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Learning dynamics in the routing game

Routing games model congestion on networks. Concise and elegant theory.

Nash equilibrium quantifies efficiency of network in steady state.

System does not operate at equilibrium. Beyond equilibria, we need to
understand decision dynamics (learning).

A realistic model for decision dynamics is essential for prediction, optimal
control.
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Desiderata

Learning dynamics should be

Realistic in terms of information requirements, computational complexity.

Consistent with the full information Nash equilibrium.

x (t) → X ?

Convergence rates?
Robust to stochastic perturbations.

Observation noise
(Bandit feedback)



3/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Desiderata

Learning dynamics should be

Realistic in terms of information requirements, computational complexity.

Consistent with the full information Nash equilibrium.

x (t) → X ?

Convergence rates?

Robust to stochastic perturbations.
Observation noise
(Bandit feedback)



3/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Desiderata

Learning dynamics should be

Realistic in terms of information requirements, computational complexity.

Consistent with the full information Nash equilibrium.

x (t) → X ?

Convergence rates?
Robust to stochastic perturbations.

Observation noise
(Bandit feedback)



3/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Outline

1 Introduction

2 Convergence of agent dynamics

3 Routing Examples

4 Related problems



3/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Outline

1 Introduction

2 Convergence of agent dynamics

3 Routing Examples

4 Related problems



4/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Interaction of K decision makers

Decision maker k faces a sequential decision problem
At iteration t

(1) chooses probability distribution x
(t)
Ak

over action set Ak

(2) discovers a loss function `(t)
Ak

: Ak → [0, 1]

(3) updates distribution

Environment

Agent k

outcome
`

(t)
Ak

learning algorithm
x

(t+1)
Ak

= u
(
x

(t)
Ak
, `

(t)
Ak

)

Figure: Sequential decision problem.

Loss of agent k affected by strategies of other agents.
Does not know this function, only observes its value.
Write x (t) = (x

(t)
A1
, . . . , x

(t)
AK

).



4/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Interaction of K decision makers

Decision maker k faces a sequential decision problem
At iteration t

(1) chooses probability distribution x
(t)
Ak

over action set Ak

(2) discovers a loss function `(t)
Ak

: Ak → [0, 1]

(3) updates distribution

Environment
Other agents

Agent k

outcome
`Ak (x

(t)
A1
, . . . , x

(t)
AK

)

learning algorithm
x

(t+1)
Ak

= u
(
x

(t)
Ak
, `

(t)
Ak

)

Figure: Sequential decision problem.

Loss of agent k affected by strategies of other agents.
Does not know this function, only observes its value.
Write x (t) = (x

(t)
A1
, . . . , x

(t)
AK

).



5/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Examples of decentralized decision makers

Routing game

Player drives from source to destination node

Chooses path from Ak

Mass of players on each edge determines cost on that edge.

2 3

0 1

4

5

6

Figure: Routing game
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Online learning model

Online Learning Model
1: for t ∈ N do
2: Play p ∼ x

(t)
Ak

3: Discover `(t)
Ak

4: Update

x
(t+1)
Ak

= uk
(
x

(t)
Ak
, `

(t)
Ak

)
5: end for

x
(t)
A1
∈ ∆A1

Sample p ∼ x
(t)
A1

Discover `(t)
A1

Update x
(t+1)
A1

Main problem

Define class of dynamics C such that

uk ∈ C ∀k ⇒ x (t) → X?
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A brief review

Continuous-time:
Discrete time:

Hannan consistency: [10]
Hedge algorithm for two-player games: [9]
Regret based algorithms: [11]
Online learning in games: [7]
Potential games: [19]

Specifically to the routing game
No-regret dynamics [4], [14]

