, (b-a) \int\limits_a^b g^4(s) \, ds \, . \end{split}$$

It follows that (12) converges in the mean and with probability one, which completes the proof of the lemma.

Theorem 5. Let $x(t, \omega)$ be the solution to the stochastic differential equation

$$x(t) = x(a) + \int_{a}^{t} m(x(s), s) ds + \int_{a}^{t} \sigma(x(s), s) dy(s)$$
 (13)

where

$$\begin{split} \left| \, m \, (x,t) - m \, (\xi,t) \, \right| & \leq k \, \left| \, x - \xi \, \right| ; \left| \, m \, (x,t) \, \right| \leq k \, (1+x^2)^{1/2} \\ \left| \, \sigma \, (x,t) - \sigma \, (\xi,t) \, \right| & \leq k \, \left| \, x - \xi \, \right| ; \left| \, \sigma \, (x,t) \, \right| \leq k \, (1+x^2)^{1/2} \end{split} \tag{14}$$

and let

$$E\left\{x^4(a)\right\} < \infty$$
.

Then

$$\lim_{n\to\infty} \sum_{i=0}^{k(n)-1} (x(t_{i+1}^{(n)}) - x(t_i^{(n)}))^2 = \int_a^b \sigma^2(x(t), t) dt$$
(15)

in the mean, and if $\lim_{n\to\infty} \tau^{(n)} n^{1+\varepsilon} = 0$ for some $\varepsilon > 0$ then (15) holds with probability one *.

Proof: If $E\{x^4(t)\}$ is bounded in [a, b] then the result follows by applying Lemma 2 to the right hand side of equation 13. It remains only to show that under the assumptions of the theorem, $E\{x^4(t)\}$ is bounded in [a, b]. The proof of this will follow closely the proof of existence and uniqueness of the solution to (13) by successive approximations (reference 3 p. 281).

Let $x_0(t)$ be any process satisfying I_1 , I_2 and

$$E\{x_0^4(t)\} \le M_0, \quad a \le t \le b.$$
 (16)

Consider the sequence of successive approximations

$$x_{n+1}(t) = x(a) + \int_{a}^{t} m(x_n(s), s) ds + \int_{a}^{t} \sigma(x_n(s), s) dy(s).$$

^{*} After this paper was submitted for publication we learned that a similar theorem has been proved by S. Berman: Sign-invariant random variables and stochastic processes with sign invariant increments. Theorem 4.1. To be published in Trans. Amer. math. Soc.

Then $x_n(t)$ converges with probability one to x(t) which is the solution to (13). It follows from (14) and Lemma 1 that if $E\{x_n^4(t)\}$ is bounded in [a, b], so are

$$E\{(m(x_n(t),t))^4\}, E\{(\sigma(x_n(t),t))^4\} \text{ and } E\{x_{n+1}^4(t)\}.$$

Let

$$\Delta_n x(t) = x_n(t) - x_{n-1}(t)$$

$$\Delta_n m(t) = m(x_n(t), t) - m(x_{n-1}(t), t); \Delta_n \sigma(t) = \sigma(x_n(t), t) - \sigma(x_{n-1}(t), t).$$

by (14):
$$|\Delta_n m(t)| \le K |\Delta_n x(t)|$$
; $|\Delta_n \sigma(t)| \le K |\Delta_n x(t)|$.

$$\begin{split} E\left\{ (\varDelta_n x(t))^4 \right\} & \leq 16 \, E\left\{ \left(\int\limits_a^t \varDelta_{n-1} m(s) \, ds \right)^4 \right\} + 16 \, E\left\{ \left(\int\limits_a^t \varDelta_{n-1} \sigma(s) \, dy(s) \right)^4 \right\} \\ & \leq 16 \, (t-a)^3 K^4 \int\limits_a^t E\left\{ (\varDelta_{n-1} x(s))^4 \, ds \right\} + 16 \, (t-a) \, C K^4 \int\limits_a^t E\left\{ (\varDelta_{n-1} x(s))^4 \, ds \right\} \\ & \leq K_1 \int\limits_a^t E\left\{ (\varDelta_{n-1} x(s))^4 \right\} ds \, . \end{split}$$

By (16)

$$E\left\{(\varDelta_n x(t))^4\right\} \leqq K_2 \frac{K_1^n(t-a)^n}{n\, 1} \leqq K_2 \frac{K_2^n}{n\, !} \ ; \quad a \leqq t \leqq b \ .$$

Now

$$\left(\sum_{j=1}^{m} \Delta_{j} x(t)\right)^{4} \leq \left(\sum_{j=1}^{m} 2^{-i} \sum_{j=1}^{m} 2^{j} (\Delta_{j} x)^{2}\right)^{2}$$
$$\leq \left(\sum_{j=1}^{m} 2^{-i}\right)^{3} \sum_{j=1}^{m} 2^{2j} (\Delta_{j} x)^{4}$$

Hence

$$E\left\{(x_m(t)-x_0(t))^4\right\} \le K_2 \sum_1^m \frac{(2^2K_3)^n}{n!} \le K_2 e^{4K_3}.$$

Hence, for some $K_4 < \infty E\{x_m^4(t)\} < K_4$ for all t in [a, b] and all m. Since $x_m(t) \to x(t)$ with probability one, it follows from Fatou's theorem that $E\{x^4(t)\}$ is bounded in [a, b].

