Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000	00000	0000	

Distributed Learning Dynamics Convergence in the Routing Game and Beyond

Walid Krichene Alexandre Bayen

Electrical Engineering and Computer Sciences, UC Berkeley

KAUST Conference on Human-Machine Networks and Intelligent Infrastructure October 7, 2015

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References		
00000	00000000000000000	00000	0000			
Learning dynamics in the routing game						

- Routing games model congestion on networks. Concise and elegant theory.
- Nash equilibrium quantifies efficiency of network in steady state.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References		
00000	00000000000000000	00000	0000			
Learning dynamics in the routing game						

- Routing games model congestion on networks. Concise and elegant theory.
- Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to understand decision dynamics (learning).

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Learning	dynamics in the routing g	ame		

- Routing games model congestion on networks. Concise and elegant theory.
- Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to understand decision dynamics (learning).

• A realistic model for decision dynamics is essential for prediction, optimal control.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References		
00000	00000000000000000	00000	0000			
Learning dynamics in the routing game						

- Routing games model congestion on networks. Concise and elegant theory.
- Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to understand decision dynamics (learning).

• A realistic model for decision dynamics is essential for prediction, optimal control.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Desiderata				

Learning dynamics should be

• Realistic in terms of information requirements, computational complexity.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	00000	0000	
Desiderata				

Learning dynamics should be

- Realistic in terms of information requirements, computational complexity.
- Consistent with the full information Nash equilibrium.

$$x^{(t)} \to \mathcal{X}^{\star}$$

Convergence rates?

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	00000	0000	
Desiderata				

Learning dynamics should be

- Realistic in terms of information requirements, computational complexity.
- Consistent with the full information Nash equilibrium.

$$x^{(t)} \to \mathcal{X}^{\star}$$

Convergence rates?

- Robust to stochastic perturbations.
 - Observation noise
 - (Bandit feedback)

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Outline				

2 Convergence of agent dynamics

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Outline				

2 Convergence of agent dynamics

Related problems

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Interactio	on of K decision makers			

Decision maker k faces a sequential decision problem At iteration t

- (1) chooses probability distribution $x_{\mathcal{A}_{k}}^{(t)}$ over action set \mathcal{A}_{k}
- (2) discovers a loss function $\ell_{\mathcal{A}_k}^{(t)} : \mathcal{A}_k \to [0, 1]$

(3) updates distribution

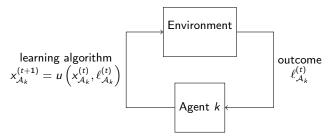


Figure: Sequential decision problem.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Interactio	n of K decision makers			

Decision maker k faces a sequential decision problem At iteration t

- (1) chooses probability distribution $x_{A_k}^{(t)}$ over action set \mathcal{A}_k
- (2) discovers a loss function $\ell_{A_k}^{(t)} : \mathcal{A}_k \to [0, 1]$

(3) updates distribution

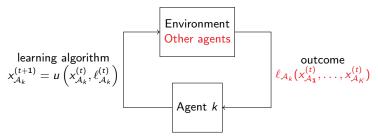


Figure: Sequential decision problem.

Loss of agent k affected by strategies of other agents. Does not know this function, only observes its value. Write $x^{(t)} = (x^{(t)}_{A_1}, \dots, x^{(t)}_{A_{tr}})$.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
0000	0000000000000000	00000	0000	
Examples of	decentralized decision r	makers		

Routing game

- Player drives from source to destination node
- Chooses path from \mathcal{A}_k
- Mass of players on each edge determines cost on that edge.

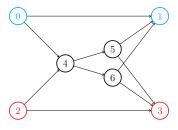


Figure: Routing game

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
0000	0000000000000000	00000	0000	
Examples of	decentralized decision r	makers		

Routing game

- Player drives from source to destination node
- Chooses path from \mathcal{A}_k
- Mass of players on each edge determines cost on that edge.

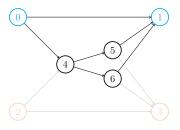


Figure: Routing game

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References	
00000	00000000000000000	00000	0000		
Online learning model					

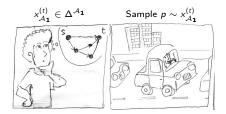
- 1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$
- Discover $\ell_{\mathcal{A}_k}^{(t)}$ 3:
- Update 4:

$$x_{\mathcal{A}_{k}}^{(t+1)} = u_{k}\left(x_{\mathcal{A}_{k}}^{(t)}, \ell_{\mathcal{A}_{k}}^{(t)}\right)$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References	
00000	00000000000000000	00000	0000		
Online learning model					

- 1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$
- Discover $\ell_{\mathcal{A}_k}^{(t)}$ 3:
- 4: Update

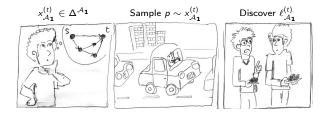
$$x_{\mathcal{A}_{k}}^{(t+1)} = u_{k}\left(x_{\mathcal{A}_{k}}^{(t)}, \ell_{\mathcal{A}_{k}}^{(t)}\right)$$



Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References	
00000	00000000000000000	00000	0000		
Online learning model					

- 1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$
- Discover $\ell_{\mathcal{A}_k}^{(t)}$ 3:
- 4: Update

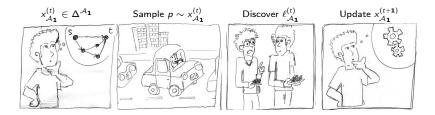
$$x_{\mathcal{A}_{k}}^{(t+1)} = u_{k}\left(x_{\mathcal{A}_{k}}^{(t)}, \ell_{\mathcal{A}_{k}}^{(t)}\right)$$



Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Online learning model				

- 1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$
- Discover $\ell_{\mathcal{A}_k}^{(t)}$ 3:
- 4: Update

$$x_{\mathcal{A}_{k}}^{(t+1)} = u_{k}\left(x_{\mathcal{A}_{k}}^{(t)}, \ell_{\mathcal{A}_{k}}^{(t)}\right)$$

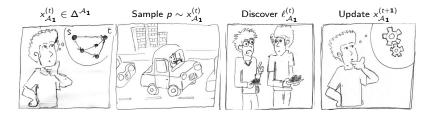


Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000	00000	0000	
Online lear	ning model			

- 1: for $t \in \mathbb{N}$ do 2: Play $p \sim x_{\mathcal{A}_k}^{(t)}$
- Discover $\ell_{\mathcal{A}_k}^{(t)}$ 3:
- 4: Update

$$x_{\mathcal{A}_{k}}^{(t+1)} = u_{k}\left(x_{\mathcal{A}_{k}}^{(t)}, \ell_{\mathcal{A}_{k}}^{(t)}\right)$$

5: end for



Main problem

Define class of dynamics ${\mathcal C}$ such that

$$u_k \in \mathcal{C} \ \forall k \Rightarrow x^{(t)} \to \mathcal{X}^*$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000	00000	0000	
A brief rev	view			
Contin	uous-time: 💽			

Discrete time:

- Hannan consistency: [10]
- Hedge algorithm for two-player games: [9]
- Regret based algorithms: [11]
- Online learning in games: [7]
- Potential games: [19]

Specifically to the routing game

No-regret dynamics [4], [14]

[10] James Hannan. Approximation to Bayes risk in repeated plays.

