Online Learning and Optimization From Continuous to Discrete Time

Walid Krichene

Electrical Engineering and Computer Sciences, UC Berkeley

April 5, 2016

Accelerated Mirror Descent

References

Introduction

Online Learning

Sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS): Routing (transportation, communication), power networks.

• Centralization impractical \Rightarrow Distributed learning, e.g. learning in games.

Accelerated Mirror Descent

References

Introduction

Online Learning

Sequential decision problems: ubiquitous in Cyber-Physical Systems (CPS): Routing (transportation, communication), power networks.

• Centralization impractical \Rightarrow Distributed learning, e.g. learning in games.

Convex Optimization

- Data-driven decision problems.
- Size of data (dimension / sample size) makes higher-order methods prohibitively expensive.
- Active research on: {first-order, accelerated, stochastic} methods.

Accelerated Mirror Descent

References

Introduction

Emerging idea

Design algorithms for online learning and optimization in continuous-time.

- Simple analysis.
- Provides insight into the discrete process.
- Streamlines design of new methods.

Continuous time \leftrightarrow Discrete time

Outline

Accelerated Mirror Descent

References

2 Accelerated Mirror Descent

Accelerated Mirror Descent

References

Distributed learning in games

4/32

Accelerated Mirror Descent

References

Distributed learning in games

4/32

Accelerated Mirror Descent

References

Distributed learning in games

Figure: Coupled sequential decision problems.

- Equilibria: good description of system efficiency at steady-sate.
- Systems rarely operate at equilibrium.
- Study learning dynamics as
 - A prescriptive model: How do we drive system to eq.
 - A descriptive model: How would players behave in the game.

References

Distributed learning in games

Figure: Coupled sequential decision problems.

- Equilibria: good description of system efficiency at steady-sate.
- Systems rarely operate at equilibrium.
- Study learning dynamics as
 - A prescriptive model: How do we drive system to eq.
 - A descriptive model: How would players behave in the game.

Goals

- Define classes of algorithms for which we can prove convergence.
- Robustness to stochastic perturbations.
- Heterogeneous learning (different agents use different algorithms).
- Convergence rates.

A brief review

Discrete time:

- Hannan consistency: [4]
- Hedge algorithm for two-player games: [3]
- Regret based algorithms: [5]
- Online learning in games: [2]

Continuous time:

- Evolution in populations: [13]
- Replicator dynamics in evolutionary game theory [15]
- No-regret dynamics for two player games [5]

^[4] J. Hannan. Approximation to Bayes risk in repeated plays.

Contributions to the Theory of Games, 3:97-139, 1957

^[3]Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29(1):79–103, 1999

^[5]S. Hart and A. Mas-Colell. A general class of adaptive strategies. *Journal of Economic Theory*, 98(1):26 – 54, 2001

^[2]N. Cesa-Bianchi and G. Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

^[13]W. H. Sandholm. *Population games and evolutionary dynamics*. Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010

^[15]J. W. Weibull. Evolutionary game theory.

MIT press, 1997

^[5]S. Hart and A. Mas-Colell. A general class of adaptive strategies.

Journal of Economic Theory, 98(1):26 - 54, 2001

Accelerated Mirror Descent

References

Example: routing game

- 1: for $t \in \mathbb{N}$ do
- 2:
- 3:
- $\begin{aligned} & \mathsf{Play} \; a \sim x_k^{(t)} \\ & \mathsf{Discover} \; \ell_k^{(t)} \\ & \mathsf{Update} \; x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right) \end{aligned}$ 4:
- 5: end for

Figure: Routing game

Accelerated Mirror Descent

References

Example: routing game

- 1: for $t \in \mathbb{N}$ do
- 2:
- Play $a \sim x_k^{(t)}$ Discover $\ell_k^{(t)}$ 3:
- Update $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$ 4:
- 5: end for

Figure: Routing game

Accelerated Mirror Descent

References

Example: routing game

- 1: for $t \in \mathbb{N}$ do
- Play $a \sim x_k^{(t)}$ Discover $\ell_k^{(t)}$ 2:
- 3:
- Update $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$ 4:
- 5: end for

Figure: Routing game

Accelerated Mirror Descent

References

Example: routing game

- 1: for $t \in \mathbb{N}$ do
- 2: Play $a \sim x_k^{(t)}$
- 3: Discover $\ell_k^{(t)}$
- 4: Update $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$
- 5: end for

