Online Learning and Optimization From Continuous to Discrete Time

Walid Krichene
Electrical Engineering and Computer Sciences, UC Berkeley

April 5, 2016

Introduction

Online Learning

Sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS): Routing (transportation, communication), power networks.

- Centralization impractical \Rightarrow Distributed learning, e.g. learning in games.

Introduction

Online Learning

Sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS): Routing (transportation, communication), power networks.

- Centralization impractical \Rightarrow Distributed learning, e.g. learning in games.

Convex Optimization

- Data-driven decision problems.
- Size of data (dimension / sample size) makes higher-order methods prohibitively expensive.
- Active research on: \{first-order, accelerated, stochastic\} methods.

Emerging idea

Design algorithms for online learning and optimization in continuous-time.

- Simple analysis.
- Provides insight into the discrete process.
- Streamlines design of new methods.

Continuous time \leftrightarrow Discrete time

Outline

(1) Discretizing the Replicator ODE
(2) Accelerated Mirror Descent

Outline

(1) Discretizing the Replicator ODE

2 Accelerated Mirror Descent

Distributed learning in games

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: \(\quad\) Play \(p \sim x_{k}^{(t)}\)
3: Discover \(\ell_{k}^{(t)}\)
4: \(\quad\) Update \(x_{k}^{(t+1)}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Sequential decision problem.

Distributed learning in games

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: \(\quad\) Play \(p \sim x_{k}^{(t)}\)
3: Discover \(\ell_{k}^{(t)}\)
4: \(\quad\) Update \(x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Coupled sequential decision problems.

Distributed learning in games

Online Learning Model
Online Learning Model
1: for $t \in \mathbb{N}$ do
1: for $t \in \mathbb{N}$ do
2: \quad Play $p \sim x_{k}^{(t)}$
2: \quad Play $p \sim x_{k}^{(t)}$
3: Discover $\ell_{k}^{(t)}$
3: Discover $\ell_{k}^{(t)}$
4: \quad Update $x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)$
4: \quad Update $x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)$
end for
end for

Figure: Coupled sequential decision problems.

- Equilibria: good description of system efficiency at steady-sate.
- Systems rarely operate at equilibrium.
- Study learning dynamics as
(1) A prescriptive model: How do we drive system to eq.
(2) A descriptive model: How would players behave in the game.

Distributed learning in games

Online Learning Model
1: for $t \in \mathbb{N}$ do
2: Play $p \sim x_{k}^{(t)}$
3: Discover $\ell_{k}^{(t)}$
4: Update $x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)$
5: end for

Figure: Coupled sequential decision problems.

- Equilibria: good description of system efficiency at steady-sate.
- Systems rarely operate at equilibrium.
- Study learning dynamics as
(1) A prescriptive model: How do we drive system to eq.
(2) A descriptive model: How would players behave in the game.

Goals

- Define classes of algorithms for which we can prove convergence.
- Robustness to stochastic perturbations.
- Heterogeneous learning (different agents use different algorithms).
- Convergence rates.

A brief review

Discrete time:

- Hannan consistency: [4]
- Hedge algorithm for two-player games: [3]
- Regret based algorithms: [5]
- Online learning in games: [2]

Continuous time:

- Evolution in populations: [13]
- Replicator dynamics in evolutionary game theory [15]
- No-regret dynamics for two player games [5]
[4]J. Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97-139, 1957
[3]Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29(1):79-103, 1999
[5]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26-54, 2001
[2]N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
[13]W. H. Sandholm. Population games and evolutionary dynamics.
Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010
[15]J. W. Weibull. Evolutionary game theory.
MIT press, 1997
[5]S. Hart and A. Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26-54, 2001

Example: routing game

Online Learning Model
1: for $t \in \mathbb{N}$ do
2: Play $a \sim x_{k}^{(t)}$
3: \quad Discover $\ell_{k}^{(t)}$
4: \quad Update $x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)$
5: end for

Figure: Routing game

Example: routing game

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: Play \(a \sim x_{k}^{(t)}\)
3: \(\quad\) Discover \(\ell_{k}^{(t)}\)
4: \(\quad\) Update \(x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Routing game

Example: routing game

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: Play \(a \sim x_{k}^{(t)}\)
3: Discover \(\ell_{k}^{(t)}\)
4: \(\quad\) Update \(x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Routing game

Example: routing game

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: Play \(a \sim x_{k}^{(t)}\)
3: \(\quad\) Discover \(\ell_{k}^{(t)}\)
4: \(\quad\) Update \(x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Routing game

