Hedge on a Continuum

Numerical Examples

References

The Hedge Algorithm on a Continuum

ICML 2015 - Lille, France

Walid Krichene Maximilian Balandat Claire Tomlin Alexandre Bayen

International Conference on Machine Learning

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Outline			
outine			

e Hedge on a Continuum

3 Numerical Examples

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Outline			

edge on a Continuum

3 Numerical Examples

The Problem	Hedge on a Continuum	Numerical Examples	References
●000	00000000	00000	00
Online Learning	g over a finite set		

A decision maker faces a sequential problem:

Online decision problem over a finite set $\{1, \ldots, N\}$.

- 1: for $t \in \mathbb{N}$ do
- 2: Decision maker chooses distribution $x^{(t)}$ over $\{1, \dots, N\}$.
- 3: A loss vector $\ell^{(t)} \in [0, M]^N$ is revealed.

4: The decision maker incurs expected loss $\sum_{n=1}^{N} \ell_n^{(t)} x_n^{(t)} = \langle x^{(t)}, \ell^{(t)} \rangle$

5: end for

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Applications			

Applications

• Convergence of player dynamics in games (Blackwell [1], Hannan[5]) {1,..., N} is the set of actions.

[1]David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6(1):1-8, 1956

[5] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957

[4] Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1-29, 1991

[2] Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs. Machine Learning, 35(3):193-205, 1999

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Applications			

Applications

- Convergence of player dynamics in games (Blackwell [1], Hannan[5]) $\{1, \ldots, N\}$ is the set of actions.
- Machine Learning
 {1,..., N} is the training set.

[4] Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1-29, 1991

^[1]David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6(1):1-8, 1956

^[5] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957

^[2] Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs. Machine Learning, 35(3):193-205, 1999

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Applications			

Applications

- Convergence of player dynamics in games (Blackwell [1], Hannan[5]) {1,..., N} is the set of actions.
- Machine Learning
 {1,..., N} is the training set.
- "Model-free" portfolio optimization (Cover [4], Blum [2]) {1,..., N} is the set of stocks.
- Many others

^[1]David Blackwell. An analog of the minimax theorem for vector payoffs. Pacific Journal of Mathematics, 6(1):1-8, 1956

^[5] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957

^[4] Thomas M. Cover. Universal portfolios. Mathematical Finance, 1(1):1-29, 1991

^[2] Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs. Machine Learning, 35(3):193-205, 1999

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Learning on a con	tinuum		

"What if the action set is infinite?"

Problem 1 Online decision problem on *S*.

- 1 for $t\in\mathbb{N}$ do
- 2: Decision maker chooses distribution $x^{(t)}$ over S.
- 3: A loss function $\ell^{(t)}: S \to [0, M]$ is revealed.
- 4: The decision maker incurs expected loss

$$\left\langle x^{(t)}, \ell^{(t)} \right\rangle = \int_{S} x^{(t)}(s) \ell^{(t)}(s) \lambda(ds) = \mathbb{E}_{s \sim x^{(t)}}[\ell^{(t)}(s)]$$

5: end for

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Learning on a cor	itinuum		

"What if the action set is infinite?"

Problem 2 Online decision problem on S.

- 1 for $t\in\mathbb{N}$ do
- 2: Decision maker chooses distribution $x^{(t)}$ over S.
- 3: A loss function $\ell^{(t)}: \mathcal{S}
 ightarrow [0, M]$ is revealed.
- 4: The decision maker incurs expected loss

$$\left\langle x^{(t)}, \ell^{(t)} \right\rangle = \int_{S} x^{(t)}(s) \ell^{(t)}(s) \lambda(ds) = \mathbb{E}_{s \sim x^{(t)}}[\ell^{(t)}(s)]$$

5: end for

Regret

$$\mathcal{R}^{(T)}(x) = \sum_{t=1}^{T} \left\langle x^{(t)}, \ell^{(t)} \right\rangle - \left\langle x, \sum_{t=1}^{T} \ell^{(t)} \right
angle$$

$$\sup_{(\ell^{(t)})} \sup_{x \in \Delta^N} R^{(T)}(x) = o(T)$$

4/19

The Problem	Hedge on a Continuum	Numerical Examples	References
000●	00000000	00000	00
Results			

Variant of this problem: Online optimization on convex sets.