Theorem 5 a. Let $Y(t, \omega) = (y^1(t), ..., y^q(t)), t \ge 0$, be the q-dimensional Brownian motion. Let $X(t, \omega) = (x^1(t), ..., x^q(t))$ be the solution to the vector stochastic differential equation:

$$x^{p}(t) = x^{p}(a) + \int_{a}^{t} m^{p}(X(s), s) ds + \sum_{r=1}^{q} \int_{a}^{t} \sigma^{pr}(X(s), s) dy^{r}(s) \quad p = 1, 2, ..., q;$$

where

$$\begin{split} \| \, X(t) \|^2 &= \sum_{p \, = \, 1}^q (x^p(t))^2 \\ \big| \, m^p(X_1,t) - m^p(X_2,t) \big| &\leq K \, \| \, X_1 - X_2 \| \, ; 1 \leq p \leq q \\ \big| \, \sigma^{pr}(X_1,t) - \sigma^{pr}(X_2,t) \big| &\leq K \, \| \, X_1 - X_2 \| \, ; 1 \leq p,r \leq q \end{split}$$

and let

$$E\{\|X(a)\|^4\} < \infty$$
.

Then

$$\lim_{n\to\infty} \sum_{i=1}^{k(n)-1} (x^p(t_{i+1}^{(n)}) - x^p(t_i^{(n)}))^2 = \sum_{r=1}^q \int_a^b (\sigma^{pr}(X(t), t))^2 dt$$
(17)

in the mean, and if $\lim \tau^{(n)} n^{1+\delta} = 0$ for some $\sigma > 0$ then (17) holds with probability one. The proof is the same as the proof of Theorem 5 and is therefore omitted.

Baxter's result [1] was applied by Slepian [8] to the problem of detection of noise-type signals. A similar application of Theorem 5 is the following. Consider the processes $x_{\alpha}(t, \omega)$ and $x_{\beta}(t, \omega)$ defined by

$$x_{\alpha}(t,\omega) = x_{\alpha}(a) + \int_{a}^{t} m_{\alpha}(x_{\alpha}(s), s) ds + \int_{a}^{t} \sigma_{\alpha}(x_{\alpha}(s), s) dy(s), \qquad a \leq t \leq b$$

$$x_{\beta}(t,\omega) = x_{\beta}(a) + \int_{a}^{t} m_{\beta}(x_{\beta}(s), s) ds + \int_{a}^{t} \sigma_{\beta}(x_{\beta}(s), s) dy(s), \qquad a \leq t \leq b,$$

where $x_{\alpha}(a)$, $x_{\beta}(a)$, m_{α} , m_{β} , σ_{α} , σ_{β} satisfy the conditions of Theorem 5. Let σ_{α} , σ_{β} be such that there exists a fixed t_0 in [a,b] for which $\int_a^{t_0} \sigma_{\alpha}^2(x(s),s) ds + \int_a^{t_0} \sigma_{\beta}^2(x(s),s) ds$ for all continuous x(s). A sample $x_0(t)$, $a \leq t \leq b$, is available to an observer and it is known to him that $x_0(t)$ is either a sample from the system with subscript α or with subscript β . The observer is to decide whether $x_0(t)$ came from α or from β . Let $p_{\alpha}(p_{\beta})$ be the probability that the observer decides that the sample came from $\alpha(\beta)$ when indeed it came from $\beta(\alpha)$. If the result of Theorem 5 is used as a test (in the interval $[a, t_0]$), then $p_{\alpha} = p_{\beta} = 0$; namely, the probability measures induced by $x_{\alpha}(t)$ and $x_{\beta}(t)$ on the space of functions are mutually singular.

Acknowledgement. The authors would like to thank Prof. K. Itô and Prof. M. Loeve for instructive and illuminating conversations.

Bibliography

- Baxter, G.: A strong limit theorem for Gaussian processes. Proc. Amer. math. Soc. 7, 522-525 (1956).
- [2] Berman, S. M.: Oscillation of sample functions in diffusion processes. Z. Wahrscheinlich-keitstheorie verw. Gebiete 1, 247—250 (1963). See also correction in review of this paper: Math. Reviews 28, p. 132 (1964).
- [3] DOOB, J. L.: Stochastic Processes. New York: John Wiley 1953.
- [4] GLADYSHEV, E. G.: A new limit theorem for stochastic processes with Gaussian increments. Teoria Verojatn. Primen 6, 52—61 (1961).
- [5] Irô, K.: On a formula concerning stochastic differentials. Nagoya math. J. 3, 55-65, 1951.
- [6] Kozin, F.: A limit theorem for processes with stationary independent increments. Proc. Amer. math. Soc. 8, 960—963 (1957).
- [7] LEVY, P.: Processus Stochastiques et Mouvement Brownien. Paris: Gauthier-Villars 1948.
- [8] SLEPIAN, D.: Some comments on the detection of Gaussian signals in Gaussian noise-IRE Trans. Inform. Theory IT-4, 65, 1958.

Department of Electrical Engineering
University of California, Berkeley
and
Applied Research Laboratory
Sylvania Electronic Systems
Waltham, Mass.

(Received June 6, 1964)