Example: routing game

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: \(\quad\) Play \(a \sim x_{k}^{(t)}\)
3: Discover \(\ell_{k}^{(t)}\)
4: Update \(x_{k}^{(t+1)}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Routing game

Example: routing game

```
Online Learning Model
1: for \(t \in \mathbb{N}\) do
2: Play \(a \sim x_{k}^{(t)}\)
3: Discover \(\ell_{k}^{(t)}\)
4: \(\quad\) Update \(x_{k}^{(t+\mathbf{1})}=u_{k}\left(x_{k}^{(t)}, \ell_{k}^{(t)}\right)\)
    end for
```


Figure: Routing game

Main problem
Define class of algorithms \mathcal{C} such that

$$
u_{k} \in \mathcal{C} \forall k \Rightarrow x^{(t)} \rightarrow \mathcal{X}^{\star}
$$

Equilibria of the routing game

Write
$x=\left(x_{\mathcal{A}_{1}}, \ldots, x_{\mathcal{A}_{K}}\right) \in \Delta^{\mathcal{A}_{1}} \times \cdots \times \Delta^{\mathcal{A}_{K}}$
$\ell(x)=\left(\ell_{\mathcal{A}_{\mathbf{1}}}(x), \ldots, \ell_{\mathcal{A}_{K}}(x)\right)$
Nash equilibria \mathcal{X}^{\star}
x^{\star} is a Nash equilibrium if for all k, paths in the support of $x_{\mathcal{A}_{k}}^{\star}$ have minimal loss.

$$
\forall x,\left\langle\ell\left(x^{\star}\right), x-x^{\star}\right\rangle \geq 0
$$

Equilibria of the routing game

Write
$x=\left(x_{\mathcal{A}_{1}}, \ldots, x_{\mathcal{A}_{K}}\right) \in \Delta^{\mathcal{A}_{\mathbf{1}}} \times \cdots \times \Delta^{\mathcal{A}_{K}}$
$\ell(x)=\left(\ell_{\mathcal{A}_{\mathbf{1}}}(x), \ldots, \ell_{\mathcal{A}_{K}}(x)\right)$

Nash equilibria \mathcal{X}^{\star}

 x^{\star} is a Nash equilibrium if for all k, paths in the support of $x_{\mathcal{A}_{k}}^{\star}$ have minimal loss.$$
\forall x,\left\langle\ell\left(x^{\star}\right), x-x^{\star}\right\rangle \geq 0
$$

Rosenthal potential

$\exists f$ convex such that $\nabla f(x)=\ell(x)$.

$$
\begin{aligned}
& \text { Nash condition } \\
& \forall x,\left\langle\ell\left(x^{\star}\right), x-x^{\star}\right\rangle \geq 0
\end{aligned} \Leftrightarrow \quad \begin{gathered}
\text { first order optimality } \\
\forall x,\left\langle\nabla f\left(x^{\star}\right), x-x^{\star}\right\rangle \geq 0
\end{gathered}
$$

Stochastic approximation

Idea:

- View the learning dynamics as a discretization of an ODE.
- Study convergence of ODE.
- Relate convergence of discrete algorithm to convergence of ODE.
[15] J. W. Weibull. Evolutionary game theory.

Stochastic approximation

Idea:

- View the learning dynamics as a discretization of an ODE.
- Study convergence of ODE.
- Relate convergence of discrete algorithm to convergence of ODE.

In Hedge $x_{a}^{(t+1)} \propto x_{a}^{(t)} e^{-\eta_{t} \ell_{a}^{(t)}}$, take $\eta_{t} \rightarrow 0$.

$$
\begin{aligned}
& \text { Replicator equation [15] } \\
& \qquad \forall a \in \mathcal{A}_{k}, \frac{d x_{a}}{d t}=x_{a}\left(\langle\ell(x), x\rangle-\ell_{a}(x)\right)
\end{aligned}
$$

Figure: Underlying continuous time
[15] J. W. Weibull. Evolutionary game theory.