Contributions to the Theory of Games, 3:97-139, 1957

[9]Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. Games and Economic Behavior, 29(1):79–103, 1999

[11]Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies.

Journal of Economic Theory, 98(1):26 - 54, 2001

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.

Cambridge University Press, 2006

 $\ensuremath{\left[19\right]}\ensuremath{\mathsf{Jason}}\xspace R$ Marden, Gürdal Arslan, and Jeff S Shamma. Joint strategy fictitious play with inertia for potential games.

Automatic Control, IEEE Transactions on, 54(2):208-220, 2009

[4]Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to nash equilibria of regret-minimizing algorithms in routing games.

In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed computing, PODC '06, pages 45–52, New York, NY, USA, 2006. ACM

7/36

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
This talk				

- Overview of some techniques for design and analysis of learning dynamics.
- Formulated for routing games. Extend to other classes of games.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Outline				

2 Convergence of agent dynamics

Related problems

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	• 0000 00000000000	00000	0000	
Nash equi	libria, and the Rosenthal	potential		

Write

$$x = (x_{\mathcal{A}_1}, \dots, x_{\mathcal{A}_K}) \in \Delta^{\mathcal{A}_1} \times \dots \times \Delta^{\mathcal{A}_K}$$

 $\ell(x) = (\ell_{\mathcal{A}_1}(x), \dots, \ell_{\mathcal{A}_K}(x))$

Nash equilibrium

 x^* is a Nash equilibrium if

$$\langle \ell(x^{\star}), x - x^{\star} \rangle \geq 0 \ \forall x \Leftrightarrow \forall k, \forall x_{\mathcal{A}_k}, \langle \ell_{\mathcal{A}_k}(x^{\star}), x_{\mathcal{A}_k} - x^{\star}_{\mathcal{A}_k} \rangle \geq 0$$

In words, for all k, paths in the support of $x_{A_k}^{\star}$ have minimal loss.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	• 0000 00000000000	00000	0000	
Nash equilib	ria, and the Rosenthal p	otential		

Write

$$x = (x_{\mathcal{A}_1}, \dots, x_{\mathcal{A}_K}) \in \Delta^{\mathcal{A}_1} \times \dots \times \Delta^{\mathcal{A}_K}$$

 $\ell(x) = (\ell_{\mathcal{A}_1}(x), \dots, \ell_{\mathcal{A}_K}(x))$

Nash equilibrium

X A / *.

 x^{\star} is a Nash equilibrium if

$$\langle \ell(x^{\star}), x - x^{\star}
angle \geq 0 \,\, orall x \Leftrightarrow orall k, orall x_{\mathcal{A}_k}, ig \langle \ell_{\mathcal{A}_k}(x^{\star}), x_{\mathcal{A}_k} - x^{\star}_{\mathcal{A}_k} ig
angle \geq 0$$

In words, for all k, paths in the support of $x_{A_k}^{\star}$ have minimal loss.

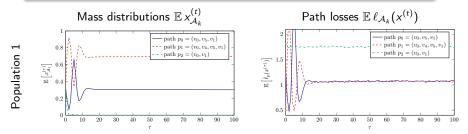


Figure: Population distributions and noisy path losses

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Nach anuil	ibuid and the Decenthal	motontial		

Nash equilibria, and the Rosenthal potential

Rosenthal potential

 $\exists f \text{ convex such that}$

 $\nabla f(x) = \ell(x)$

Then the set of Nash equilibria is

$$\mathcal{X}^{\star} = \operatorname*{arg\,min}_{x \in \Delta^{\mathcal{A}_{\mathbf{1}}} \times \cdots \times \Delta^{\mathcal{A}_{\mathcal{K}}}} f(x)$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	Reference
00000	000000000000000000000000000000000000000	00000	0000	
Maala anut	المالا معالم المعالم المعالم	a stantial		

Nash equilibria, and the Rosenthal potential

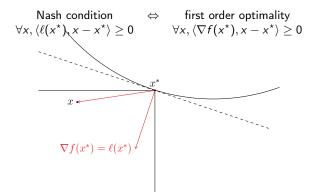
Rosenthal potential

 $\exists f \text{ convex such that}$

 $\nabla f(x) = \ell(x)$

Then the set of Nash equilibria is

$$\mathcal{X}^{\star} = \operatorname*{arg\,min}_{x \in \Delta^{\mathcal{A}_{\mathbf{1}}} \times \cdots \times \Delta^{\mathcal{A}_{\mathcal{K}}}} f(x)$$



Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Regret analy	vsis			

Technique 1: Regret analysis

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Regret an	alysis			

Cumulative regret

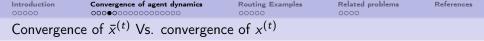
$$R_{\mathcal{A}_{k}}^{(t)} = \sup_{x_{\mathcal{A}_{k}} \in \Delta^{\mathcal{A}_{k}}} \sum_{\tau \leq t} \left\langle x_{\mathcal{A}_{k}}^{(t)} - x_{\mathcal{A}_{k}}, \ell_{\mathcal{A}_{k}}(x^{(t)}) \right\rangle$$

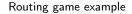
"Online" optimality condition. Sublinear if $\limsup_t \frac{R_{\mathcal{A}_k}^{(t)}}{t} \leq 0.$

Convergence of averages

$$\left[orall k, {\it R}_{{\cal A}_k}^{(t)} ext{ is sublinear}
ight] \Rightarrow ar{x}^{(t)} o {\cal X}^{\star}$$

 $\bar{x}^{(t)} = \frac{1}{t} \sum_{\tau=1}^{t} x^{(\tau)}$. ightarrow proof





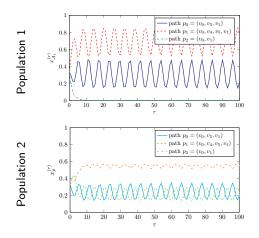
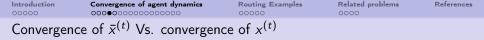


Figure: Population distributions



Routing game example

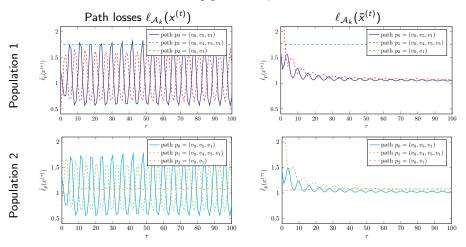


Figure: Path losses

Sufficient condition for $(x^{(t)})_t \to \mathcal{X}^{\star}$

$$\begin{array}{c}f(x^{(t)}) \text{ eventually decreasing}\\ & \Downarrow\\f(x^{(t)}) \rightarrow f^{\star}\\ & \Downarrow\\ & x^{(t)} \rightarrow \mathcal{X}^{\star}\end{array}$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Stochastic a	approximation			

Technique 2: Stochastic approximation

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Stochastic a	approximation			

Idea:

- View the learning dynamics as a discretization of an ODE.
- Study convergence of ODE.
- Relate convergence of discrete algorithm to convergence of ODE.