Assumptions on $\ell^{(t)}$	convex	lpha-exp-concave	uniformly L-Lipschitz
Assumptions on S	convex	convex	<i>v</i> -uniformly fat
Method	Gradient	Hedge, ONS, FTAL	Hedge
	(Zinkevich [8])	(Hazan et a∣. [6])	(This talk)
Learning rates	$1/\sqrt{t}$	α	$1/\sqrt{t}$
$R^{(t)}$	$\mathcal{O}(\sqrt{t})$	$\mathcal{O}(\log t)$	$\mathcal{O}(\sqrt{t \log t})$

Table: Some regret upper bounds for different classes of losses.

[8] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.

In ICML, pages 928-936, 2003

 $[6]\mbox{Elad}$ Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization.

Machine Learning, 69(2-3):169-192, 2007

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Outline			

e Hedge on a Continuum

3 Numerical Examples

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	●0000000	00000	00
Hedge on a fir	nite set		

Hedge algorithm with learning rates (η_t) .

1: for $t \in \mathbb{N}$ do 2: Play $x^{(t)}$ 3: Reveal $\ell^{(t)} \in [0, M]^N$, call $L^{(t)} = \sum_{\tau=1}^t \ell^{(\tau)}$ 4: Update $x_{-}^{(t+1)} \propto e^{-\eta_{t+1}L_n^{(t)}}$

5: end for

One interpretation: instance of the dual averaging method [7]

$$x^{(t+1)} \in rgmin_{x \in \Delta^N} \left\langle L^{(t)}, x
ight
angle + rac{1}{\eta_{t+1}} \psi(x)$$

with $\psi(x) = \sum_{n=1}^{N} x_n \ln x_n$.

^[7] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221–259, 2009

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Hedge on a fi	nite set		

Basic Regret Bound

For all $x \in \Delta^N$,

$$R^{(au)}(x) \leq rac{M^2}{2} \sum_{ au=1}^t \eta_{ au+1} + rac{\psi(x)}{\eta_{t+1}}$$

Take $\eta_t = \theta t^{-\frac{1}{2}}$, then $\sum_1^t \eta_\tau = O(\sqrt{t})$ and $\frac{1}{t} = O(\sqrt{t})$ It suffices to bound ψ on Δ^N . When $\psi(x) = \sum_i x_i \ln x_i$, $\psi(x) \le \ln N$ on Δ^N . So

$$\sup_{x\in\Delta^N} R^{(T)}(x) \le \left(\frac{M^2\theta}{2} + \frac{\ln N}{\theta}\right)\sqrt{T}$$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	0000000	00000	00
Hedge on a co	ntinuum		

Hedge on S with learning rates (η_t) .

- 1 for $t \in \mathbb{N}$ do
- 2:
- $\begin{array}{l} \mathsf{P}|_{\mathsf{ay}} \sim x^{(t)} \\ \mathsf{Reveal} \; \ell^{(t)}: \mathcal{S} \rightarrow [0, \mathcal{M}] \end{array}$ 3:
- 4: Update

$$x^{(t+1)}(s) \propto x^{(0)}(s) e^{-\eta_{t+1} L^{(t)}(s)}$$

5: end for

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Hedge on a cont	nuum		

Hedge on S with learning rates (η_t) .