AREP dynamics: Approximate REPlicator

$$
\frac{d x_{a}}{d t}=x_{a}\left(\langle\ell(x), x\rangle-\ell_{a}(x)\right)
$$

Discretization of the continuous-time replicator dynamics

$$
\frac{x_{a}^{(t+1)}-x_{a}^{(t)}}{\eta_{t}}=x_{a}^{(t)}\left(\left\langle\ell\left(x^{(t)}\right), x^{(t)}\right\rangle-\ell_{a}\left(x^{(t)}\right)\right)+U_{a}^{(t+1)}
$$

[1] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999

AREP dynamics: Approximate REPlicator

$$
\frac{d x_{a}}{d t}=x_{a}\left(\langle\ell(x), x\rangle-\ell_{a}(x)\right)
$$

Discretization of the continuous-time replicator dynamics

$$
\frac{x_{a}^{(t+1)}-x_{a}^{(t)}}{\eta_{t}}=x_{a}^{(t)}\left(\left\langle\ell\left(x^{(t)}\right), x^{(t)}\right\rangle-\ell_{a}\left(x^{(t)}\right)\right)+U_{a}^{(t+1)}
$$

- η_{t} discretization time steps.
[1] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999

AREP dynamics: Approximate REPlicator

$$
\frac{d x_{a}}{d t}=x_{a}\left(\langle\ell(x), x\rangle-\ell_{a}(x)\right)
$$

Discretization of the continuous-time replicator dynamics

$$
\frac{x_{a}^{(t+1)}-x_{a}^{(t)}}{\eta_{t}}=x_{a}^{(t)}\left(\left\langle\ell\left(x^{(t)}\right), x^{(t)}\right\rangle-\ell_{a}\left(x^{(t)}\right)\right)+U_{a}^{(t+1)}
$$

- η_{t} discretization time steps.
- $\left(U^{(t)}\right)_{t \geq 1}$ perturbations that satisfy for all $T>0$,

$$
\lim _{\tau_{\mathbf{1}} \rightarrow \infty} \max _{\tau_{\mathbf{2}}: \sum_{t=\tau_{\mathbf{1}}}^{\tau_{\mathbf{2}}} \eta_{t}<T}\left\|\sum_{t=\tau_{\mathbf{1}}}^{\tau_{\mathbf{2}}} \eta_{t} U^{(t+\mathbf{1})}\right\|=0
$$

(a sufficient condition is that $\exists q \geq 2: \sup _{\tau} \mathbb{E}\left\|U^{(\tau)}\right\|^{q}<\infty$ and $\sum_{\tau} \eta_{\tau}^{1+\frac{q}{2}}<\infty$)
[1] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_{t} \downarrow 0$ and $\sum \eta_{t}=\infty$, then

$$
x^{(t)} \rightarrow \mathcal{X}^{\star} \text { a.s. }
$$

[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_{t} \downarrow 0$ and $\sum \eta_{t}=\infty$, then

$$
x^{(t)} \rightarrow \mathcal{X}^{\star} \text { a.s. }
$$

- Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.

- Use f as a Lyapunov function.

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_{t} \downarrow 0$ and $\sum \eta_{t}=\infty$, then

$$
x^{(t)} \rightarrow \mathcal{X}^{\star} \text { a.s. }
$$

- Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.

- Use f as a Lyapunov function.

However, No convergence rates.
[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games.

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_{t} \downarrow 0$ and $\sum \eta_{t}=\infty$, then

$$
x^{(t)} \rightarrow \mathcal{X}^{\star} \text { a.s. }
$$

- Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.

- Use f as a Lyapunov function.

However, No convergence rates.
[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games.

Asymptotic Pseudo Trajectory

Figure: Discrete (Hedge) and continuous (Replicator) trajectories

Numerical example

- Centered Gaussian noise on edges.
- Population 1: Hedge with $\eta_{t}^{1}=t^{-1}$
- Population 2: Hedge with $\eta_{t}^{2}=t^{-1}$

Figure: Example with strongly convex potential.

Numerical example

- Centered Gaussian noise on edges.
- Population 1: Hedge with $\eta_{t}^{1}=t^{-1}$
- Population 2: Hedge with $\eta_{t}^{2}=t^{-1}$

Figure: Example with strongly convex potential.

Figure: Potential values.
For $\eta_{t}^{k}=\frac{\theta_{k}}{t^{\alpha_{k}}}, \alpha_{k} \in(0,1), \mathbb{E}\left[f\left(x^{(t)}\right)\right]-f^{\star}=O\left(\sum_{k} \frac{\log t}{t^{\min \left(\alpha_{k}, \mathbf{1}-\alpha_{k}\right)}}\right)$

Numerical example

- Centered Gaussian noise on edges.
- Population 1: Hedge with $\eta_{t}^{1}=t^{-1}$
- Population 2: Hedge with $\eta_{t}^{2}=t^{-1}$

Figure: Example with strongly convex potential.