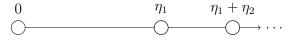


Figure: Underlying continuous time

Introductio	n Convergence of agent dynamics	Routing Examples	Related problems	References
Examp	le: the Hedge algorithm			
Не	dge algorithm			
Up	date the distribution according to	o observed loss		
	$x_a^{(t+1)}$	$\propto x_a^{(t)} e^{-\eta_t^k \ell_a^{(t)}}$		

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

Information and Computation, 132(1):1 - 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

^[7]Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

^[13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References	
Example: the Hedge algorithm					
Hedg	e algorithm				
Update the distribution according to observed loss					

 $x_a^{(t+1)} \propto x_a^{(t)} e^{-\eta_t^k \ell_a^{(t)}}$

Also known as

• Exponentially weighted average forecaster [7].

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 132(1):1 - 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Example:	the Hedge algorithm			
	algorithm			

Update the distribution according to observed loss

 $x_a^{(t+1)} \propto x_a^{(t)} e^{-\eta_t^k \ell_a^{(t)}}$

Also known as

- Exponentially weighted average forecaster [7].
- Multiplicative weights update [1].

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 132(1):1 - 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Example: t	he Hedge algorithm			
Hedge a	algorithm			

Update the distribution according to observed loss

 $x_a^{(t+1)} \propto x_a^{(t)} e^{-\eta_t^k \ell_a^{(t)}}$

Also known as

- Exponentially weighted average forecaster [7].
- Multiplicative weights update [1].
- Exponentiated gradient descent [13].

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 132(1):1 - 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Example:	the Hedge algorithm			

Hedge algorithm

Update the distribution according to observed loss

 $x_a^{(t+1)} \propto x_a^{(t)} e^{-\eta_t^k \ell_a^{(t)}}$

Also known as

- Exponentially weighted average forecaster [7].
- Multiplicative weights update [1].
- Exponentiated gradient descent [13].
- Entropic descent [2].

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 132(1):1 - 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Example: tl	he Hedge algorithm			

Hedge algorithm

Update the distribution according to observed loss

 $x_a^{(t+1)} \propto x_a^{(t)} e^{-\eta_t^k \ell_a^{(t)}}$

Also known as

- Exponentially weighted average forecaster [7].
- Multiplicative weights update [1].
- Exponentiated gradient descent [13].
- Entropic descent [2].
- Log-linear learning [5], [18]

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. *Prediction, learning, and games.* Cambridge University Press, 2006

[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications.

Theory of Computing, 8(1):121-164, 2012

[13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors.

Information and Computation, 132(1):1 - 63, 1997

[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000 00000 0000000	00000	0000	
The replicator ODE				

In Hedge
$$x_p^{(t+1)} \propto x_p^{(t)} e^{-\eta_t^k \ell_p^{(t)}}$$
, take $\eta_t \to 0$.

Replicator equation [27]

$$\forall a \in \mathcal{A}_k, \frac{dx_a}{dt} = x_a \left(\langle \ell_{\mathcal{A}_k}(x), x_{\mathcal{A}_k} \rangle - \ell_a(x) \right)$$
(1)

^[27] Jörgen W Weibull. *Evolutionary game theory*. MIT press, 1997

^[8] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In *Algorithms-ESA 2004*, pages 323-334. Springer, 2004

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
The replicator ODE				

In Hedge
$$x_p^{(t+1)} \propto x_p^{(t)} e^{-\eta_t^k \ell_p^{(t)}}$$
, take $\eta_t \to 0$.

Replicator equation [27]

$$\forall a \in \mathcal{A}_k, \frac{dx_a}{dt} = x_a \left(\langle \ell_{\mathcal{A}_k}(x), x_{\mathcal{A}_k} \rangle - \ell_a(x) \right)$$
(1)

Theorem: [8]

Every solution of the ODE (1) converges to the set of its stationary points.

^[27] Jörgen W Weibull. *Evolutionary game theory*. MIT press, 1997

^[8] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In *Algorithms-ESA 2004*, pages 323-334. Springer, 2004

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
AREP dyr	namics: Approximate REF	licator		

Discretization of the continuous-time replicator dynamics

$$x_a^{(t+1)} - x_a^{(t)} = \eta_t x_a^{(t)} \left(\left\langle \ell_{\mathcal{A}_k}(x^{(t)}), x_{\mathcal{A}_k}^{(t)} \right\rangle - \ell_a(x^{(t)}) \right) + \eta_t U_a^{(t+1)}$$

• $(U^{(t)})_{t\geq 1}$ perturbations that satisfy for all T > 0,

$$\lim_{\tau_{\mathbf{1}}\to\infty}\max_{\tau_{\mathbf{2}}:\sum_{t=\tau_{\mathbf{1}}}^{\tau_{\mathbf{2}}}\eta_{t}<\tau}\left\|\sum_{t=\tau_{\mathbf{1}}}^{\tau_{\mathbf{2}}}\eta_{t}U^{(t+1)}\right\|=0$$

η_t discretization time steps.

(a sufficient condition is that $\exists q \geq 2$: $\sup_{\tau} \mathbb{E} \| U^{(\tau)} \|^q < \infty$ and $\sum_{\tau} \eta_{\tau}^{1+\frac{q}{2}} M \infty$)

[3] Michel Benaïm. Dynamics of stochastic approximation algorithms.

In Séminaire de probabilités XXXIII, pages 1-68. Springer, 1999

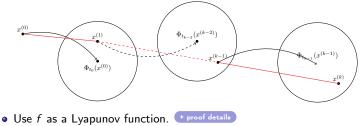
Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000 0000 0000000	00000	0000	
Convergenc	e to Nash equilibria			

Theorem [16]

Under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

 $x^{(t)} \to \mathcal{X}^{\star}$

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.



[16] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

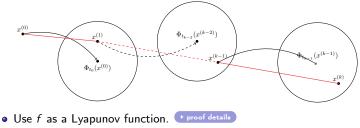
Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000 0000 0000000	00000	0000	
Convergenc	e to Nash equilibria			

Theorem [16]

Under AREP updates, if $\eta_t \downarrow 0$ and $\sum \eta_t = \infty$, then

 $x^{(t)} \to \mathcal{X}^{\star}$

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.



However, No convergence rates.

