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Continuous-time optimization

I Unconstrained smooth minimization, minx∈E f (x), with ∇f Lipschitz.
I Optimization algorithms can be obtained by discretizing an ODE.

Gradient descent ODE{
Ẋ = −∇f (X (t))

X (0) = x0

d

dt

‖X − x?‖2

2
=
〈
Ẋ ,X − x?

〉
= −〈∇f (X ),X − x?〉
≤ −(f (X )− f ?)

Nesterov’s ODE: Su, Boyd, Candès, (2014){
Ẍ + r+1

t Ẋ = −∇f (X )

X (0) = x0, Ẋ (0) = 0

Energy function
t2

r (f (X )− f ?) + r
2‖X + t

r Ẋ − x?‖2
2

Accelerated Mirror descent

I Constrained smooth minimization, minx∈X f (x), with ∇f Lipschitz, X closed convex.
I Idea: Start with energy function, design ODE to make it a Lyapunov function.
I Mirror map: ∇ψ∗ : E ∗→ X .

Mirror descent: Nemirovski, Yudin (1983)
Ż = −∇f (X )

X = ∇ψ∗(Z )

∇ψ∗(Z (0)) = x0

I Energy function on the dual space:
Bregman divergence
Dψ∗(Z , z

?) = ψ∗(Z )− ψ∗(z?)− 〈∇ψ∗(z?),Z − z?〉
d

dt
Dψ∗(Z , z

?) =
〈
Ż ,∇ψ∗(Z )−∇ψ∗(z?)

〉
= −〈∇f (X ),X − x?〉
≤ −(f (X )− f ?)

Accelerated Mirror descent
Ż = −t

r∇f (X )

Ẋ = r
t(∇ψ∗(Z )− X )

X (0) = ∇ψ∗(Z (0)) = x0

(1)

I Energy function V (X ,Z , t) = t2

r 2(f (X )− f ?) + Dψ∗(Z , z
?)

d

dt
V (X (t),Z (t), t)

=
2t

r 2
(f (X )− f ?) +

t2

r 2

〈
∇f (X ), Ẋ

〉
+
〈
Ż ,∇ψ∗(Z )−∇ψ∗(z?)

〉
=

2t

r 2
(f (X )− f ?)−t

r
〈∇f (X ),X − x?〉

≤ −t r − 2

r 2
(f (X )− f ?)

I Averaging interpretation:

X (t) =
∫ t

0 w(τ )∇ψ∗(Z (τ ))dτ∫ t
0 w(τ )dτ

, w(τ ) = τ r−1
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Figure: Mirror descent:
Dual: unconstrained gradient dynamics
Primal: mirror of dual.
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Figure: Accelerated Mirror descent:
Dual: unconstrained gradient dynamics with increasing weights.
Primal: average of mirrored dual.

Mirror map

ψ, ψ∗ conjugate pair of closed convex proper functions.

Proposition

If ψ is strictly convex, domψ = X and epiψ has trivial recession cone,
then ψ∗ is finite and differentiable on E ∗, and ∇ψ∗ : E ∗→ X .

I Note: ψ not necessarily differentiable.
I Examples on X = ∆ the n-simplex:
I Entropy:
ψ(x) =

∑
i xi ln xi + δ∆(x)

ψ∗(z) = ln
∑

i e
zi and ∇ψ∗(z)i = ezi∑

j e
zj

I Smoothed entropy:
ψ(x) =

∑
i(xi + ε) ln(xi + ε) + δ∆(x)

∇ψ∗(z) can be computed in O(n log n).

x1

x2

ψ(x) =
∑

i xi ln xi + δ∆(x)

epiψ

z1

z2

ψ∗(z) = ln(
∑

i e
zi )

Solutions and convergence rate

Theorem

If ∇f and ∇ψ∗ are Lipschitz, then ODE (1) has a
unique solution, and the solution remains in X .

I Consider smoothed ODE Ẋ = r
max(t,δ)(∇ψ∗(Z )− X ).

Has unique solution (Xδ,Zδ) by Cauchy-Lipschitz.
I Extract a converging subsequence of (Xδi,Zδi)i :

Limit is solution to (1)

Theorem

If r ≥ 2, then V is a Lyapunov function, and

f (X (t))− f ? ≤ r 2Dψ∗(Z (0),z?)

t2 .

f (X (t))− f ? ≤ r 2

t2
V (X (t),Z (t), t)

≤ r 2

t2
V (X (0),Z (0), 0) =

r 2

t2
Dψ∗(Z (0), z?)

Discretization

Algorithm 1 Accelerated mirror descent in discrete time
1: Initialize x̃ (0) = ∇ψ∗(z (0)) = x0.
2: for k ∈ N do
3: z (k) = z (k−1) − (k−1)r

s ∇f (x (k)).
4: x̃ (k) = arg min

x̃∈X
s
〈
∇f (x (k)), x̃

〉
+ R(x̃ , x (k))

5: x (k+1) = λk∇ψ∗(z (k)) + (1− λk)x̃ (k)

6: end for

I λk = k
k+r .

I R : `R strongly convex and 1-smooth regularizer.
I s: step size.
I Consistent with ODE as s → 0.
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Figure: AMD in discrete time.

Theorem

If s ≤ `R
2Lf Lψ∗

, then f (x̃ (k))− f ? ≤ C/k2, where C =
r 2Dψ∗(z0,z

?)

s + f (x0)− f ?.

Proof: V (x̃ (k), z (k), k) is a Lyapunov function.

Restarting

Restarting heuristics

“Reset time to 0” when
I
〈
∇f (x (k)), x (k+1) − x (k)

〉
≥ 0 (trajectory points in a bad direction)

I ‖x (k+1) − x (k)‖ ≤ ‖x (k) − x (k−1)‖ (trajectory decelerates).

Numerical experiments

(a) Illustration of acceleration and restarting (b) Effect of parameter r : Larger r is slower for small t and faster for

large t; affects period of oscillations.

(c) Optimum on the boundary: Restarting may not always improve

convergence rate.

Extensions, open questions

I Generalized averaging:

X (t) =

∫ t
0 w(τ )∇ψ∗(Z (τ ))dτ∫ t

0 w(τ )dτ

I Primal representation:

Ẍ +
r + 1

t
Ẋ = −∇2ψ∗ ◦ ∇ψ(X +

t

r
Ẋ )∇f (X )

Constrained non-linear oscillator, vanishing damping.

I Prove convergence of trajectory X (t).
I Prove faster rate for the restarted ODE.
I Adaptive choice of r?
I Accelerated ODE for composite optimization.
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