Convergence of $\bar{\mu}^{(t)}$

(ロ) (型) (E) (E) (E) (O)

On the Convergence of No-regret Learning in Selfish Routing

ICML 2014 - Beijing

Walid Krichene¹ Benjamin Drighès² Alexandre Bayen³

UC Berkeley

Ecole Polytechnique

June 23, 2014

¹walid@cs.berkeley.edu

²benjamin.drighes@polytechnique.edu

³bayen@berkeley.edu

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Introduction

Routing game: players choose routes. Population distributions: $\mu^{(t)} \in \Delta^{\mathcal{P}_1} \times \cdots \times \Delta^{\mathcal{P}_K}$ Nash equilibria: \mathcal{N}

• Under no-regret dynamics, $\bar{\mu}^{(t)} = \frac{1}{t} \sum_{\tau < t} \mu^{(\tau)} \to \mathcal{N}.$

• Does
$$\mu^{(t)} \to \mathcal{N}$$
?

Convergence of $\bar{\mu}^{(t)}$

Outline

2 Convergence of $\bar{\mu}^{(t)}$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Routing game

Figure : Example network

- Directed graph (V, E)
- Population \mathcal{X}_k : paths \mathcal{P}_k

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Routing game

Figure : Example network

- Directed graph (V, E)
- Population \mathcal{X}_k : paths \mathcal{P}_k
- Player $x \in \mathcal{X}_k$: distribution over paths $\pi(x) \in \Delta^{\mathcal{P}_k}$,
- Population distribution over paths $\mu^k \in \Delta^{\mathcal{P}_k}$, $\mu^k = \int_{\mathcal{X}_k} \pi(x) dm(x)$
- Loss on path p: $\ell_p^k(\mu)$

Convergence of $\bar{\mu}^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Routing game

Figure : Example network

- Directed graph (V, E)
- Population \mathcal{X}_k : paths \mathcal{P}_k
- Player $x \in \mathcal{X}_k$: distribution over paths $\pi(x) \in \Delta^{\mathcal{P}_k}$,
- Population distribution over paths $\mu^k \in \Delta^{\mathcal{P}_k}$, $\mu^k = \int_{\mathcal{X}_k} \pi(x) dm(x)$
- Loss on path p: $\ell_p^k(\mu)$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Online learning model

Convergence of $\bar{\mu}^{(t)}$

The Hedge algorithm

Hedge algorithm

• Update the distribution according to observed loss

$$\pi_p^{(t+1)} \propto \pi_p^{(t)} e^{-\eta_t \ell_p^{k(t)}}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣��

Convergence of $\bar{\mu}^{(t)}$

Nash equilibria

Nash equilibrium

 $\mu \in \mathcal{N}$ if $\forall k, \forall p \in \mathcal{P}_k$ with positive mass,

 $\ell_p^k(\mu) \leq \ell_{p'}^k(\mu) \; \forall p' \in \mathcal{P}_k$

• How to compute Nash equilibria?

Convergence of $\bar{\mu}^{(t)}$

Nash equilibria

Nash equilibrium

 $\mu \in \mathcal{N}$ if $\forall k, \forall p \in \mathcal{P}_k$ with positive mass,

 $\ell_p^k(\mu) \leq \ell_{p'}^k(\mu) \; \forall p' \in \mathcal{P}_k$

• How to compute Nash equilibria? Convex formulation

Convergence of $\bar{\mu}^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Nash equilibria

Convex potential function

$$V(\mu) = \sum_{e} \int_{0}^{(M\mu)_{e}} c_{e}(u) du$$

- V is convex.
- $\nabla_{\mu^k} V(\mu) = \ell^k(\mu).$
- Minimizer not unique.
- How do players find a Nash equilibrium?
- Iterative play.

Convergence of $\bar{\mu}^{(t)}$

Nash equilibria

Convex potential function

$$V(\mu) = \sum_{e} \int_{0}^{(M\mu)_{e}} c_{e}(u) du$$

- V is convex.
- $\nabla_{\mu^k} V(\mu) = \ell^k(\mu).$
- Minimizer not unique.
- How do players find a Nash equilibrium?
- Iterative play.
- Ideally: distributed, and has reasonable information requirements.