[16] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Stochastic	convex optimization			

Technique 3: (Stochastic) convex optimization

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Stochastic	convex optimization			

Idea:

- View the learning dynamics as a distributed algorithm to minimize *f*.
- (More generally: distributed algorithm to find zero of a monotone operator).

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Stochastic	convex optimization			

Idea:

- View the learning dynamics as a distributed algorithm to minimize f.
- (More generally: distributed algorithm to find zero of a monotone operator).
- Allows us to analyze convergence rates.

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Stochastic	convex optimization			

Idea:

- View the learning dynamics as a distributed algorithm to minimize f.
- (More generally: distributed algorithm to find zero of a monotone operator).
- Allows us to analyze convergence rates.

Here:

Class of distributed optimization methods: stochastic mirror descent.

00000	Convergence of agent dy		00000	0000	References
Stochastic N	lirror Descent				
	minimize	f(x)	con	vex function	

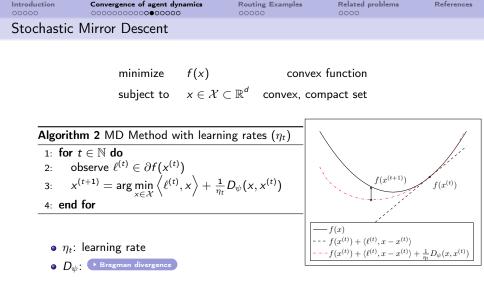
subject to $x \in \mathcal{X} \subset \mathbb{R}^d$ convex, compact set

 $[\]ensuremath{\left[21\right]}A.$ S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

^[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574–1609, 2009

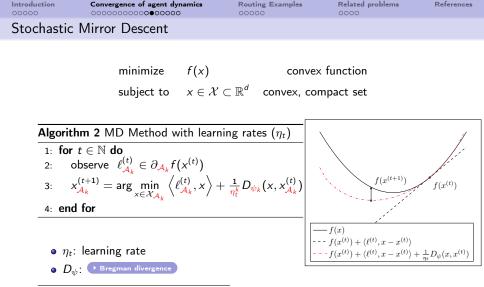


[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574-1609, 2009

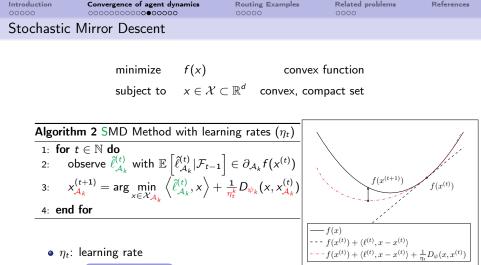


[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574-1609, 2009



• D_{ψ} : • Bregman divergence

[21]A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization.*

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574–1609, 2009

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Determinis	tic version: a true descer	nt		

Under mirror descent, $f(\bar{x}^{(t)}) \rightarrow f^{\star}$.

A true descent [17]

If ∇f is Lipschitz, and $\eta_t \downarrow 0$, then eventually, $f(x^{(t+1)}) \leq f(x^{(t)})$ Then under mirror descent with $\sum \eta_t = \infty$, $f(x^{(t)}) - f^* = O\left(\frac{\sum_{\tau \leq t} \eta_{\tau}}{t} + \frac{1}{t\eta_t} + \frac{1}{t}\right)$ $f(x^{(t+1)}) = f(x^{(t)})$ $f(x^{(t)}) = f(x^{(t)}) + \langle \ell^{(t)}, x - x^{(t)} \rangle = f(x^{(t)}) + \langle \ell^{(t)}, x - x^{(t)} \rangle + \frac{1}{n} D_{\psi}(x, x^{(t)})$

Figure: Mirror Descent iteration with decreasing η_t

^[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent dynamics.

In European Control Conference (ECC), 2015

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Determinis	tic version: a true descer	nt		

Under mirror descent, $f(\bar{x}^{(t)}) \rightarrow f^*$.

A true descent [17]

If ∇f is Lipschitz, and $\eta_t \downarrow 0$, then eventually, $f(x^{(t+1)}) \leq f(x^{(t)})$ Then under mirror descent with $\sum \eta_t = \infty$, $f(x^{(t)}) - f^* = O\left(\frac{\sum_{\tau \leq t} \eta_{\tau}}{t} + \frac{1}{t\eta_t} + \frac{1}{t}\right)$ $f(x^{(t+1)}) = f(x^{(t)})$ $f(x^{(t)}) = f(x^{(t)}) + \langle \ell^{(t)}, x - x^{(t)} \rangle + \frac{1}{n} D_{\psi}(x, x^{(t)})$

Figure: Mirror Descent iteration with decreasing η_t

In European Control Conference (ECC), 2015

^[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent dynamics.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Determinis	tic version: a true descer	nt		

Under mirror descent, $f(\bar{x}^{(t)}) \rightarrow f^*$.

A true descent [17]

If ∇f is Lipschitz, and $\eta_t \downarrow 0$, then eventually, $f(x^{(t+1)}) \leq f(x^{(t)})$ Then under mirror descent with $\sum \eta_t = \infty$, $f(x^{(t)}) - f^* = O\left(\frac{\sum_{\tau \leq t} \eta_{\tau}}{t} + \frac{1}{t\eta_t} + \frac{1}{t}\right)$

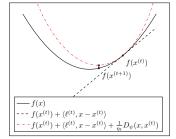


Figure: Mirror Descent iteration with decreasing η_t

^[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent dynamics.

In European Control Conference (ECC), 2015

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Stochastic	version			

Know: $\mathbb{E}[f(\bar{x}^{(t)})] \rightarrow f^{\star}$ [20] (more general averaging)

f	η_t	Convergence
Weakly convex	$rac{ heta_k}{t^{lpha_k}}, lpha_k \in (0,1)$	$\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\sum_{k} \frac{\log t}{t^{\min(\alpha_{k}, 1 - \alpha_{k})}}\right)$
Strongly convex	$rac{ heta_k}{\ell_f t^{lpha_k}}, \ lpha_k \in (0,1]$	$\mathbb{E}\left[D_\psi(x^\star,x^{(t)}) ight] = O(\sum_k t^{-lpha_k})$

Figure: SMD convergence rates [15]

General algorithm: applications beyond distributed learning models. E.g. large scale machine learning. More details

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming.

SIAM Journal on Optimization, 19(4):1574-1609, 2009

[21] A. S. Nemirovsky and D. B. Yudin. *Problem complexity and method efficiency in optimization.*

Wiley-Interscience series in discrete mathematics. Wiley, 1983

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games. In 53rd Allerton Conference on Communication, Control and Computing, 2015

Introduct	on Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Conve	ergence			

$$d_{\tau} = D_{\psi}(\mathcal{X}^{\star}, x^{(\tau)}).$$

$$\mathbb{E}\left[d_{\tau+1}|\mathcal{F}_{\tau-1}\right] \leq d_{\tau} - \eta_{\tau}(f(x^{(\tau)}) - f^{\star}) + \frac{\eta_{\tau}^{2}}{2u} \mathbb{E}\left[\|\hat{\ell}^{(\tau)}\|_{*}^{2}|\mathcal{F}_{\tau-1}\right]$$

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications.