Figure: Routing game

Accelerated Mirror Descent

References

Example: routing game

- 1: for $t \in \mathbb{N}$ do
- 2: Play $a \sim x_k^{(t)}$
- 3: Discover $\ell_k^{(t)}$
- 4: Update $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$
- 5: end for

Figure: Routing game

Accelerated Mirror Descent

References

Example: routing game

- 1: for $t \in \mathbb{N}$ do
- Play $a \sim x_k^{(t)}$ 2:
- 3:
- Discover $\ell_k^{(t)}$ Update $x_k^{(t+1)} = u_k \left(x_k^{(t)}, \ell_k^{(t)} \right)$ 4:
- 5: end for

Figure: Routing game

Main problem

Define class of algorithms \mathcal{C} such that

$$u_k \in \mathcal{C} \ \forall k \Rightarrow x^{(t)} \to \mathcal{X}^*$$

Accelerated Mirror Descent

References

Equilibria of the routing game

$$\begin{array}{l} \text{Write} \\ x = (x_{\mathcal{A}_1}, \dots, x_{\mathcal{A}_K}) \in \Delta^{\mathcal{A}_1} \times \dots \times \Delta^{\mathcal{A}_K} \\ \ell(x) = (\ell_{\mathcal{A}_1}(x), \dots, \ell_{\mathcal{A}_K}(x)) \end{array}$$

Nash equilibria \mathcal{X}^{\star}

 x^* is a Nash equilibrium if for all k, paths in the support of $x^*_{\mathcal{A}_k}$ have minimal loss.

 $\forall x, \ \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0$

Accelerated Mirror Descent

References

Equilibria of the routing game

$$\begin{array}{l} \text{Write} \\ x = (x_{\mathcal{A}_1}, \dots, x_{\mathcal{A}_K}) \in \Delta^{\mathcal{A}_1} \times \dots \times \Delta^{\mathcal{A}_K} \\ \ell(x) = (\ell_{\mathcal{A}_1}(x), \dots, \ell_{\mathcal{A}_K}(x)) \end{array}$$

Nash equilibria \mathcal{X}^{\star}

 x^* is a Nash equilibrium if for all k, paths in the support of $x^*_{\mathcal{A}_k}$ have minimal loss.

$$\forall x, \ \langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0$$

Rosenthal potential

 $\exists f \text{ convex such that } \nabla f(x) = \ell(x).$

$$\begin{array}{ll} \text{Nash condition} & \Leftrightarrow & \text{first order optimality} \\ \forall x, \ \langle \ell(x^*), x - x^* \rangle \geq 0 & \forall x, \ \langle \nabla f(x^*), x - x^* \rangle \geq 0 \end{array}$$

Accelerated Mirror Descent

References

Stochastic approximation

Idea:

- View the learning dynamics as a discretization of an ODE.
- Study convergence of ODE.
- Relate convergence of discrete algorithm to convergence of ODE.

^[15] J. W. Weibull. *Evolutionary game theory*. MIT press, 1997

Stochastic approximation

Idea:

- View the learning dynamics as a discretization of an ODE.
- Study convergence of ODE.
- Relate convergence of discrete algorithm to convergence of ODE.

In Hedge
$$x_a^{(t+1)} \propto x_a^{(t)} e^{-\eta_t \ell_a^{(t)}}$$
, take $\eta_t \to 0$.

Replicator equation [15]0 $\forall a \in \mathcal{A}_k, \frac{dx_a}{dt} = x_a (\langle \ell(x), x \rangle - \ell_a(x))$ Figure: Underlying continuous time

^[15] J. W. Weibull. *Evolutionary game theory*. MIT press, 1997

Accelerated Mirror Descent

References

AREP dynamics: Approximate REPlicator

$$\frac{dx_a}{dt} = x_a \left(\langle \ell(x), x \rangle - \ell_a(x) \right)$$

Discretization of the continuous-time replicator dynamics

$$\frac{x_{a}^{(t+1)} - x_{a}^{(t)}}{\eta_{t}} = x_{a}^{(t)} \left(\left\langle \ell(x^{(t)}), x^{(t)} \right\rangle - \ell_{a}(x^{(t)}) \right) + U_{a}^{(t+1)}$$

^[1] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999

Accelerated Mirror Descent

References

AREP dynamics: Approximate REPlicator

$$\frac{dx_a}{dt} = x_a \left(\langle \ell(x), x \rangle - \ell_a(x) \right)$$

Discretization of the continuous-time replicator dynamics

$$\frac{x_a^{(t+1)} - x_a^{(t)}}{\eta_t} = x_a^{(t)} \left(\left\langle \ell(x^{(t)}), x^{(t)} \right\rangle - \ell_a(x^{(t)}) \right) + U_a^{(t+1)}$$

• η_t discretization time steps.