[10]James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97–139, 1957
[9]Yoav Freund and Robert E Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29(1):79–103, 1999
[11]Sergiu Hart and Andreu Mas-Colell. A general class of adaptive strategies.
Journal of Economic Theory, 98(1):26 – 54, 2001
[7]Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
[19]Jason R Marden, Gürdal Arslan, and Jeff S Shamma. Joint strategy fictitious play with
inertia for potential games.
Automatic Control, IEEE Transactions on, 54(2):208–220, 2009
[4]Avrim Blum, Eyal Even-Dar, and Katrina Ligett. Routing without regret: on convergence to
nash equilibria of regret-minimizing algorithms in routing games.
In Proceedings of the twenty-fifth annual ACM symposium on Principles of distributed
computing, PODC ’06, pages 45–52, New York, NY, USA, 2006. ACM
[14]Robert Kleinberg, Georgios Piliouras, and Eva Tardos. Multiplicative updates outperform
generic no-regret learning in congestion games.
In Proceedings of the 41st annual ACM symposium on Theory of computing, pages 533–542.
ACM, 2009
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This talk

Overview of some techniques for design and analysis of learning dynamics.

Formulated for routing games. Extend to other classes of games.
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Nash equilibria, and the Rosenthal potential

Write
x = (xA1 , . . . , xAK ) ∈ ∆A1 × · · · ×∆AK

`(x) = (`A1(x), . . . , `AK (x))

Nash equilibrium

x? is a Nash equilibrium if

〈`(x?), x − x?〉 ≥ 0 ∀x ⇔ ∀k, ∀xAk ,
〈
`Ak (x?), xAk − x?Ak

〉
≥ 0

In words, for all k, paths in the support of x?Ak
have minimal loss.

Mass distributions E x
(t)
Ak

Path losses E `Ak (x (t))
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Figure: Population distributions and noisy path losses
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Nash equilibria, and the Rosenthal potential

Rosenthal potential

∃f convex such that

∇f (x) = `(x)

Then the set of Nash equilibria is

X ? = argmin
x∈∆A1×···×∆AK

f (x)

Nash condition ⇔ first order optimality
∀x , 〈`(x?), x − x?〉 ≥ 0 ∀x , 〈∇f (x?), x − x?〉 ≥ 0

x

X

x∗

∇f(x∗) = `(x∗)

Figure: First order optimality conditions of the potential f
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Regret analysis

Technique 1: Regret analysis
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Regret analysis

Cumulative regret

R
(t)
Ak

= sup
xAk
∈∆Ak

∑
τ≤t

〈
x

(t)
Ak
− xAk , `Ak (x (t))

〉

“Online” optimality condition. Sublinear if lim supt
R

(t)
Ak
t
≤ 0.

Convergence of averages[
∀k,R(t)

Ak
is sublinear

]
⇒ x̄ (t) → X ?

x̄ (t) = 1
t

∑t
τ=1 x

(τ). proof
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Convergence of x̄ (t) Vs. convergence of x (t)

Routing game example
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Convergence of x̄ (t) Vs. convergence of x (t)

Routing game example
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From convergence of x̄ (t) to convergence of x (t)

Sufficient condition for (x (t))t → X ?

f (x (t)) eventually decreasing
⇓

f (x (t))→ f ?

⇓
x (t) → X ?
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Stochastic approximation

Technique 2: Stochastic approximation
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Stochastic approximation

Idea:

View the learning dynamics as a discretization of an ODE.

Study convergence of ODE.

Relate convergence of discrete algorithm to convergence of ODE.

. . .
0 η1 η1 + η2

Figure: Underlying continuous time
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Example: the Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

x (t+1)
a ∝ x (t)

a e−η
k
t `

(t)
a

Also known as
Exponentially weighted average forecaster [7].
Multiplicative weights update [1].
Exponentiated gradient descent [13].
Entropic descent [2].
Log-linear learning [5], [18]

[7]Nicolò Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games.
Cambridge University Press, 2006
[1]Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications.
Theory of Computing, 8(1):121–164, 2012
[13]Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent
for linear predictors.
Information and Computation, 132(1):1 – 63, 1997
[2]Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.
Oper. Res. Lett., 31(3):167–175, May 2003
[5]Lawrence E. Blume. The statistical mechanics of strategic interaction.
Games and Economic Behavior, 5(3):387 – 424, 1993.
ISSN 0899-8256
[18]Jason R. Marden and Jeff S. Shamma. Revisiting log-linear learning: Asynchrony,
completeness and payoff-based implementation.
Games and Economic Behavior, 75(2):788–808, 2012
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The replicator ODE

In Hedge x
(t+1)
p ∝ x

(t)
p e−η

k
t `

(t)
p , take ηt → 0.