Figure: Potential values.
For $\eta_{t}^{k}=\frac{\theta_{k}}{t^{\alpha_{k}}}, \alpha_{k} \in(0,1), \mathbb{E}\left[f\left(x^{(t)}\right)\right]-f^{\star}=O\left(\sum_{k} \frac{\log t}{t^{\min \left(\alpha_{k}, \mathbf{1}-\alpha_{k}\right)}}\right)$

Outline

(1) Discretizing the Replicator ODE
(2) Accelerated Mirror Descent

First order optimization: from continuous to discrete time

Constrained convex optimization

minimize	$f(x)$
subject to	$x \in \mathcal{X}$

- f is convex differentiable, L_{f} smooth (i.e. ∇f is L_{f} Lipschitz).
- \mathcal{X} is convex closed.
- First-order: can evaluate $f(x)$ and $\nabla f(x)$.

Gradient descent	$\mathcal{O}(1 / k)$
Mirror descent [9]	$\mathcal{O}(1 / k)$
Dual Averaging [11]	$\mathcal{O}\left(1 / k^{2}\right)$
Nesterov's accelerated method [10]	

Goal: unified approach to derive these algorithms.

- Design ODE in continuous time using Lyapunov argument.
- Discretize.
[9]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley, 1983
[11]Y. Nesterov. Primal-dual subgradient methods for convex problems.
Mathematical Programming, 120(1):221-259, 2009
[10]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2).
Soviet Mathematics Doklady, 27(2):372-376, 1983

From Gradient Descent to Mirror Descent

Gradient descent is discretization of
Gradient descent ODE

$$
\dot{X}=-\nabla f(X)
$$

Converges in $\mathcal{O}(1 / t)$.
Proof idea: define $D\left(X(t), x^{\star}\right)=\frac{1}{2}\left\|X(t)-x^{\star}\right\|^{2}$.
[9]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.

From Gradient Descent to Mirror Descent

Gradient descent is discretization of

Gradient descent ODE

$$
\dot{X}=-\nabla f(X)
$$

Converges in $\mathcal{O}(1 / t)$.
Proof idea: define $D\left(X(t), x^{\star}\right)=\frac{1}{2}\left\|X(t)-x^{\star}\right\|^{2}$.
Nemirovski and Yudin [9]
(1) Start from function on the dual space

$$
D_{\psi^{*}}\left(Z, z^{\star}\right)=\psi^{*}(Z)-\psi^{*}\left(z^{\star}\right)-\left\langle\nabla \psi^{*}\left(z^{\star}\right), Z-z^{\star}\right\rangle
$$

(3) Design dynamics to make it a Lyapunov function.

From Gradient Descent to Mirror Descent

Mirror descent ODE

$$
\left\{\begin{array}{l}
\dot{Z}=-\nabla f(X) \\
X=\nabla \psi^{*}(Z)
\end{array}\right.
$$

Converges in $\mathcal{O}(1 / t)$.

Figure: Illustration of Mirror Descent
ψ^{*} is defined and differentiable on $E^{*}, \nabla \psi^{*} \operatorname{maps} E^{*}$ to \mathcal{X}.

An ODE interpretation of Nesterov's method

Su et al. [14]: for unconstrained problems
(1) Nesterov's method is discretization of

$$
\ddot{X}+\frac{r+1}{t} \dot{X}+\nabla f(X)=0
$$

[14]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights.

An ODE interpretation of Nesterov's method

Su et al. [14]: for unconstrained problems
(1) Nesterov's method is discretization of

$$
\ddot{X}+\frac{r+1}{t} \dot{X}+\nabla f(X)=0
$$

(3) Proved convergence at $\mathcal{O}\left(1 / t^{2}\right)$ rate. Argument: Lyapunov function

$$
\frac{t^{2}}{r}\left(f(X)-f^{\star}\right)+\frac{r}{2}\left\|X+\frac{t}{r} \dot{X}-x^{\star}\right\|_{2}^{2}
$$

[14]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights.

Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

$$
V(X, Z, t)=\frac{t^{2}}{r^{2}}\left(f(X(t))-f^{\star}\right)+D_{\psi^{*}}\left(Z(t), z^{\star}\right)
$$

$r \geq 2$, a parameter, $Z \in E^{*}, z^{\star}$ its value at equilibrium.

Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

$$
V(X, Z, t)=\frac{t^{2}}{r^{2}}\left(f(X(t))-f^{\star}\right)+D_{\psi^{*}}\left(Z(t), z^{\star}\right)
$$

$r \geq 2$, a parameter, $Z \in E^{*}, z^{\star}$ its value at equilibrium.