^[1] M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999

Accelerated Mirror Descent

References

AREP dynamics: Approximate REPlicator

$$\frac{dx_a}{dt} = x_a \left(\langle \ell(x), x \rangle - \ell_a(x) \right)$$

Discretization of the continuous-time replicator dynamics

$$\frac{x_{a}^{(t+1)} - x_{a}^{(t)}}{\eta_{t}} = x_{a}^{(t)} \left(\left\langle \ell(x^{(t)}), x^{(t)} \right\rangle - \ell_{a}(x^{(t)}) \right) + U_{a}^{(t+1)}$$

η_t discretization time steps.

•
$$(U^{(t)})_{t\geq 1}$$
 perturbations that satisfy for all $T > 0$,

$$\lim_{\tau_1 \to \infty} \max_{\tau_2: \sum_{t=\tau_1}^{\tau_2} \eta_t < T} \left\| \sum_{t=\tau_1}^{\tau_2} \eta_t U^{(t+1)} \right\| = 0$$

(a sufficient condition is that $\exists q \geq 2$: $\sup_{\tau} \mathbb{E} \| U^{(\tau)} \|^q < \infty$ and $\sum_{\tau} \eta_{\tau}^{\mathbf{1} + \frac{q}{2}} < \infty$)

^[1] M. Benaïm. Dynamics of stochastic approximation algorithms.

In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999

References

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

 $x^{(t)}
ightarrow \mathcal{X}^{\star}$ a.s.

^[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

References

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

 $x^{(t)}
ightarrow \mathcal{X}^{\star}$ a.s.

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.

^[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

References

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

$$x^{(t)}
ightarrow \mathcal{X}^{\star}$$
 a.s.

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.

However, No convergence rates.

^[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

References

Convergence to Nash equilibria

Theorem [6]

In convex potential games, under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

$$x^{(t)}
ightarrow \mathcal{X}^{\star}$$
 a.s.

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory of ODE.

However, No convergence rates.

^[6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

Accelerated Mirror Descent

References

Asymptotic Pseudo Trajectory

Figure: Discrete (Hedge) and continuous (Replicator) trajectories

Accelerated Mirror Descent

References

Numerical example

Figure: Example with strongly convex potential.

• Centered Gaussian noise on edges.

- Population 1: Hedge with $\eta_t^1 = t^{-1}$
- Population 2: Hedge with $\eta_t^2 = t^{-1}$

Accelerated Mirror Descent

References

Numerical example

• Centered Gaussian noise on edges.

- Population 1: Hedge with $\eta_t^1 = t^{-1}$
- Population 2: Hedge with $\eta_t^2 = t^{-1}$

Figure: Example with strongly convex potential.

Figure: Potential values. For $\eta_t^k = \frac{\theta_k}{t^{\alpha_k}}, \ \alpha_k \in (0, 1), \mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1 - \alpha_k)}}\right)$

Accelerated Mirror Descent

References

Numerical example

• Centered Gaussian noise on edges.

- Population 1: Hedge with $\eta_t^1 = t^{-1}$
- Population 2: Hedge with $\eta_t^2 = t^{-1}$

Figure: Example with strongly convex potential.

Figure: Potential values. For $\eta_t^k = \frac{\theta_k}{t^{\alpha_k}}, \ \alpha_k \in (0, 1), \ \mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1 - \alpha_k)}}\right)$

Outline

Accelerated Mirror Descent

References

Discretizing the Replicator ODE

2 Accelerated Mirror Descent

First order optimization: from continuous to discrete time

Constrained convex optimization	
minin	the $f(x)$
subjec	to $x \in \mathcal{X}$

- f is convex differentiable, L_f smooth (i.e. ∇f is L_f Lipschitz).
- X is convex closed.
- First-order: can evaluate f(x) and $\nabla f(x)$.