Optimizing Methods in Statistics, 1971

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Convergenc	e			

$$d_{\tau} = D_{\psi}(\mathcal{X}^{\star}, x^{(\tau)}).$$

$$\mathbb{E}\left[d_{\tau+1}|\mathcal{F}_{\tau-1}\right] \leq d_{\tau} - \eta_{\tau}(f(x^{(\tau)}) - f^{\star}) + \frac{\eta_{\tau}^{2}}{2u} \mathbb{E}\left[\|\hat{\ell}^{(\tau)}\|_{*}^{2}|\mathcal{F}_{\tau-1}\right]$$

From here,

• Can show a.s. convergence $x^{(t)} \to \mathcal{X}^{\star}$ if $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty$

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications.

Optimizing Methods in Statistics, 1971

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Convergence	ce			

$$d_{\tau} = D_{\psi}(\mathcal{X}^{\star}, x^{(\tau)}).$$

$$\mathbb{E}\left[d_{\tau+1}|\mathcal{F}_{\tau-1}\right] \leq d_{\tau} - \eta_{\tau}(f(x^{(\tau)}) - f^{\star}) + \frac{\eta_{\tau}^2}{2\mu} \mathbb{E}\left[\|\hat{\ell}^{(\tau)}\|_*^2 |\mathcal{F}_{\tau-1}|\right]$$

From here,

• Can show a.s. convergence $x^{(t)} \to \mathcal{X}^*$ if $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty$ d_{τ} is an almost super martingale [22], [6]

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications.

Optimizing Methods in Statistics, 1971

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Convergenc	ce			

$$d_{\tau} = D_{\psi}(\mathcal{X}^{\star}, x^{(\tau)}).$$

$$\mathbb{E}\left[d_{\tau+1}|\mathcal{F}_{\tau-1}\right] \leq d_{\tau} - \eta_{\tau}(f(x^{(\tau)}) - f^{\star}) + \frac{\eta_{\tau}^{2}}{2u} \mathbb{E}\left[\|\hat{\ell}^{(\tau)}\|_{*}^{2}|\mathcal{F}_{\tau-1}\right]$$

From here,

• Can show a.s. convergence $x^{(t)} \to \mathcal{X}^*$ if $\sum \eta_t = \infty$ and $\sum \eta_t^2 < \infty$ d_{τ} is an almost super martingale [22], [6]

Deterministic version: $d_{\tau+1} \leq d_{\tau} - a_{\tau} + b_{\tau}$, $\sum b_{\tau} < \infty$.

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications.

Optimizing Methods in Statistics, 1971

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Convergen	ice			

• To show convergence
$$\mathbb{E}\left[f(x^{(t)})\right] \to f^*$$
, generalize the technique of Shamir et al. [25] (for SGD, $\alpha = \frac{1}{2}$).

Convergence of Distributed Stochastic Mirror Descent

For
$$\eta_t^k = \frac{\theta_k}{t^{\alpha_k}}, \ \alpha_k \in (0, 1),$$
$$\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = \mathcal{O}\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1 - \alpha_k)}}\right)$$

Non-smooth, non-strongly convex.

More details

[25]Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. In *ICML*, pages 71–79, 2013

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games.

In 53rd Allerton Conference on Communication, Control and Computing, 2015

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Summary				

- Regret analysis: convergence of $\bar{x}^{(t)}$
- Stochastic approximation: almost sure convergence of $x^{(t)}$
- Stochastic convex optimization: almost sure convergence, $\mathbb{E}\left[f(x^{(t)})\right] \to f^*, \mathbb{E}\left[D_{\psi}(x^*, x^{(t)})\right] \to 0$, convergence rates.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000	00000	0000	
Outline				

1 Introduction

2 Convergence of agent dynamics

3 Routing Examples

Related problems

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	0000	0000	
Application	n to the routing game			

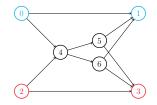


Figure: A strongly convex example.

- Centered Gaussian noise on edges.
- Population 1: Hedge with $\eta_t^1 = t^{-1}$
- Population 2: Hedge with $\eta_t^2 = t^{-1}$

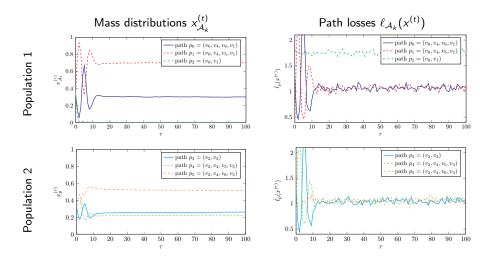


Figure: Population distributions and noisy path losses

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References	
00000	000000000000000000	0000	0000		
Douting some with strength convey notantial					

Routing game with strongly convex potential

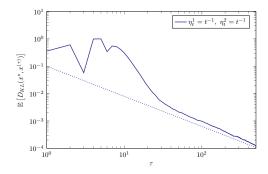


Figure: Distance to equilibrium. For $\eta_t^k = \frac{\theta_k}{\ell_t t^{\alpha_k}}, \ \alpha_k \in (0, 1], \mathbb{E}\left[D_{\psi}(x^{\star}, x^{(t)})\right] = O(\sum_k t^{-\alpha_k})$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Routing g	ame with weakly convex	potential		

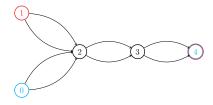
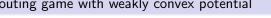


Figure: A weakly convex example.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Routing a	same with weakly convex	notential		



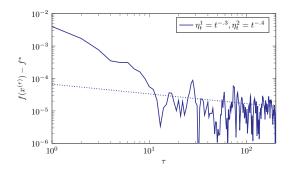


Figure: Potential values. For $\frac{\theta_k}{t^{\alpha_k}}$, $\alpha_k \in (0, 1)$, $\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1-\alpha_k)}}\right)$

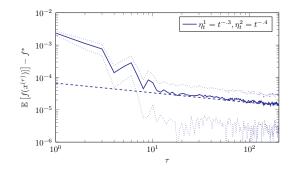
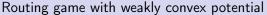


Figure: Potential values. For $\frac{\theta_k}{t^{\alpha_k}}$, $\alpha_k \in (0, 1)$, $\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\sum_k \frac{\log t}{t^{\min(\alpha_k, 1-\alpha_k)}}\right)$



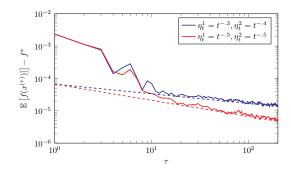


Figure: Potential values. For $\frac{\theta_k}{t^{\alpha_k}}$, $\alpha_k \in (0, 1)$, $\mathbb{E}\left[f(x^{(t)})\right] - f^{\star} = O\left(\sum_k \frac{\log t}{\min(\alpha_k, 1 - \alpha_k)}\right)$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Outline				

1 Introduction

2 Convergence of agent dynamics

3 Routing Examples

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
A routing e	experiment			

- Interface for the routing game.
- Used to collect sequence of decisions $x^{(t)}$.