AMD ODE

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X), \tag{1}\\
\dot{X}=\frac{r}{t}\left(\nabla \psi^{*}(Z)-X\right)
\end{array}\right.
$$

If (X, Z) is a solution to ODE (1), then V is a Lyapunov function.

Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

$$
V(X, Z, t)=\frac{t^{2}}{r^{2}}\left(f(X(t))-f^{\star}\right)+D_{\psi^{*}}\left(Z(t), z^{\star}\right)
$$

$r \geq 2$, a parameter, $Z \in E^{*}, z^{\star}$ its value at equilibrium.

AMD ODE

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X) \tag{1}\\
\dot{X}=\frac{r}{t}\left(\nabla \psi^{*}(Z)-X\right)
\end{array}\right.
$$

If (X, Z) is a solution to ODE (1), then V is a Lyapunov function.

Consequence: convergence rate

$$
f(X(t))-f^{\star} \leq \frac{r^{2} D_{\psi^{*}}\left(z_{0}, z^{\star}\right)}{t^{2}}
$$

Proof: $f(X(t))-f^{\star} \leq \frac{r^{2} V(X(t), Z(t), t)}{t^{2}} \leq \frac{r V\left(x_{0}, z_{0}, 0\right)}{t^{2}}=\frac{r^{2} D_{\psi *}\left(z_{0}, z^{\star}\right)}{t^{2}}$

000000000

Averaging Interpretation

$$
\left\{\begin{array}{l}
\dot{z}=-\frac{t}{\tau} \nabla f(X), \\
\dot{x}=\frac{⿳ 亠 二 口}{t}\left(\nabla \psi^{*}(Z)-x\right),
\end{array}\right.
$$

Averaging interpretation

Second equation equivalent to

$$
X(t)=\frac{\int_{0}^{t} w(\tau) \nabla \psi^{*}(Z(\tau)) d \tau}{\int_{0}^{t} w(\tau) d \tau}
$$

with $w(\tau)=\tau^{r-1}$ ．

Figure：Averaging interpretation：Z evolves in E^{*}, X is a weighted average of the mirrored trajectory $\nabla \psi^{*}(Z)$ ．
［8］W．Krichene，A．Bayen，and P．Bartlett．A Lyapunov approach to first－order methods for convex optimization，in continuous and discrete time．

Averaging Interpretation

$$
\left\{\begin{array}{l}
\dot{z}=-\frac{t}{\tau} \nabla f(X), \\
\dot{x}=\frac{⿳ 亠 二 口}{t}\left(\nabla \psi^{*}(Z)-X\right),
\end{array}\right.
$$

Averaging interpretation

Second equation equivalent to

$$
X(t)=\frac{\int_{0}^{t} w(\tau) \nabla \psi^{*}(Z(\tau)) d \tau}{\int_{0}^{t} w(\tau) d \tau}
$$

with $w(\tau)=\tau^{r-1}$ ．

Figure：Averaging interpretation：Z evolves in E^{*}, X is a weighted average of the mirrored trajectory $\nabla \psi^{*}(Z)$ ．

General averaging［8］

If $W(t)=\int_{0}^{t} w(\tau) d \tau$ ，and $\frac{w}{W} \geq \frac{2}{t}$ ，then V is Lyapunov under

$$
\dot{Z}=-\frac{w}{W} \frac{t^{2}}{r^{2}} \nabla f(X)
$$

［8］W．Krichene，A．Bayen，and P．Bartlett．A Lyapunov approach to first－order methods for convex optimization，in continuous and discrete time．

Example: accelerated entropic descent on the simplex

Suppose the feasible set is $\mathcal{X}=\Delta^{n}=\left\{x \in \mathbb{R}_{+}^{n}: \sum_{i} x_{i}=1\right\}$.

$$
\psi(x)=\sum_{i} x_{i} \ln x_{i}+\delta(x \mid \Delta), \quad \psi^{*}(z)=\ln \sum_{i} e^{z_{i}}, \quad \nabla \psi^{*}(z)_{i}=\frac{e^{z_{i}}}{\sum_{i} e^{z_{i}}},
$$

Accelerated replicator ODE

$$
\left\{\begin{array}{l}
\dot{\tilde{Z}}_{i}=\tilde{Z}_{i}\left(\left\langle\langle\tilde{Z}, \nabla f(X)\rangle-\nabla_{i} f(X)\right)\right. \\
X=\frac{\int_{0}^{t} \tau^{r-1} \tilde{Z}(\tau) d \tau}{\int_{0}^{t} \tau^{r-1} d \tau}
\end{array}\right.
$$

Numerical Example

Figure: Accelerated entropic descent on a quadratic on the simplex.

Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

$$
\ddot{X}+\frac{r+1}{t} \dot{X}=-\nabla^{2} \psi^{*}(Z) \nabla f(X)
$$

Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

$$
\ddot{X}+\frac{r+1}{t} \dot{X}=-\nabla^{2} \psi^{*}(Z) \nabla f(X)
$$

- Special case: $\ddot{X}+\frac{r+1}{t} \dot{X}=-\nabla f(X)$
- $\frac{r+1}{t} \dot{X}$: vanishing friction term.

Effect of the parameter r

$$
\ddot{x}+\frac{r+1}{t} \dot{X}=-\nabla^{2} \psi^{*}(Z) \nabla f(X)
$$

Figure: Effect of the parameter $r \in[2,50]$.

Effect of $\nabla^{2} \psi^{*}(Z)$

$$
\ddot{x}+\frac{r+1}{t} \dot{X}=-\nabla^{2} \psi^{*}(Z) \nabla f(X)
$$

Figure: Flow field $x \mapsto \nabla^{\mathbf{2}} \psi^{*}(Z(t)) \nabla f(x)$, along the solution trajectory Z

Existence and uniqueness of the solution

$$
\left\{\begin{array}{l}
\dot{z}=-\frac{t}{\tau} \nabla f(X), \\
\dot{x}=\frac{\epsilon}{\epsilon}\left(\nabla \psi^{*}(Z)-x\right),
\end{array}\right.
$$

Solution

Suppose ∇f and $\nabla \psi^{*}$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0,+\infty)$, and the solution remains in \mathcal{X}.

Existence and uniqueness of the solution

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X), \\
\dot{X}=\frac{r}{t}\left(\nabla \psi^{*}(Z)-X\right),
\end{array}\right.
$$

Solution

Suppose ∇f and $\nabla \psi^{*}$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0,+\infty)$, and the solution remains in \mathcal{X}.

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but singularity at 0 .

Existence and uniqueness of the solution

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X), \\
\dot{X}=\frac{r}{t}\left(\nabla \psi^{*}(Z)-X\right),
\end{array}\right.
$$

Solution

Suppose ∇f and $\nabla \psi^{*}$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0,+\infty)$, and the solution remains in \mathcal{X}.

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but singularity at 0 .
(1) Define family of "smoothed" ODEs:

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X) \\
\dot{X}=\frac{r}{\max (t, \delta)}\left(\nabla \psi^{*}(Z)-X\right)
\end{array}\right.
$$

Existence and uniqueness of the solution

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X), \\
\dot{X}=\frac{r}{t}\left(\nabla \psi^{*}(Z)-X\right),
\end{array}\right.
$$

Solution

Suppose ∇f and $\nabla \psi^{*}$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0,+\infty)$, and the solution remains in \mathcal{X}.

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but singularity at 0 .
(1) Define family of "smoothed" ODEs:

$$
\left\{\begin{array}{l}
\dot{Z}=-\frac{t}{r} \nabla f(X) \\
\dot{X}=\frac{r}{\max (t, \delta)}\left(\nabla \psi^{*}(Z)-X\right)
\end{array}\right.
$$

(2) Extract a converging subsequence. Its limit is a solution to (1).

Discretization

Time correspondence: $t=k \sqrt{s}$, for a step size s. First attempt:

Candidate Lyapunov function:

$$
E^{(k)}=V\left(x^{(k)}, z^{(k)}, k \sqrt{s}\right)
$$

Discrete AMD algorithm.

```
Accelerated mirror descent with distance generating function \(\psi^{*}\), regularizer \(R\)
    1: Initialize \(\tilde{x}^{(0)}=x_{0}, \tilde{z}^{(0)}=x_{0}\)
    2: for \(k \in \mathbb{N}\) do
    3: \(\quad \tilde{z}^{(k+1)}=\arg \min _{\tilde{z} \in \mathcal{X}} \frac{k r}{s}\left\langle\nabla f\left(x^{(k)}\right), \tilde{z}\right\rangle+D_{\psi}\left(\tilde{z}, x^{(k)}\right)\)
    4: \(\quad \tilde{x}^{(k+1)}=\arg \min _{\tilde{x} \in \mathcal{X}} \gamma s\left\langle\nabla f\left(x^{(k)}\right), \tilde{x}\right\rangle+R\left(\tilde{x}, x^{(k)}\right)\)
    5: \(\quad x^{(k+1)}=\lambda_{k} \tilde{z}^{(k+1)}+\left(1-\lambda_{k}\right) \tilde{x}^{(k+1)}\), with \(\lambda_{k}=\frac{r}{r+k}\).
    6: end for
```

- R regularizer function, assumed strongly convex and smooth.