Gradient descent	O(1/k)
Mirror descent [9] Dual Averaging [11]	$\mathcal{O}(1/k)$
Nesterov's accelerated method [10]	$\mathcal{O}(1/k^2)$

Goal: unified approach to derive these algorithms.

- Design ODE in continuous time using Lyapunov argument.
- Discretize.

[11]Y. Nesterov. Primal-dual subgradient methods for convex problems.

Mathematical Programming, 120(1):221-259, 2009

^[9]A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization*. Wiley-Interscience series in discrete mathematics. Wiley, 1983

^[10]Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983

Accelerated Mirror Descent

References

From Gradient Descent to Mirror Descent

Gradient descent is discretization of

Gradient descent ODE

$$\dot{X} = -\nabla f(X)$$

Converges in $\mathcal{O}(1/t)$.

Proof idea: define $D(X(t), x^*) = \frac{1}{2} ||X(t) - x^*||^2$.

^[9]A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization*. Wiley-Interscience series in discrete mathematics. Wiley, 1983

References

From Gradient Descent to Mirror Descent

Gradient descent is discretization of

Gradient descent ODE

$$\dot{X} = -\nabla f(X)$$

Converges in $\mathcal{O}(1/t)$.

Proof idea: define $D(X(t), x^*) = \frac{1}{2} ||X(t) - x^*||^2$. Nemirovski and Yudin [9]

Start from function on the dual space

$$D_{\psi^*}(Z, z^{\star}) = \psi^*(Z) - \psi^*(z^{\star}) - \langle \nabla \psi^*(z^{\star}), Z - z^{\star} \rangle$$

2 Design dynamics to make it a Lyapunov function.

^[9]A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization*. Wiley-Interscience series in discrete mathematics. Wiley, 1983
References

From Gradient Descent to Mirror Descent

Mirror descent ODE

$$\dot{Z} = -\nabla f(X)$$

 $X = \nabla \psi^*(Z)$

Converges in $\mathcal{O}(1/t)$.

Figure: Illustration of Mirror Descent

 ψ^* is defined and differentiable on E^* , $\nabla \psi^*$ maps E^* to \mathcal{X} . More on $\nabla \psi^*$

References

An ODE interpretation of Nesterov's method

Su et al. [14]: for unconstrained problems

O Nesterov's method is discretization of

$$\ddot{X} + rac{r+1}{t}\dot{X} +
abla f(X) = 0$$

^[14]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In *NIPS*, 2014

References

An ODE interpretation of Nesterov's method

Su et al. [14]: for unconstrained problems

Nesterov's method is discretization of

$$\ddot{X} + \frac{r+1}{t}\dot{X} + \nabla f(X) = 0$$

2 Proved convergence at $\mathcal{O}(1/t^2)$ rate. Argument: Lyapunov function

$$\frac{t^2}{r}(f(X) - f^*) + \frac{r}{2} \|X + \frac{t}{r}\dot{X} - x^*\|_2^2$$

^[14]W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In NIPS, 2014

References

17/32

Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

$$V(X, Z, t) = \frac{t^2}{r^2} (f(X(t)) - f^*) + D_{\psi^*}(Z(t), z^*)$$

 $r\geq 2$, a parameter, $Z\in E^*$, z^* its value at equilibrium.

^[7]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time. In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015

References

Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

$$V(X, Z, t) = \frac{t^2}{r^2} (f(X(t)) - f^*) + D_{\psi^*}(Z(t), z^*)$$

 $r\geq 2$, a parameter, $Z\in E^*$, z^* its value at equilibrium.

AMD ODE

$$\begin{aligned} \dot{Z} &= -\frac{t}{r} \nabla f(X), \\ \dot{X} &= \frac{r}{t} (\nabla \psi^*(Z) - X), \end{aligned}$$

If (X, Z) is a solution to ODE (1), then V is a Lyapunov function.

^[7]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time. In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015

References

Accelerated Mirror Descent in continuous time

We start from a Lyapunov function [7]

$$V(X, Z, t) = \frac{t^2}{r^2} (f(X(t)) - f^*) + D_{\psi^*}(Z(t), z^*)$$

 $r\geq 2$, a parameter, $Z\in E^*$, z^* its value at equilibrium.