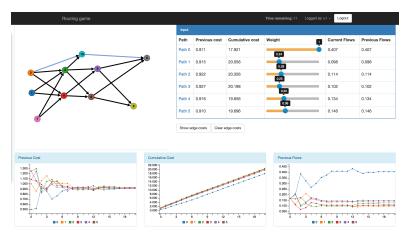


Figure: Interface for the routing game experiment.

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems ○●○○	References
Estimation	of learning dynamics			

Suppose we observe

- A sequence of player decisions $(x^{(t)})$
- The corresponding sequence of losses $(\ell^{(t)})$

Can we fit a model of player dynamics?

	roduction	Convergence of agent dynamics	Routing Examples	Related problems	References
E	stimation o	f learning dynamics			

Suppose we observe

- A sequence of player decisions $(x^{(t)})$
- The corresponding sequence of losses $(\ell^{(t)})$

Can we fit a model of player dynamics? Simple model: estimate the learning rate in the mirror descent model

$$ilde{x}^{(t+1)}(\eta) = rgmin_{x\in\Delta^{\mathcal{A}_k}} \left\langle \ell^{(t)}, x
ight
angle + rac{1}{\eta} D_{\mathcal{KL}}(x, x^{(t)})$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Estimation	of learning dynamics			

Suppose we observe

- A sequence of player decisions (x^(t))
- The corresponding sequence of losses $(\ell^{(t)})$

Can we fit a model of player dynamics? Simple model: estimate the learning rate in the mirror descent model

$$ilde{x}^{(t+1)}(\eta) = rgmin_{x\in\Delta^{\mathcal{A}_k}} \left\langle \ell^{(t)},x
ight
angle + rac{1}{\eta} D_{ extsf{KL}}(x,x^{(t)})$$

Then $d(\eta) = D_{KL}(x^{(t+1)}, \tilde{x}^{(t+1)}(\eta))$ is a convex function. Can minimize it to estimate $\eta_k^{(t)}$.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Estimation of learning dynamics				

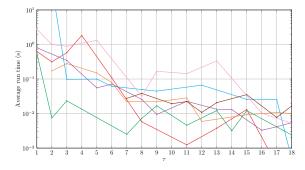


Figure: Learning rate estimates using the entropy model.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Optimal ro	outing with learning dyna			

Assume

- a central authority has control over a fraction of traffic: $u^{(t)}$
- Rest of traffic follows learning dynamics: $x^{(t)}$

minimize_{$$u^{(1:T),x^{(1:T)}}$$}
$$\sum_{t=1}^{T} J(x^{(t)}, u^{(t)})$$
subject to $x^{(t+1)} = u(x^{(t)} + u^{(t)}, \ell(x^{(t)} + u^{(t)}))$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
	and the second s			

Optimal routing with learning dynamics

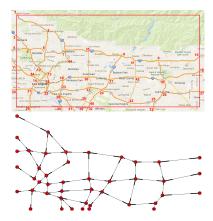


Figure: Los Angeles highway network.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000	00000	0000	
<u> </u>				

Optimal routing with learning dynamics

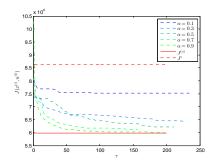


Figure: Average delay without control (dashed), with full control (solid), and different values of α .

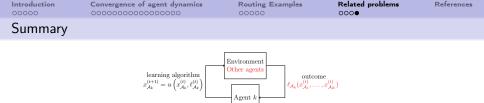


Figure: Coupled sequential decision problems.

- Simple model for distributed learning.
- Techniques for design / analysis of learning dynamics: Regret analysis, stochastic approximation, stochastic optimization.
- Related problems not covered here: Infinite action sets, accelerated dynamics.

Figure: Coupled sequential decision problems.

- Simple model for distributed learning.
- Techniques for design / analysis of learning dynamics: Regret analysis, stochastic approximation, stochastic optimization.
- Related problems not covered here: Infinite action sets, accelerated dynamics.
- Many brilliant visiting students / undergrads

Benjamin Drighès

Kiet Lam

Milena Suarez

Syrine Krichene

Thank you!

eecs.berkeley.edu/~walid/

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
References	l			

- Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a meta-algorithm and applications. *Theory of Computing*, 8(1):121–164, 2012.
- [2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. Oper. Res. Lett., 31(3): 167–175, May 2003.
- [3] Michel Benaïm. Dynamics of stochastic approximation algorithms. In *Séminaire de probabilités XXXIII*, pages 1–68. Springer, 1999.
- [4] Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to nash equilibria of regret-minimizing algorithms in routing games. In *Proceedings of the twenty-fifth annual ACM symposium* on *Principles of distributed computing*, PODC '06, pages 45–52, New York, NY, USA, 2006. ACM.
- [5] Lawrence E. Blume. The statistical mechanics of strategic interaction. Games and Economic Behavior, 5(3):387 – 424, 1993. ISSN 0899-8256.
- [6] Léon Bottou. Online algorithms and stochastic approximations. 1998.
- [7] Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	00000	0000	
References	II			

- [8] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In Algorithms-ESA 2004, pages 323-334. Springer, 2004.
- Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights. *Games and Economic Behavior*, 29(1):79–103, 1999.
- [10] James Hannan. Approximation to Bayes risk in repeated plays. *Contributions to the Theory of Games*, 3:97–139, 1957.
- [11] Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies. Journal of Economic Theory, 98(1):26 – 54, 2001.
- [12] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2-3): 169–192, 2007.
- [13] Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. *Information and Computation*, 132 (1):1 – 63, 1997.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
References	s			

- [14] Robert Kleinberg, Georgios Piliouras, and Eva Tardos. Multiplicative updates outperform generic no-regret learning in congestion games. In *Proceedings of the 41st annual ACM symposium on Theory of computing*, pages 533–542. ACM, 2009.
- [15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games. In 53rd Allerton Conference on Communication, Control and Computing, 2015.
- [16] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. Learning nash equilibria in congestion games. SIAM Journal on Control and Optimization (SICON), to appear, 2014.
- [17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent dynamics. In *European Control Conference (ECC)*, 2015.
- [18] Jason R. Marden and Jeff S. Shamma. Revisiting log-linear learning: Asynchrony, completeness and payoff-based implementation. *Games and Economic Behavior*, 75(2):788–808, 2012.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Reference	s IV			