1: for $t \in \mathbb{N}$ do 2: $P|ay \sim x^{(t)}$ 3: Reveal $\ell^{(t)}$: $S \rightarrow [0, M]$ 4: Update $x^{(t+1)}(s) \propto x^{(0)}(s)e^{-\eta_{t+1}L^{(t)}(s)}$

One interpretation: instance of the dual averaging method

$$\mathbf{x}^{(t+1)} \in \operatorname*{arg\,min}_{x \in \Delta(\mathcal{S})} \left\langle L^{(t)}, x
ight
angle + rac{1}{\eta_{t+1}} \psi(x)$$

with

• Hilbert space
$$\mathcal{H} = L^2(S), \ \langle \ell, x
angle = \int_S \ell(s) x(s) \lambda(ds)$$

•
$$\Delta(S) = \{x \in L^2(S) : x \ge 0, \|x\|_1 = 1\}$$

•
$$\psi(x) = \int_S x(s) \ln x(s) \lambda(ds)$$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Hedge on a c	ontinuum		

Basic Regret Bound

For all $x \in \Delta(S)$,

$$R^{(T)}(x) \leq rac{M^2}{2} \sum_{ au=1}^t \eta_{ au+1} + rac{\psi(x)}{\eta_{t+1}}$$

But ψ is unbounded on $\Delta(S)$.

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Hedge on a co	ontinuum		

Basic Regret Bound

For all $x \in \Delta(S)$,

$$R^{(T)}(x) \leq rac{M^2}{2} \sum_{ au=1}^t \eta_{ au+1} + rac{\psi(x)}{\eta_{t+1}}$$

But ψ is unbounded on $\Delta(S)$. Take $x = \frac{1}{\lambda(A)} 1_A$ for some $A \subset S$. Then

$$\psi(x) = \int_{S} x(s) \ln x(s) \lambda(ds) = \ln \frac{1}{\lambda(A)}$$

can be arbitrarily large for arbitrarily small A.

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Working arou	nd unbounded regularizers		

ldea:

• Call $s_t^{\star} \in \arg\min_{s \in S} L^{(t)}(s)$ (L supposed continuous).

$$\begin{aligned} \mathcal{R}^{(t)}(x) &= \sum_{\tau=1}^{t} \left\langle \ell^{(\tau)}, x^{(\tau)} - x \right\rangle \\ &\leq \sum_{\tau=1}^{t} \left\langle \ell^{(\tau)}, x^{(\tau)} - \delta_{s_{t}^{\star}} \right\rangle \\ &= \sum_{\tau=1}^{t} \left\langle \ell^{(\tau)}, x^{(\tau)} - y \right\rangle + \sum_{\tau=1}^{t} \left\langle \ell^{(\tau)}, y - \delta_{s_{t}^{\star}} \right\rangle \\ &= \mathcal{R}^{(t)}(y) + \left\langle \mathcal{L}^{(t)}, y - \delta_{s_{t}^{\star}} \right\rangle \end{aligned}$$

• Take $y \in \mathcal{B}_t$, set of distributions supported near s_t^{\star}

Revised regret bound $\sup_{x \in \Delta(S)} R^{(t)}(x) \le R^{(t)}(y_0) + \sup_{y \in \mathcal{B}_t} \left\langle L^{(t)}, y - \delta_{s_t^*} \right\rangle$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	000000000	00000	00
Working around u	nbounded regularizers		

The Problem 0000	Hedge on a Continuum 000000000	Numerical Examples 00000	References 00
Uniformly fat sets			
Uniform fatness			
	at (w. s.t. the measure)) : f	
	at (w.r.t. the measure $K_s \subset S$, with $s \in K_s$ a		
	K,	S	

The Problem 0000	Hedge on a Continuum 000000●00	Numerical Examples 00000	References 00
Uniformly fat sets			
Uniform fatness			
	at (w.r.t. the measure)		
$\forall s \in S, \exists convex$	$K_s \subset S$, with $s \in K_s$ ar	$1d \lambda(K_s) \geq v.$	
		S	

The Problem 0000	Hedge on a Continuum 000000●00	Numerical Examples 00000	References 00
Uniformly fat se	ets		
Uniform fatn	ess		
	mly fat (w.r.t. the measure nvex ${\it K_s} \subset {\it S}$, with ${\it s} \in {\it K_s}$ and		
	s s s s s s s s s s s s s s s s s s s		

The Problem 0000	Hedge on a Continuum 000000€00	Numerical Examples 00000	References 00
Uniformly fat :	sets		
Uniform fat	ness		
	rmly fat (w.r.t. the measure onvex ${\it K_s} \subset {\it S}$, with ${\it s} \in {\it K_s}$ a		
	s	S	
		K.,	