AMD ODE

$$\begin{aligned} \dot{Z} &= -\frac{t}{r} \nabla f(X), \\ \dot{X} &= \frac{r}{t} (\nabla \psi^*(Z) - X), \end{aligned}$$

If (X, Z) is a solution to ODE (1), then V is a Lyapunov function.

Consequence: convergence rate

$$f(X(t)) - f^{\star} \leq rac{r^2 D_{\psi^*}(z_0, z^{\star})}{t^2}$$

Proof:
$$f(X(t)) - f^* \leq \frac{r^2 V(X(t), Z(t), t)}{t^2} \leq \frac{r V(x_0, z_0, 0)}{t^2} = \frac{r^2 D_{\psi^*}(z_0, z^*)}{t^2}$$

^[7]W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time. In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015

Accelerated Mirror Descent

References

Averaging Interpretation

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X). \end{cases}$$

Averaging interpretation

Second equation equivalent to

$$X(t) = \frac{\int_0^t w(\tau) \nabla \psi^*(Z(\tau)) d\tau}{\int_0^t w(\tau) d\tau}$$

with
$$w(\tau) = \tau^{r-1}$$
.

Figure: Averaging interpretation: Z evolves in E^* , X is a weighted average of the mirrored trajectory $\nabla \psi^*(Z)$.

[8]W. Krichene, A. Bayen, and P. Bartlett. A Lyapunov approach to first-order methods for convex optimization, in continuous and discrete time. SIAM Journal on Optimization (SIOPT), submitted, December 2015

Accelerated Mirror Descent

References

Averaging Interpretation

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X), \end{cases}$$

Averaging interpretation

Second equation equivalent to

$$X(t) = \frac{\int_0^t w(\tau) \nabla \psi^*(Z(\tau)) d\tau}{\int_0^t w(\tau) d\tau}$$

with
$$w(\tau) = \tau^{r-1}$$
.

Figure: Averaging interpretation: Z evolves in E^* , X is a weighted average of the mirrored trajectory $\nabla \psi^*(Z)$.

General averaging[8]

If $W(t) = \int_0^t w(\tau) d\tau$, and $\frac{w}{W} \ge \frac{2}{t}$, then V is Lyapunov under

$$\dot{Z} = -\frac{w}{W}\frac{t^2}{r^2}\nabla f(X)$$

[8]W. Krichene, A. Bayen, and P. Bartlett. A Lyapunov approach to first-order methods for convex optimization, in continuous and discrete time. SIAM Journal on Optimization (SIOPT), submitted, December 2015

Accelerated Mirror Descent

References

Example: accelerated entropic descent on the simplex

Suppose the feasible set is $\mathcal{X} = \Delta^n = \{x \in \mathbb{R}^n_+ : \sum_i x_i = 1\}.$

$$\psi(x) = \sum_{i} x_i \ln x_i + \delta(x|\Delta), \qquad \psi^*(z) = \ln \sum_{i} e^{z_i}, \qquad \nabla \psi^*(z)_i = \frac{e^{z_i}}{\sum_{i} e^{z_i}},$$

Accelerated replicator ODE

$$\begin{split} \dot{\tilde{Z}}_i &= \tilde{Z}_i \left(\left\langle \tilde{Z}, \nabla f(X) \right\rangle - \nabla_i f(X) \right) \\ X &= \frac{\int_0^t \tau^{r-1} \tilde{Z}(\tau) d\tau}{\int_0^t \tau^{r-1} d\tau} \end{split}$$

Numerical Example

Accelerated Mirror Descent

References

Figure: Accelerated entropic descent on a quadratic on the simplex.

Accelerated Mirror Descent

References

Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

$$\ddot{X} + \frac{r+1}{t}\dot{X} = -\nabla^2\psi^*(Z)\nabla f(X)$$

References

Damped oscillator interpretation

Damped nonlinear oscillator

Accelerated mirror descent ODE is equivalent to

$$\ddot{X} + \frac{r+1}{t}\dot{X} = -\nabla^2\psi^*(Z)\nabla f(X)$$

- Special case: $\ddot{X} + \frac{r+1}{t}\dot{X} = -\nabla f(X)$
- $\frac{r+1}{t}\dot{X}$: vanishing friction term.