- [19] Jason R Marden, Gürdal Arslan, and Jeff S Shamma. Joint strategy fictitious play with inertia for potential games. *Automatic Control, IEEE Transactions on*, 54(2):208–220, 2009.
- [20] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. *SIAM Journal on Optimization*, 19(4):1574–1609, 2009.
- [21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization. Wiley-Interscience series in discrete mathematics. Wiley, 1983.
- [22] H. Robbins and D. Siegmund. A convergence theorem for non negative almost supermartingales and some applications. *Optimizing Methods in Statistics*, 1971.
- [23] William H Sandholm. Potential games with continuous player sets. Journal of Economic Theory, 97(1):81–108, 2001.
- [24] William H. Sandholm. Population games and evolutionary dynamics. Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010. ISBN 978-0-262-19587-4.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
References	s V			

- [25] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results and optimal averaging schemes. In *ICML*, pages 71–79, 2013.
- [26] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In *NIPS*, 2014.
- [27] Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	00000	0000	
Continuou	s time model			

Continuous-time learning model

$$\dot{x}_{\mathcal{A}_k}(t) = v_k\left(x_{\mathcal{A}_k}^{(t)}, \ell_{\mathcal{A}_k}(x^{(t)})\right)$$

- Evolution in populations: [24]
- Convergence in potential games under dynamics which satisfy a positive correlation condition [23]
- Replicator dynamics for the congestion game [8] and in evolutionary game theory [27]
- No-regret dynamics for two player games [11]

[24]William H. Sandholm. *Population games and evolutionary dynamics*. Economic learning and social evolution. Cambridge, Mass. MIT Press, 2010. ISBN 978-0-262-19587-4

[23] William H Sandholm. Potential games with continuous player sets. Journal of Economic Theory, 97(1):81–108, 2001

[27] Jörgen W Weibull. *Evolutionary game theory*. MIT press, 1997

[8] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing. In *Algorithms–ESA 2004*, pages 323–334. Springer, 2004

[11] Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies. *Journal of Economic Theory*, 98(1):26 – 54, 2001

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Oscillating	example			

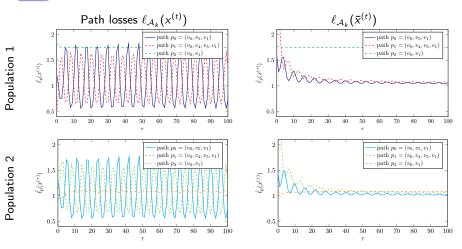


Figure: Path losses

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Oscillating	example			

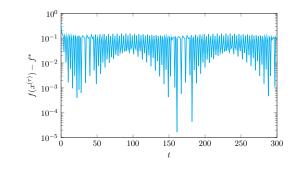


Figure: Potentials

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	00000	0000	
Oscillating	example			

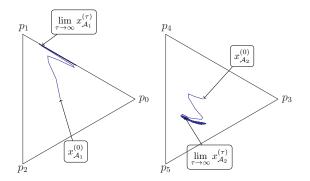


Figure: Trajectories in the simplex

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Regret [10]				

▶ Back Cumulative regret

$$\mathcal{R}_{\mathcal{A}_{k}}^{(t)} = \sup_{x_{\mathcal{A}_{k}} \in \Delta^{\mathcal{A}_{k}}} \sum_{\tau \leq t} \left\langle x_{\mathcal{A}_{k}}^{(t)} - x_{\mathcal{A}_{k}}, \ell_{\mathcal{A}_{k}}(x^{(t)}) \right\rangle$$

Convergence of averages

$$\forall k, \ \limsup_{t} \frac{R_{\mathcal{A}_{k}}^{(t)}}{t} \leq 0 \Rightarrow \bar{x}^{(t)} = \frac{1}{t} \sum_{\tau \leq t} x^{(\tau)} \to \mathcal{X}^{\star}$$

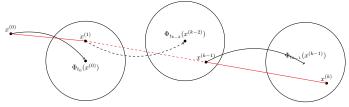
By convexity of f,

$$\begin{split} f\left(\frac{1}{t}\sum_{\tau\leq t}x^{(\tau)}\right) - f(x) &\leq \frac{1}{t}\sum_{\tau\leq t}f(x^{(\tau)}) - f(x) \\ &\leq \frac{1}{t}\sum_{\tau\leq t}\left\langle \ell(x^{(t)}), x^{(t)} - x\right\rangle = \sum_{k=1}^{K}\frac{R_{\mathcal{A}_{k}}^{(t)}}{t} \end{split}$$

[10] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
AREP con	vergence proof			

• Affine interpolation of $x^{(t)}$ is an asymptotic pseudo trajectory.



- The set of limit points of an APT is internally chain transitive ICT.
- If Γ is compact invariant, and has a Lyapunov function f with int $f(\Gamma) = \emptyset$, then $\forall L$ ICT, Γ , and f is constant on L.
- In particular, f is constant on $L(x^{(t)})$, so $f(x^{(t)})$ converges.

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Bregman Div	vergence			

Bregman Divergence

Strongly convex function ψ

$$D_\psi(x,y) = \psi(x) - \psi(y) - \langle
abla \psi(y), x - y
angle$$

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization. *Oper. Res. Lett.*, 31(3):167–175, May 2003

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
Bregman Di		00000	0000	

Bregman Divergence

Strongly convex function ψ

$$\mathcal{D}_\psi(\mathsf{x},\mathsf{y}) = \psi(\mathsf{x}) - \psi(\mathsf{y}) - \langle
abla \psi(\mathsf{y}), \mathsf{x} - \mathsf{y}
angle$$

Example [2]: when $\mathcal{X} = \Delta^d$

•
$$\psi(x) = -H(x) = \sum_a x_a \ln x_a$$

•
$$D_{\psi}(x,y) = D_{\mathcal{KL}}(x,y) = \sum_{a} x_{a} \ln \frac{x_{a}}{y_{a}}$$

• The MD update has closed form solution

$$x^{(t+1)} \propto x_a^{(t)} e^{-\eta_t g_a^{(t)}}$$

A.k.a. Hedge algorithm, exponential weights.



Figure: KL divergence

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for convex optimization.