Replicator equation [27]

∀a ∈ Ak ,
dxa
dt

= xa (〈`Ak (x), xAk 〉 − `a(x)) (1)

Theorem: [8]

Every solution of the ODE (1) converges to the set of its stationary points.

[27] Jörgen W Weibull. Evolutionary game theory.
MIT press, 1997

[8] Simon Fischer and Berthold Vöcking. On the evolution of selfish routing.
In Algorithms–ESA 2004, pages 323–334. Springer, 2004
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AREP dynamics: Approximate REPlicator

Discretization of the continuous-time replicator dynamics

x (t+1)
a − x (t)

a = ηtx
(t)
a

(〈
`Ak (x (t)), x

(t)
Ak

〉
− `a(x (t))

)
+ ηtU

(t+1)
a

(U(t))t≥1 perturbations that satisfy for all T > 0,

lim
τ1→∞

max
τ2:
∑τ2

t=τ1 ηt<T

∥∥∥∥∥
τ2∑

t=τ1

ηtU
(t+1)

∥∥∥∥∥ = 0

ηt discretization time steps.

(a sufficient condition is that ∃q ≥ 2: supτ E ‖U(τ)‖q <∞ and
∑
τ η

1+ q
2

τ M∞)

[3] Michel Benaïm. Dynamics of stochastic approximation algorithms.
In Séminaire de probabilités XXXIII, pages 1–68. Springer, 1999
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Convergence to Nash equilibria

Theorem [16]

Under AREP updates, if ηt ↓ 0 and
∑
ηt =∞, then

x (t) → X ?

Affine interpolation of x (t) is an asymptotic pseudo trajectory.

x(0)

Φt0(x(0))

x(1) Φtk−2
(x(k−2))

x(k−1)

x(k)

Φtk−1
(x(k−1))

Use f as a Lyapunov function. proof details

However, No convergence rates.

[16] Walid Krichene, Benjamin Drighès, and Alexandre Bayen. Learning nash equilibria in
congestion games.
SIAM Journal on Control and Optimization (SICON), to appear, 2014
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Stochastic convex optimization

Technique 3: (Stochastic) convex optimization
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Stochastic convex optimization

Idea:

View the learning dynamics as a distributed algorithm to minimize f .

(More generally: distributed algorithm to find zero of a monotone
operator).

Allows us to analyze convergence rates.

Here:
Class of distributed optimization methods: stochastic mirror descent.
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Stochastic Mirror Descent

minimize f (x) convex function

subject to x ∈ X ⊂ Rd convex, compact set

Algorithm 1 MD Method with learning rates (ηt)

ηt : learning rate

Dψ: Bregman divergence

f(x(t))
f(x(t+1))

f(x)

f(x(t)) + 〈`(t), x− x(t)〉
f(x(t)) + 〈`(t), x− x(t)〉+ 1

ηt
Dψ(x, x

(t))

[21]A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574–1609, 2009



20/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Stochastic Mirror Descent

minimize f (x) convex function

subject to x ∈ X ⊂ Rd convex, compact set

Algorithm 2 MD Method with learning rates (ηt)

1: for t ∈ N do
2: observe `(t) ∈ ∂f (x (t))

3: x (t+1) = arg min
x∈X

〈
`(t), x

〉
+ 1

ηt
Dψ(x , x (t))
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f(x(t))
f(x(t+1))
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Deterministic version: a true descent

Under mirror descent, f (x̄ (t))→ f ?.