Accelerated Mirror Descent

References

Effect of the parameter r

$$\ddot{X} + \frac{r+1}{t}\dot{X} = -\nabla^2\psi^*(Z)\nabla f(X)$$

Figure: Effect of the parameter $r \in [2, 50]$.

Accelerated Mirror Descent

References

$$\ddot{X} + \frac{r+1}{t}\dot{X} = -\nabla^2\psi^*(Z)\nabla f(X)$$

Figure: Flow field $x \mapsto \nabla^2 \psi^*(Z(t)) \nabla f(x)$, along the solution trajectory Z

Accelerated Mirror Descent

References

Existence and uniqueness of the solution

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X), \end{cases}$$

Solution

Suppose ∇f and $\nabla \psi^*$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0, +\infty)$, and the solution remains in \mathcal{X} .

Accelerated Mirror Descent

References

Existence and uniqueness of the solution

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X), \end{cases}$$

Solution

Suppose ∇f and $\nabla \psi^*$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0, +\infty)$, and the solution remains in \mathcal{X} .

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but singularity at 0.

Accelerated Mirror Descent

References

Existence and uniqueness of the solution

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X), \end{cases}$$

Solution

Suppose ∇f and $\nabla \psi^*$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0, +\infty)$, and the solution remains in \mathcal{X} .

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but singularity at 0.

Optime family of "smoothed" ODEs:

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{\max(t,\delta)} (\nabla \psi^*(Z) - X), \end{cases}$$

Accelerated Mirror Descent

References

Existence and uniqueness of the solution

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X), \end{cases}$$

Solution

Suppose ∇f and $\nabla \psi^*$ are Lipschitz. Then ODE system (1) has a unique solution defined on $[0, +\infty)$, and the solution remains in \mathcal{X} .

Proof sketch: Would like to invoke Cauchy-Lipschitz theorem (Picard-Lindelöf), but singularity at 0.

Optime family of "smoothed" ODEs:

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{\max(t,\delta)} (\nabla \psi^*(Z) - X), \end{cases}$$

Sextract a converging subsequence. Its limit is a solution to (1).

Accelerated Mirror Descent

References

Discretization

Time correspondence: $t = k\sqrt{s}$, for a step size s. First attempt:

$$\begin{cases} \dot{Z} = -\frac{t}{r} \nabla f(X), \\ \dot{X} = \frac{r}{t} (\nabla \psi^*(Z) - X), \end{cases} \begin{cases} \frac{z^{(k+1)} - z^{(k)}}{\sqrt{s}} = -\frac{k\sqrt{s}}{r} \nabla f(x^{(k)}) \\ \frac{x^{(k+1)} - x^{(k)}}{\sqrt{s}} = \frac{r}{k\sqrt{s}} (\nabla \psi^*(z^{(k+1)}) - x^{(k+1)}). \end{cases}$$

Candidate Lyapunov function:

$$E^{(k)} = V(x^{(k)}, z^{(k)}, k\sqrt{s}).$$

Accelerated Mirror Descent

References

Discrete AMD algorithm.

Accelerated mirror descent with distance generating function ψ^* , regularizer R

1: Initialize
$$\tilde{x}^{(0)} = x_0$$
, $\tilde{z}^{(0)} = x_0$
2: for $k \in \mathbb{N}$ do
3: $\tilde{z}^{(k+1)} = \arg\min_{\tilde{z}\in\mathcal{X}} \frac{kr}{s} \langle \nabla f(x^{(k)}), \tilde{z} \rangle + D_{\psi}(\tilde{z}, x^{(k)})$
4: $\tilde{x}^{(k+1)} = \arg\min_{\tilde{x}\in\mathcal{X}} \gamma s \langle \nabla f(x^{(k)}), \tilde{x} \rangle + R(\tilde{x}, x^{(k)})$
5: $x^{(k+1)} = \lambda_k \tilde{z}^{(k+1)} + (1 - \lambda_k) \tilde{x}^{(k+1)}$, with $\lambda_k = \frac{r}{r+k}$
6: end for

• R regularizer function, assumed strongly convex and smooth.

Accelerated Mirror Descent

References

Discrete AMD algorithm.