Oper. Res. Lett., 31(3):167-175, May 2003

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
A bounded	entropic divergence			

•
$$\mathcal{X} = \Delta$$

•
$$D_{KL}(x, y) = \sum_{i=1}^{d} x_i \ln \frac{x_i}{y_i}$$
 is unbounded.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
A bounded	entropic divergence			

- $\mathcal{X} = \Delta$
- $D_{KL}(x, y) = \sum_{i=1}^{d} x_i \ln \frac{x_i}{y_i}$ is unbounded.
- Define $D_{KL}^{\epsilon}(x, y) = \sum_{i=1}^{d} (x_i + \epsilon) \ln \frac{x_i + \epsilon}{y_i + \epsilon}$

Proposition

•
$$D_{KL}^{\epsilon}$$
 is $\frac{1}{1+d\epsilon}$ -strongly convex w.r.t. $\|\cdot\|_1$

• D_{KL}^{ϵ} is bounded by $(1 + d\epsilon) \ln \frac{1 + \epsilon}{\epsilon}$.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	0000000000000000	00000	0000	
Convergence	e of DMD			

Theorem: Convergence of DMD [17]

Suppose f has L Lipschitz gradient. Then under the MD class with $\eta_t\downarrow$ 0 and $\sum\eta_t=\infty,$

$$f(x^{(t)}) - f^\star = O\left(rac{\sum_{ au \leq t} \eta_ au}{t} + rac{1}{\eta_t} + rac{1}{t}
ight)$$

$$\frac{1}{t}\sum_{\tau\leq t}f(x^{(t)})-f^{\star}\leq \sum_{k}\frac{L_{k}^{2}}{2\ell_{\psi_{k}}}\sum_{\tau\leq t}\eta_{\tau}^{k}+\frac{D_{k}}{\eta_{t}^{k}}$$

and

$$f(x^{(t)}) - f^{\star} \leq rac{1}{t}\sum_{ au \leq t} f(x^{(t)}) - f^{\star} + O\left(rac{1}{t}
ight)$$

Introduction 00000	Convergence of agent dynamics	Routing Examples	Related problems	References
Convergence	e in DSMD			

Regret bound [15]

SMD method with (η_t) . $\forall t_2 > t_1 \ge 0$ and \mathcal{F}_{t_1} -measurable x,

$$\sum_{\tau=t_1}^{t_2} \mathbb{E}\left[\left\langle g^{(\tau)}, x^{(\tau)} - x \right\rangle\right] \leq \frac{\mathbb{E}\left[D_{\psi}(x, x^{(t_1)})\right]}{\eta_{t_1}} + D\left(\frac{1}{\eta_{t_2}} - \frac{1}{\eta_{t_1}}\right) + \frac{G}{2\ell_{\psi}} \sum_{\tau=t_1}^{t_2} \eta_{\tau}$$

Strongly convex case:

$$\mathbb{E}[D_{\psi}(x^{\star},x^{(t+1)})] \leq (1-2\ell_f\eta_t) \mathbb{E}[D_{\psi}(x^{\star},x^{(t)})] + \frac{\mathsf{G}}{2\ell_{\psi}}\eta_t^2$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Convergence	e in DSMD			

▶ Back Weakly convex case:

Theorem [15]

Distributed SMD such that $\eta_t^p = \frac{\theta_p}{t^{\alpha_p}}$ with $\alpha_p \in (0, 1)$. Then

$$\mathbb{E}\left[f(x^{(t)})\right] - f(x^{\star}) \leq \left(1 + \sum_{i=1}^{t} \frac{1}{i}\right) \sum_{k \in \mathcal{A}} \left(\frac{1}{t^{1-\alpha_k}} \frac{D}{\theta_k} + \frac{\theta_k G}{2\ell_{\psi}(1-\alpha_k)} \frac{1}{t^{\alpha_k}}\right)$$
$$= O\left(\frac{\log t}{t^{\min(\min_k \alpha_k, 1 - \max_k \alpha_k)}}\right)$$

Define
$$S_i = \frac{1}{i+1} \sum_{t-i}^t \mathbb{E}[f(x^{(\tau)})]$$

Show $S_{i-1} \leq S_i + \left(\frac{D}{\theta} \frac{1}{t^{\alpha-1}} + \frac{\theta G}{2\ell_{\psi}(1-\alpha)} \frac{1}{t^{\alpha}}\right) \frac{1}{i}$

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of heterogeneous distributed learning in stochastic routing games. In *53rd Allerton Conference on Communication, Control and Computing*, 2015

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Stochastic	mirror descent in machin	ne learning		

Large scale learning:

 $\begin{array}{ll} {\sf minimize}_{x} & \sum_{i=1}^{N} f_{i}(x) \\ {\sf subject to} & x \in \mathcal{X} \end{array}$

 ${\it N}$ very large. Gradient prohibitively expensive to compute exactly. Instead, compute

$$\hat{g}(x^{(t)}) = \sum_{i \in \mathcal{I}} \nabla f_i(x^{(t)})$$

with \mathcal{I} random subset of $\{1, \ldots, N\}$.

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	000000000000000000000000000000000000000	00000	0000	
Accelerated	MD			

	Gradient descent	mirror decent
(stochastic) weakly convex	$\frac{1}{\sqrt{t}}$	$\frac{1}{\sqrt{t}}$
(stochastic) strongly convex	$\frac{1}{t}$	$\frac{1}{t}$
strongly convex, accelerated	$\frac{1}{t^2}$?

Figure: Convergence rates

Nesterov's accelerated method: adds a momentum term with $\alpha_t = \frac{t-1}{t+2}$

$$x^{(t)} = y^{(t-1)} - \eta \nabla f(y^{(t-1)})$$

$$y^{(t)} = x^{(t)} + \alpha_t (x^{(t)} - x^{(t-1)})$$

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Accelerated	MD			

 A recent interpretation of Nesterov's accelerated method [26]: discretization of the ODE

$$\ddot{x}(t) + \frac{3}{t}\dot{x}(t) + \nabla f(x(t)) = 0$$
$$\dot{x}(0) = 0$$

^[26] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In *NIPS*, 2014

 ^[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
 Wiley-Interscience series in discrete mathematics. Wiley, 1983

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Accelerated	MD			

• A recent interpretation of Nesterov's accelerated method [26]: discretization of the ODE

$$\ddot{x}(t) + \frac{3}{t}\dot{x}(t) + \nabla f(x(t)) = 0$$
$$\dot{x}(0) = 0$$

 Mirror descent was motivated by continuous-time dynamics [21]: Choose a Bregman divergence D_ψ(x(t), x^{*}).

$$\dot{x}(t) = -\nabla f(\nabla \psi(x(t)))$$

Then $D_{\psi}(x(t), x^*)$ is a Lyapunov function for the dynamics.

^[26] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling nesterov's accelerated gradient method: Theory and insights. In *NIPS*, 2014

 ^[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in optimization.
 Wiley-Interscience series in discrete mathematics. Wiley, 1983

Introduction	Convergence of agent dynamics	Routing Examples	Related problems	References
00000	00000000000000000	00000	0000	
Accelerated	MD			

Lyapunov function proof

$$\begin{split} \frac{d}{dt} D_{\psi}(x(t), x^{\star}) &= \frac{d}{dt} \left(\psi(x(t)) - \psi(x^{\star}) - \langle \nabla \psi(x^{\star}), x(t) - x^{\star} \rangle \right) \\ &= \left\langle \nabla \psi(x(t)) - \nabla \psi(x^{\star}), \frac{d}{dt} x(t) \right\rangle \\ &= \left\langle \nabla \psi(x(t)) - \nabla \psi(x^{\star}), -\nabla f \psi(x^{(t)}) \right\rangle \\ &\leq 0 \end{split}$$