Discrete AMD algorithm.

```
Accelerated mirror descent with distance generating function \(\psi^{*}\), regularizer \(R\)
    Initialize \(\tilde{x}^{(0)}=x_{0}, \tilde{z}^{(0)}=x_{0}\)
    for \(k \in \mathbb{N}\) do
        \(\tilde{z}^{(k+1)}=\arg \min _{\tilde{z} \in \mathcal{X}} \frac{k r}{s}\left\langle\nabla f\left(x^{(k)}\right), \tilde{z}\right\rangle+D_{\psi}\left(\tilde{z}, x^{(k)}\right)\)
        \(\tilde{x}^{(k+1)}=\arg \min _{\tilde{x} \in \mathcal{X}} \gamma s\left\langle\nabla f\left(x^{(k)}\right), \tilde{x}\right\rangle+R\left(\tilde{x}, x^{(k)}\right)\)
        \(x^{(k+1)}=\lambda_{k} \tilde{z}^{(k+1)}+\left(1-\lambda_{k}\right) \tilde{x}^{(k+1)}\), with \(\lambda_{k}=\frac{r}{r+k}\).
    end for
```

- R regularizer function, assumed strongly convex and smooth.
- Modified scheme is consistent with the ODE. Idea: $\tilde{x}^{(k)}=x^{(k)}+\mathcal{O}(s)$.

Convergence rate

Convergence rate
If $\gamma \geq L_{f} L_{\psi^{*}}$ and $s \leq \frac{\ell_{R}}{2 L_{f} \gamma}$, then

$$
f\left(\tilde{x}^{(k)}\right)-f^{\star} \leq C / k^{2}
$$

where $C=\frac{r^{2} D_{\psi^{*}}\left(z_{0}, z^{\star}\right)}{s}+f\left(x_{0}\right)-f^{\star}$.
Proof: $\tilde{E}^{(k)}=V\left(\tilde{x}^{(k)}, z^{(k)}, k \sqrt{s}\right)$ is a Lyapunov function.

Restarting

Restart the algorithm when a certain condition is met.

- Gradient restart: $\left\langle x^{(k+1)}-x^{(k)}, \nabla f\left(x^{(k)}\right)\right\rangle>0$
- Speed restart: $\left\|x^{(k+1)}-x^{(k)}\right\|<\left\|x^{(k)}-x^{(k-1)}\right\|$

```
Algorithm 1 Accelerated mirror descent with restart
    Initialize \(I=0, \tilde{x}^{(0)}=\tilde{z}^{(0)}=x_{0}\).
    for \(k \in \mathbb{N}\) do
        \(\tilde{z}^{(k+\mathbf{1})}=\arg \min _{\tilde{z} \in \mathcal{X}} \frac{\operatorname{lr}}{s}\left\langle\nabla f\left(x^{(k)}\right), \tilde{z}\right\rangle+D_{\psi}\left(\tilde{z}, x^{(k)}\right)\)
        \(\tilde{x}^{(k+\mathbf{1})}=\arg \min _{\tilde{x} \in \mathcal{X}} \gamma s\left\langle\nabla f\left(x^{(k)}\right), \tilde{x}\right\rangle+R\left(\tilde{x}, x^{(k)}\right)\)
        \(x^{(k+\mathbf{1})}=\lambda_{I} \tilde{z}^{(k+1)}+\left(1-\lambda_{I}\right) \tilde{x}^{(k+1)}\), with \(\lambda_{I}=\frac{r}{r+1}\).
        \(I \leftarrow I+1\)
        if Restart condition then
            \(\tilde{z}^{(k+1)} \leftarrow x^{(k+1)}, l \leftarrow 0\)
        end if
    end for
```

Illustration of restarting

Figure: Illustration of restarting

Example with a weakly convex function

Figure: Example with a weakly convex function. The black segment shows arg min f. Observe that each method converges to some point $x^{\star} \in \arg \min f$.

Dynamical systems approach to optimization

Paradigm

- Design ODE in continuous-time.
- Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.