A true descent [17]

If ∇f is Lipschitz, and ηt ↓ 0, then eventually,

f (x(t+1)) ≤ f (x(t))

Then under mirror descent with
∑
ηt =∞,

f (x(t))− f ? = O

(∑
τ≤t ητ

t
+

1
tηt

+
1
t

)

More details

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈`(t), x− x(t)〉
f(x(t)) + 〈`(t), x− x(t)〉+ 1

ηt
Dψ(x, x

(t))

Figure: Mirror Descent iteration
with decreasing ηt

[17] Walid Krichene, Syrine Krichene, and Alexandre Bayen. Convergence of mirror descent
dynamics.
In European Control Conference (ECC), 2015
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Stochastic version

Know: E[f (x̄ (t))]→ f ? [20] (more general averaging)

f ηt Convergence

Weakly convex θk
tαk , αk ∈ (0, 1) E

[
f (x (t))

]
− f ? = O

(∑
k

log t

tmin(αk ,1−αk )

)
Strongly convex θk

`f t
αk , αk ∈ (0, 1] E

[
Dψ(x?, x (t))

]
= O(

∑
k t
−αk )

Figure: SMD convergence rates [15]

General algorithm: applications beyond distributed learning models. E.g. large
scale machine learning. More details

[20]A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation
approach to stochastic programming.
SIAM Journal on Optimization, 19(4):1574–1609, 2009
[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Convergence

dτ = Dψ(X ?, x (τ)).

Main ingredient

E [dτ+1|Fτ−1] ≤ dτ−ητ (f (x(τ))− f ?)+
η2
τ

2µ
E
[
‖ˆ̀(τ)‖2∗|Fτ−1

]

From here,

Can show a.s. convergence x (t) → X ? if
∑
ηt =∞ and

∑
η2
t <∞

dτ is an almost super martingale [22], [6]

Deterministic version: dτ+1 ≤ dτ−aτ+bτ ,
∑

bτ <∞.

[22]H. Robbins and D. Siegmund. A convergence theorem for non negative almost
supermartingales and some applications.
Optimizing Methods in Statistics, 1971
[6]Léon Bottou. Online algorithms and stochastic approximations.
1998
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Convergence

To show convergence E
[
f (x (t))

]
→ f ?, generalize the technique of Shamir

et al. [25] (for SGD, α = 1
2 ).

Convergence of Distributed Stochastic Mirror Descent

For ηkt = θk
tαk , αk ∈ (0, 1),

E
[
f (x (t))

]
− f ? = O

(∑
k

log t
tmin(αk ,1−αk )

)

Non-smooth, non-strongly convex.
More details

[25]Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes.
In ICML, pages 71–79, 2013
[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Summary

Regret analysis: convergence of x̄ (t)

Stochastic approximation: almost sure convergence of x (t)

Stochastic convex optimization: almost sure convergence,
E
[
f (x (t))

]
→ f ?, E

[
Dψ(x?, x (t))

]
→ 0, convergence rates.
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Outline

1 Introduction

2 Convergence of agent dynamics

3 Routing Examples

4 Related problems
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Application to the routing game

2 3

0 1

4

5

6

Figure: A strongly convex example.

Centered Gaussian noise on edges.

Population 1: Hedge with η1
t = t−1

Population 2: Hedge with η2
t = t−1
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Routing game with strongly convex potential

Mass distributions x (t)
Ak

Path losses `Ak (x (t))

P
op
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n
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Figure: Population distributions and noisy path losses
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Routing game with strongly convex potential

100 101 102
10−4

10−3

10−2

10−1

100

101

τ

E
[ D

K
L
(x
?
,x

(τ
)
)]

η1t = t−1, η2t = t−1

Figure: Distance to equilibrium.
For ηkt = θk

`f t
αk , αk ∈ (0, 1], E

[
Dψ(x?, x(t))

]
= O(

∑
k t
−αk )
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Routing game with weakly convex potential

0

1

2 3 4

Figure: A weakly convex example.
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Routing game with weakly convex potential

100 101 102
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10−5

10−4

10−3

10−2

τ

f
(x

(τ
)
)
−
f
∗

η1t = t−.3, η2t = t−.4

Figure: Potential values.
For θk

tαk , αk ∈ (0, 1), E
[
f (x(t))

]
− f ? = O

(∑
k

log t

tmin(αk ,1−αk )

)
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Routing game with weakly convex potential
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Routing game with weakly convex potential
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Figure: Potential values.
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tαk , αk ∈ (0, 1), E
[
f (x(t))
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log t
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A routing experiment

Interface for the routing game.
Used to collect sequence of decisions x (t).