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	000000000	00000	00
Regret bound	on uniformly fat sets		

Final bound

$$\sup_{t \in \Delta(S)} R^{(t)}(x) \le \frac{M^2}{2} \sum_{\tau=1}^t \eta_{\tau+1} + \frac{\ln \frac{1}{v}}{\eta_{t+1}} + \frac{n \ln t}{\eta_{t+1}} + Ld(S)$$

Can optimize over η_t to get

$$\sup_{x \in \Delta(S)} R^{(t)}(x) \le Ld(S) + M\sqrt{t}\sqrt{\frac{n\ln t + \ln \frac{1}{v}}{2}}$$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Beyond Hedge			

Dual averaging with learning rates (η_t) , strongly convex regularizer ψ

- 1: for $t \in \mathbb{N}$ do
- 2:
- Play $x^{(t)}$ Discover $\ell^{(t)} \in \mathcal{H}^*$ 3:
- Update 4:

$$x^{(t+1)} = \arg\min_{x \in \Delta(S)} \left\langle L^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x) \tag{1}$$

5: end for

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Beyond Hedge			

Dual averaging with learning rates (η_t) , strongly convex regularizer ψ

- 1: for $t \in \mathbb{N}$ do
- 2: Play $x^{(t)}$
- 3 Discover $\ell^{(t)} \in \mathcal{H}^*$
- 4: Update

$$x^{(t+1)} = \arg\min_{x \in \Delta(S)} \left\langle L^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x) \tag{1}$$

5: end for

• ${\mathcal H}$ is infinite dimensional. Can we solve

$$\min_{x \in \Delta(S)} \left\langle L^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x)$$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Beyond Hedge			

Dual averaging with learning rates (η_t) , strongly convex regularizer ψ

- 1: for $t \in \mathbb{N}$ do
- 2: Play $x^{(t)}$
- 3: Discover $\ell^{(t)} \in \mathcal{H}^*$
- 4: Update

$$x^{(t+1)} = \arg\min_{x \in \Delta(S)} \left\langle L^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x) \tag{1}$$

5: end for

• ${\mathcal H}$ is infinite dimensional. Can we solve

$$\min_{x \in \Delta(S)} \left\langle L^{(t)}, x \right\rangle + \frac{1}{\eta_{t+1}} \psi(x)$$

• Can we obtain a sublinear regret bound?

$$\sup_{x \in \Delta(S)} R^{(t)}(x) \leq \frac{M^2}{2} \sum_{\tau=1}^t \eta_{\tau+1} + \frac{1}{\eta_{t+1}} \psi(y) + Ltd(A_t)$$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Outline			

edge on a Continuum

3 Numerical Examples

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	●0000	00
Numerical Examp	le		

Hedge algorithm on hollow cube in \mathbb{R}^3 .

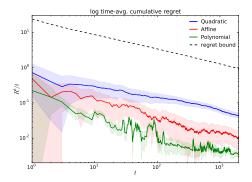
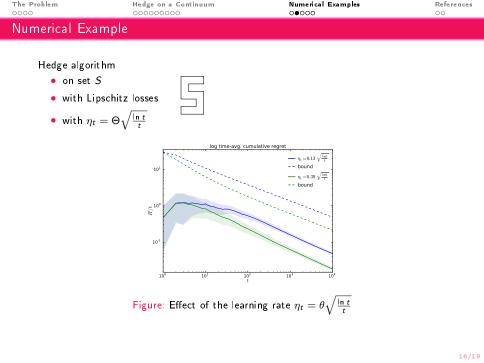


Figure: Per-round regret



The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Numerical Exa	mple		

Figure: Evolution of the Hedge density

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Conclusion			

Summary

- Can learn on a continuum, when losses are Lipschitz and S has reasonable geometry.
- Similar guarantee to learning on a cover, but do not need to maintain a cover.
- Can generalize to the dual averaging method.

Extensions and open questions

- Bandit formulation, e.g. [3].
- Regret lower bound.
- When is it easy to sample from the Hedge distribution?