Accelerated mirror descent with distance generating function ψ^* , regularizer R

1: Initialize
$$\tilde{x}^{(0)} = x_0$$
, $\tilde{z}^{(0)} = x_0$
2: for $k \in \mathbb{N}$ do
3: $\tilde{z}^{(k+1)} = \arg\min_{\tilde{z}\in\mathcal{X}} \frac{kr}{s} \langle \nabla f(x^{(k)}), \tilde{z} \rangle + D_{\psi}(\tilde{z}, x^{(k)})$
4: $\tilde{x}^{(k+1)} = \arg\min_{\tilde{x}\in\mathcal{X}} \gamma s \langle \nabla f(x^{(k)}), \tilde{x} \rangle + R(\tilde{x}, x^{(k)})$
5: $x^{(k+1)} = \lambda_k \tilde{z}^{(k+1)} + (1 - \lambda_k) \tilde{x}^{(k+1)}$, with $\lambda_k = \frac{r}{r+k}$.
6: end for

- R regularizer function, assumed strongly convex and smooth.
- Modified scheme is consistent with the ODE. Idea: $\tilde{x}^{(k)} = x^{(k)} + \mathcal{O}(s)$.

Accelerated Mirror Descent

References

Convergence rate

Convergence rate

If $\gamma \geq L_f L_{\psi^*}$ and $s \leq rac{\ell_R}{2L_f \gamma}$, then

$$f(\tilde{x}^{(k)}) - f^{\star} \leq C/k^2,$$

where
$$C = \frac{r^2 D_{\psi^*}(z_0, z^*)}{s} + f(x_0) - f^*$$
.

Proof: $\tilde{E}^{(k)} = V(\tilde{x}^{(k)}, z^{(k)}, k\sqrt{s})$ is a Lyapunov function.

Accelerated Mirror Descent

References

Restarting

Restart the algorithm when a certain condition is met.

- Gradient restart: $\left\langle x^{(k+1)} x^{(k)},
 abla f(x^{(k)}) \right\rangle > 0$
- Speed restart: $\|x^{(k+1)} x^{(k)}\| < \|x^{(k)} x^{(k-1)}\|$

Algorithm 1 Accelerated mirror descent with restart

1: Initialize
$$l = 0$$
, $\tilde{x}^{(0)} = \tilde{z}^{(0)} = x_0$.
2: for $k \in \mathbb{N}$ do
3: $\tilde{z}^{(k+1)} = \arg\min_{\tilde{z} \in \mathcal{X}} \frac{lr}{s} \left\langle \nabla f(x^{(k)}), \tilde{z} \right\rangle + D_{\psi}(\tilde{z}, x^{(k)})$
4: $\tilde{x}^{(k+1)} = \arg\min_{\tilde{x} \in \mathcal{X}} \gamma s \left\langle \nabla f(x^{(k)}), \tilde{x} \right\rangle + R(\tilde{x}, x^{(k)})$
5: $x^{(k+1)} = \lambda_l \tilde{z}^{(k+1)} + (1 - \lambda_l) \tilde{x}^{(k+1)}$, with $\lambda_l = \frac{r}{r+l}$.
6: $l \leftarrow l+1$
7: if Restart condition then
8: $\tilde{z}^{(k+1)} \leftarrow x^{(k+1)}, l \leftarrow 0$
9: end if
10: end for

Accelerated Mirror Descent

References

Illustration of restarting

Figure: Illustration of restarting

Accelerated Mirror Descent

References

Example with a weakly convex function

Figure: Example with a weakly convex function. The black segment shows arg min f. Observe that each method converges to some point $x^* \in \arg \min f$.

References

Dynamical systems approach to optimization

Paradigm

- Design ODE in continuous-time.
- Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.

References

Dynamical systems approach to optimization

Paradigm

- Design ODE in continuous-time.
- Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.

Develop the theory:

- Rigorous analysis of effect of r. Adaptive r?
- Study restarting heuristics.

References

Dynamical systems approach to optimization

Paradigm

- Design ODE in continuous-time.
- Streamline the discretization.

For practitioners: Use off-the-shelf numerical methods to discretize the ODE.

Develop the theory:

- Rigorous analysis of effect of r. Adaptive r?
- Study restarting heuristics.
- Monotone operators.
- Composite optimization

 $\min f(x) + g(x)$ $x \in \mathcal{X}$

where ∇f is Lipschitz and g is a general convex function.

Thank you!