Figure: Interface for the routing game experiment.
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Estimation of learning dynamics

Suppose we observe

A sequence of player decisions (x (t))

The corresponding sequence of losses (`(t))

Can we fit a model of player dynamics?

Simple model: estimate the learning rate in the mirror descent model

x̃ (t+1)(η) = argmin
x∈∆Ak

〈
`(t), x

〉
+

1
η
DKL(x , x (t))

Then d(η) = DKL(x (t+1), x̃ (t+1)(η)) is a convex function. Can minimize it to
estimate η(t)

k .
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Estimation of learning dynamics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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Figure: Learning rate estimates using the entropy model.



35/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Optimal routing with learning dynamics

Assume

a central authority has control over a fraction of traffic: u(t)

Rest of traffic follows learning dynamics: x (t)

minimizeu(1:T ),x(1:T )

T∑
t=1

J(x (t), u(t))

subject to x (t+1) = u(x (t) + u(t), `(x (t) + u(t)))
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Optimal routing with learning dynamics

Figure: Los Angeles highway network.
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Optimal routing with learning dynamics
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Figure: Average delay without control (dashed), with full control (solid), and different
values of α.
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Summary

Environment
Other agents

Agent k

outcome
`Ak(x

(t)
A1
, . . . , x

(t)
AK )

learning algorithm

x
(t+1)
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Oscillating example

Back
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Oscillating example
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Oscillating example

Back
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Regret [10]

Back Cumulative regret

R
(t)
Ak

= sup
xAk
∈∆Ak

∑
τ≤t

〈
x

(t)
Ak
− xAk , `Ak (x (t))

〉

Convergence of averages

∀k, lim sup
t

R
(t)
Ak

t
≤ 0⇒ x̄ (t) =

1
t

∑
τ≤t

x (τ) → X ?

By convexity of f ,

f

1
t

∑
τ≤t

x (τ)

− f (x) ≤ 1
t

∑
τ≤t

f (x (τ))− f (x)

≤ 1
t

∑
τ≤t

〈
`(x (t)), x (t) − x

〉
=

K∑
k=1

R
(t)
Ak

t

[10] James Hannan. Approximation to Bayes risk in repeated plays.
Contributions to the Theory of Games, 3:97–139, 1957



47/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

AREP convergence proof

Back

Affine interpolation of x (t) is an asymptotic pseudo trajectory.

x(0)

Φt0(x(0))

x(1) Φtk−2
(x(k−2))

x(k−1)

x(k)

Φtk−1
(x(k−1))

The set of limit points of an APT is internally chain transitive ICT.

If Γ is compact invariant, and has a Lyapunov function f with
int f (Γ) = ∅, then ∀L ICT, Γ, and f is constant on L.

In particular, f is constant on L(x (t)), so f (x (t)) converges.
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Bregman Divergence

Back

Bregman Divergence

Strongly convex function ψ

Dψ(x , y) = ψ(x)− ψ(y)− 〈∇ψ(y), x − y〉

Example [2]: when X = ∆d

ψ(x) = −H(x) =
∑

a xa ln xa
Dψ(x , y) = DKL(x , y) =

∑
a xa ln

xa
ya

The MD update has closed form solution

x (t+1) ∝ x (t)
a e−ηtg

(t)
a

A.k.a. Hedge algorithm, exponential
weights.

δ1

δ2

δ3

q

Figure: KL divergence

[2] Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods
for convex optimization.
Oper. Res. Lett., 31(3):167–175, May 2003
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A bounded entropic divergence

Back

X = ∆

DKL(x , y) =
∑d

i=1 xi ln
xi
yi

is unbounded.