[3]Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari. X-armed bandits. Journal of Machine Learning Research (JMLR), 12(12):1587–1627, 2011

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
Thank you			

Thank you.

{krichene, balandat}@eecs.berkeley.edu

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	00
References I			

- David Blackwell. An analog of the minimax theorem for vector payoffs. *Pacific Journal of Mathematics*, 6(1):1-8, 1956.
- [2] Avrim Blum and Adam Kalai. Universal portfolios with and without transaction costs. *Machine Learning*, 35(3):193–205, 1999.
- [3] Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvari.
 X-armed bandits. Journal of Machine Learning Research (JMLR), 12(12): 1587–1627, 2011.
- [4] Thomas M. Cover. Universal portfolios. *Mathematical Finance*, 1(1):1–29, 1991.
- [5] James Hannan. Approximation to Bayes risk in repeated plays. Contributions to the Theory of Games, 3:97–139, 1957.
- [6] Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex optimization. *Machine Learning*, 69(2-3):169–192, 2007.
- [7] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
- [8] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In *ICML*, pages 928–936, 2003.

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	•0
Additional slides: F	Regret bound on uniformly	fat sets	

$$\sup_{x \in \Delta(S)} R^{(t)}(x) \leq \frac{M^2}{2} \sum_{\tau=1}^t \eta_{\tau+1} + \frac{1}{\eta_{t+1}} \ln \frac{1}{\lambda(A_t)} + Ltd(A_t)$$

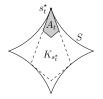
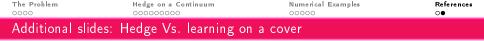


Figure: $A_t = s_t^{\star} + d_t(K_{s_t^{\star}} - s_t^{\star})$. Then $\lambda(A_t) \ge d_t^n v$ and $d(A_t) \le d_t d(S)$.

$$\sup_{x \in \Delta(S)} R^{(t)}(x) \le \frac{M^2}{2} \sum_{\tau=1}^t \eta_{\tau+1} + \frac{1}{\eta_{t+1}} \ln \frac{1}{vd_t^n} + Lt d_t d(S)$$

The Problem	Hedge on a Continuum	Numerical Examples	References
0000	00000000	00000	0•
Additional slides:	Hedge Vs. learning on a	cover	

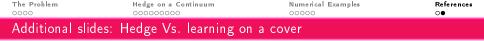
- Given a horizon T and a cover \mathcal{A}_T with $d(A) \leq d_T d(S)$ for all $A \in \mathcal{A}_T$.
- Run discrete Hedge on elements of the cover.



- Given a horizon T and a cover A_T with $d(A) \leq d_T d(S)$ for all $A \in A_T$.
- Run discrete Hedge on elements of the cover.
- Then

$$R^{(T)}(x) \leq \underbrace{\frac{M^2 T \eta}{8} + \frac{|n| \mathcal{A}_T|}{\eta}}_{\text{Discrete Hedge}} + \underbrace{\frac{Ld(S)d_T}{Additional regret}}_{\text{Additional regret}}$$

• With
$$|\mathcal{A}_T| \approx \frac{1}{d_T^n}$$
,
 $R^{(T)}(x) \leq \frac{M^2 T \eta}{8} + \frac{\ln \frac{1}{d_T^n}}{\eta} + LD(S)d_T$



- Given a horizon T and a cover A_T with $d(A) \leq d_T d(S)$ for all $A \in A_T$.
- Run discrete Hedge on elements of the cover.
- Then

$$R^{(T)}(x) \leq \underbrace{\frac{M^2 T \eta}{8} + \frac{\ln |\mathcal{A}_T|}{\eta}}_{\text{Discrete Hedge}} + \underbrace{Ld(S)d_T}_{\text{Additional regret}}$$

• With
$$|\mathcal{A}_T| \approx \frac{1}{d_T^n}$$
,
 $R^{(T)}(x) \leq \frac{M^2 T \eta}{8} + \frac{\ln \frac{1}{d_T^n}}{\eta} + LD(S)d_T$

• Have to explicitly compute a (hierarchical) cover.