Accelerated Mirror Descent

References

References I

- M. Benaïm. Dynamics of stochastic approximation algorithms. In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999.
- [2] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.
- [3] Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29(1):79–103, 1999.
- [4] J. Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957.
- [5] S. Hart and A. Mas-Colell. A general class of adaptive strategies. Journal of Economic Theory, 98(1):26 – 54, 2001.
- [6] W. Krichene, B. Drighès, and A. Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014.
- [7] W. Krichene, A. Bayen, and P. Bartlett. Accelerated mirror descent in continuous and discrete time. In 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal, Canada, 2015.
- [8] W. Krichene, A. Bayen, and P. Bartlett. A Lyapunov approach to first-order methods for convex optimization, in continuous and discrete time. *SIAM Journal* on Optimization (SIOPT), submitted, December 2015.
- [9] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley, 1983.

Accelerated Mirror Descent

References

References II

- [10] Y. Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.
- [11] Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221–259, 2009.
- [12] R. Rockafellar. Convex Analysis. Princeton University Press, 1997.
- [13] W. H. Sandholm. Population games and evolutionary dynamics. Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010.
- [14] W. Su, S. Boyd, and E. Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In *NIPS*, 2014.
- [15] J. W. Weibull. Evolutionary game theory. MIT press, 1997.

Accelerated Mirror Descent

References

AREP convergence proof

▶ Back

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.

- The set of limit points of an APT is internally chain transitive ICT.
- If Γ is compact invariant, and has a Lyapunov function f with int $f(\Gamma) = \emptyset$, then $\forall L$ ICT, Γ , and f is constant on L.
- In particular, f is constant on $L(x^{(t)})$, so $f(x^{(t)})$ converges.

Accelerated Mirror Descent

References

More on the mirror operator $\nabla \psi^*$

▶ Back to mirror descent

Consider a pair of closed conjugate convex functions ψ, ψ^*

• $\psi : \mathcal{X} \to \mathbb{R}$

[12]R. Rockafellar. *Convex Analysis.* Princeton University Press, 1997

Accelerated Mirror Descent

References

More on the mirror operator $\nabla \psi^*$

▶ Back to mirror descent

Consider a pair of closed conjugate convex functions ψ,ψ^*

- $\psi : \mathcal{X} \to \mathbb{R}$
- $\psi^*: E^* \to \mathbb{R}, \ \psi^*(z) = \sup_{x \in \mathcal{X}} \langle z, x \rangle \psi(x)$

Accelerated Mirror Descent

References

More on the mirror operator $\nabla \psi^*$

Back to mirror descent

Consider a pair of closed conjugate convex functions ψ,ψ^*

- $\psi : \mathcal{X} \to \mathbb{R}$
- $\psi^*: E^* \to \mathbb{R}, \ \psi^*(z) = \sup_{x \in \mathcal{X}} \langle z, x \rangle \psi(x)$
- $\partial \psi^*(z) = \arg \max_{x \in \mathcal{X}} \langle z, x \rangle \psi(x)$ (so $\partial \psi^*$ naturally maps into \mathcal{X}).

Accelerated Mirror Descent

References

More on the mirror operator $\nabla \psi^*$

▶ Back to mirror descent

Consider a pair of closed conjugate convex functions ψ, ψ^*

- $\psi : \mathcal{X} \to \mathbb{R}$
- $\psi^*: E^* \to \mathbb{R}, \ \psi^*(z) = \sup_{x \in \mathcal{X}} \langle z, x \rangle \psi(x)$
- $\partial \psi^*(z) = \arg \max_{x \in \mathcal{X}} \langle z, x \rangle \psi(x)$ (so $\partial \psi^*$ naturally maps into \mathcal{X}).

Mirror operator

If $\psi : \mathcal{X} \to \mathbb{R}$ is convex, closed, (essentially) strongly convex, such that epi f contains no non-vertical half-lines, then ψ^* is finite differentiable on E^* and $\nabla \psi^* : E^* \to \mathcal{X}$.
Discretizing the Replicator ODE

Accelerated Mirror Descent

References

The mirror operator $\nabla \psi^*$

Figure: Example of dual distance generating functions ψ and ψ^* .

Discretizing the Replicator ODE

Accelerated Mirror Descent

Application to load balancing

Figure: Load balancing problem.

- Modeled using a routing game.
- Can be solved using AMD.
- Acceleration leads to oscillation, undesirable.
- Use restarting heuristics to detect and alleviate oscillations.