Define Dε
KL(x , y) =

∑d
i=1(xi + ε) ln xi+ε

yi+ε

Proposition

Dε
KL is 1

1+dε
-strongly convex w.r.t. ‖ · ‖1

Dε
KL is bounded by (1 + dε) ln 1+ε

ε
.
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Convergence of DMD

Back

Theorem: Convergence of DMD [17]

Suppose f has L Lipschitz gradient. Then under the MD class with ηt ↓ 0 and∑
ηt =∞,

f (x (t))− f ? = O

(∑
τ≤t ητ

t
+

1
ηt

+
1
t

)

1
t

∑
τ≤t

f (x (t))− f ? ≤
∑
k

L2
k

2`ψk

∑
τ≤t

ηkτ +
Dk

ηkt

and

f (x (t))− f ? ≤ 1
t

∑
τ≤t

f (x (t))− f ? + O

(
1
t

)
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Convergence in DSMD

Back

Regret bound [15]

SMD method with (ηt). ∀t2 > t1 ≥ 0 and Ft1 -measurable x ,

t2∑
τ=t1

E
[〈

g (τ), x(τ) − x
〉]
≤ E

[
Dψ(x , x(t1))

]
ηt1

+ D

(
1
ηt2
− 1
ηt1

)
+

G

2`ψ

t2∑
τ=t1

ητ

Strongly convex case:

E[Dψ(x?, x (t+1))] ≤ (1− 2`f ηt)E[Dψ(x?, x (t))] +
G

2`ψ
η2
t
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Convergence in DSMD

Back Weakly convex case:

Theorem [15]

Distributed SMD such that ηpt =
θp
tαp with αp ∈ (0, 1). Then

E
[
f (x (t))

]
− f (x?) ≤

(
1 +

t∑
i=1

1
i

)∑
k∈A

(
1

t1−αk

D

θk
+

θkG

2`ψ(1− αk)

1
tαk

)
= O

(
log t

tmin(mink αk ,1−maxk αk )

)
Define Si = 1

i+1

∑t
t−i E[f (x (τ))]

Show Si−1 ≤ Si +
(

D
θ

1
tα−1 + θG

2`ψ(1−α)
1
tα

)
1
i

[15] Syrine Krichene, Walid Krichene, Roy Dong, and Alexandre Bayen. Convergence of
heterogeneous distributed learning in stochastic routing games.
In 53rd Allerton Conference on Communication, Control and Computing, 2015
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Stochastic mirror descent in machine learning

Back

Large scale learning:

minimizex
N∑
i=1

fi (x)

subject to x ∈ X

N very large. Gradient prohibitively expensive to compute exactly. Instead,
compute

ĝ(x (t)) =
∑
i∈I

∇fi (x (t))

with I random subset of {1, . . . ,N}.
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Accelerated MD

Gradient descent mirror decent

(stochastic) weakly convex 1√
t

1√
t

(stochastic) strongly convex 1
t

1
t

strongly convex, accelerated 1
t2 ?

Figure: Convergence rates

Nesterov’s accelerated method: adds a momentum term with αt = t−1
t+2

x (t) = y (t−1) − η∇f (y (t−1))

y (t) = x (t) + αt(x
(t) − x (t−1))



55/36

Introduction Convergence of agent dynamics Routing Examples Related problems References

Accelerated MD

A recent interpretation of Nesterov’s accelerated method [26]:
discretization of the ODE

ẍ(t) +
3
t
ẋ(t) +∇f (x(t)) = 0

ẋ(0) = 0

Mirror descent was motivated by continuous-time dynamics [21]:
Choose a Bregman divergence Dψ(x(t), x?).

ẋ(t) = −∇f (∇ψ(x(t)))

Then Dψ(x(t), x?) is a Lyapunov function for the dynamics.

[26] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling
nesterov’s accelerated gradient method: Theory and insights.
In NIPS, 2014

[21] A. S. Nemirovsky and D. B. Yudin. Problem complexity and method efficiency in
optimization.
Wiley-Interscience series in discrete mathematics. Wiley, 1983
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Accelerated MD

Lyapunov function proof

d

dt
Dψ(x(t), x?) =

d

dt
(ψ(x(t))− ψ(x?)− 〈∇ψ(x?), x(t)− x?〉)

=

〈
∇ψ(x(t))−∇ψ(x?),

d

dt
x(t)

〉
=
〈
∇ψ(x(t))−∇ψ(x?),−∇f ψ(x (t))

〉
≤ 0
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