Dynamical systems approach to optimization

Paradigm

- Design ODE in continuous-time.
- Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.
Develop the theory:

- Rigorous analysis of effect of r. Adaptive r ?
- Study restarting heuristics.

Dynamical systems approach to optimization

Paradigm

- Design ODE in continuous-time.
- Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.
Develop the theory:

- Rigorous analysis of effect of r. Adaptive r ?
- Study restarting heuristics.
- Monotone operators.
- Composite optimization

$$
\begin{aligned}
& \min f(x)+g(x) \\
& x \in \mathcal{X}
\end{aligned}
$$

where ∇f is Lipschitz and g is a general convex function.

Thank you!
[1] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999.
[2] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.
[3] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29(1):79-103, 1999.
[4] J. Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97-139, 1957.
[5] S. Hart and A. Mas-Colell. A general class of adaptive strategies. Journal of Economic Theory, 98(1):26-54, 2001.
[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014.
[7] W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time. In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015.
[8] W. Krichene, A. Bayen, and P. Bartlett. A Lyapunov approach to first-order methods for convex optimization, in continuous and discrete time. SIAM Journal on Optimization (SIOPT), submitted, December 2015.
[9] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley, 1983.

References II

[10] Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372-376, 1983.
[11] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
[12] R. Rockafellar. Convex Analysis. Princeton University Press, 1997.
[13] W. H. Sandholm. Population games and evolutionary dynamics. Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010.
[14] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In NIPS, 2014.
[15] J. W. Weibull. Evolutionary game theory. MIT press, 1997.

AREP convergence proof

-Back

- Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.

- The set of limit points of an APT is internally chain transitive ICT.
- If Γ is compact invariant, and has a Lyapunov function f with int $f(\Gamma)=\emptyset$, then $\forall L$ ICT, Γ, and f is constant on L.
- In particular, f is constant on $L\left(x^{(t)}\right)$, so $f\left(x^{(t)}\right)$ converges.

More on the mirror operator $\nabla \psi^{*}$

- Back to mirror descent

Consider a pair of closed conjugate convex functions ψ, ψ^{*}

- $\psi: \mathcal{X} \rightarrow \mathbb{R}$

More on the mirror operator $\nabla \psi^{*}$

Back to mirror descent

Consider a pair of closed conjugate convex functions ψ, ψ^{*}

- $\psi: \mathcal{X} \rightarrow \mathbb{R}$
- $\psi^{*}: E^{*} \rightarrow \mathbb{R}, \psi^{*}(z)=\sup _{x \in \mathcal{X}}\langle z, x\rangle-\psi(x)$

More on the mirror operator $\nabla \psi^{*}$

- Back to mirror descent

Consider a pair of closed conjugate convex functions ψ, ψ^{*}

- $\psi: \mathcal{X} \rightarrow \mathbb{R}$
- $\psi^{*}: E^{*} \rightarrow \mathbb{R}, \psi^{*}(z)=\sup _{x \in \mathcal{X}}\langle z, x\rangle-\psi(x)$
- $\partial \psi^{*}(z)=\arg \max _{x \in \mathcal{X}}\langle z, x\rangle-\psi(x)$ (so $\partial \psi^{*}$ naturally maps into \mathcal{X}).

More on the mirror operator $\nabla \psi^{*}$

Back to mirror descent

Consider a pair of closed conjugate convex functions ψ, ψ^{*}

- $\psi: \mathcal{X} \rightarrow \mathbb{R}$
- $\psi^{*}: E^{*} \rightarrow \mathbb{R}, \psi^{*}(z)=\sup _{x \in \mathcal{X}}\langle z, x\rangle-\psi(x)$
- $\partial \psi^{*}(z)=\arg \max _{x \in \mathcal{X}}\langle z, x\rangle-\psi(x)$
(so $\partial \psi^{*}$ naturally maps into \mathcal{X}).

Mirror operator

If $\psi: \mathcal{X} \rightarrow \mathbb{R}$ is convex, closed, (essentially) strongly convex, such that epi f contains no non-vertical half-lines, then ψ^{*} is finite differentiable on E^{*} and $\nabla \psi^{*}: E^{*} \rightarrow \mathcal{X}$.

The mirror operator $\nabla \psi^{*}$

Back to mirror descent

Figure: Example of dual distance generating functions ψ and ψ^{*}.

Application to load balancing

Figure: Load balancing problem.

- Modeled using a routing game.
- Can be solved using AMD.
- Acceleration leads to oscillation, undesirable.
- Use restarting heuristics to detect and alleviate oscillations.