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Assume sublinear regret dynamics

- Losses are in [0,1].
- Expected loss is $\left\langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \right\rangle$
- Discounted regret

$$\bar{r}^{(T)}(x) = \frac{\sum_{t \le T} \gamma_t \left\langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \right\rangle - \min_p \sum_{t \le T} \gamma_t \ell_p^{k(t)}}{\sum_{t \le T} \gamma_t}$$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

Assume sublinear regret dynamics

- Losses are in [0,1].
- Expected loss is $\left\langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \right\rangle$
- Discounted regret

$$\bar{r}^{(T)}(x) = \frac{\sum_{t \leq T} \gamma_t \left\langle \pi^{(t)}(x), \ell^k(\mu^{(t)}) \right\rangle - \min_p \sum_{t \leq T} \gamma_t \ell_p^{k(t)}}{\sum_{t \leq T} \gamma_t}$$

Assumptions

- γ(t) > 0
- $\gamma(t) \downarrow 0$

•
$$\sum_t \gamma(t) = \infty$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Convergence to Nash equilibria

Population regret

$$\bar{r}^{k(T)} = \frac{1}{m(\mathcal{X}_k)} \int_{\mathcal{X}_k} \bar{r}^{(T)}(x) dm(x)$$

Convergence of averages to Nash equilibria

If an update has sublinear population regret, then $\bar{\mu}^{(T)} = \sum_{t \leq T} \gamma_t \mu^{(t)} / \sum_{t \leq T} \gamma_t$ converges

$$\lim_{T\to\infty}d\left(\bar{\mu}^{(T)},\mathcal{N}\right)=0$$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Convergence to Nash equilibria

Population regret

$$\bar{r}^{k(T)} = \frac{1}{m(\mathcal{X}_k)} \int_{\mathcal{X}_k} \bar{r}^{(T)}(x) dm(x)$$

Convergence of averages to Nash equilibria

If an update has sublinear population regret, then $\bar{\mu}^{(T)} = \sum_{t \leq T} \gamma_t \mu^{(t)} / \sum_{t \leq T} \gamma_t$ converges

$$\lim_{T\to\infty}d\left(\bar{\mu}^{(T)},\mathcal{N}\right)=0$$

Proof: show

$$V(ar{\mu}^{(au)}) - V(\mu^*) \leq \sum_k ar{r}^{k(au)}$$

Similar result in Blum et al. (2006)

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Convergence of a dense subsequence

Proposition

Under any algorithm with sublinear discounted regret, a dense subsequence of $(\mu^{(t)})_t$ converges to $\mathcal N$

• Subsequence
$$(\mu^{(t)})_{t\in\mathcal{T}}$$
 converges

•
$$\lim_{T \to \infty} \frac{\sum_{t \in \mathcal{T}: t \leq T} \gamma_t}{\sum_{t \leq T} \gamma_t} = 1$$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Convergence of a dense subsequence

Proposition

Under any algorithm with sublinear discounted regret, a dense subsequence of $(\mu^{(t)})_t$ converges to $\mathcal N$

• Subsequence $(\mu^{(t)})_{t\in\mathcal{T}}$ converges

•
$$\lim_{T \to \infty} \frac{\sum_{t \in \mathcal{T}: t \le T} \gamma_t}{\sum_{t \le T} \gamma_t} = 1$$

Proof.

• Absolute Cesàro convergence implies convergence of a dense subsequence.

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Example: Hedge with learning rates γ_{τ}

$$\pi_{
ho}^{(t+1)} \propto \pi_{
ho}^{(t)} e^{-\eta_t \ell_{
ho}^{m{k}(t)}}$$

Regret bound

Under Hedge with $\eta_t = \gamma_t$,

$$\overline{r}^{(T)}(x) \le \rho \frac{\ln \pi_{\min}^{(0)}(x) + c \sum_{t \le T} \gamma_t^2}{\sum_{t \le T} \gamma_t}$$

Simulations

Convergence of $\bar{\mu}^{(t)}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Figure : Example network

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

Simulations

Figure : Path losses and strategies for the Hedge algorithm with $\gamma_{\tau}=1/(10+\tau)$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Sufficient conditions for convergence of $(\mu^{(t)})_t$

• Have $\bar{\mu}^{(t)} \to \mathcal{N}$.

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Sufficient conditions for convergence of $(\mu^{(t)})_t$

• Have
$$\bar{\mu}^{(t)} \to \mathcal{N}$$
.

Sufficient condition

If $V(\mu^{(t)})$ converges ($\mu^{(t)}$ need not converge), then

•
$$V(\mu^{(t)}) o V_*$$

• $\mu^{(t)}
ightarrow \mathcal{N}$ (V is continuous, $\mu^{(t)} \in \Delta$ compact)

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Replicator dynamics

Imagine an underlying continuous time. Updates happen at $\gamma_1, \gamma_1 + \gamma_2, \ldots$

Figure : Underlying continuous time

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

Replicator dynamics

Imagine an underlying continuous time. Updates happen at $\gamma_1, \gamma_1 + \gamma_2, \ldots$

Figure : Underlying continuous time

In the update equation $\mu_p^{(t+1)} \propto \mu_p^{(t)} e^{-\gamma_t \ell_p(t)}$, take $\gamma_t \to 0$ We obtain the autonomous ODE:

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{d\mu_p^k}{dt} = \mu_p^k \left(\left\langle \ell^k(\mu), \mu^k \right\rangle - \ell_p^k(\mu) \right) \tag{1}$$

Also in evolutionary game theory.

Convergence of $\bar{\mu}^{(t)}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{d\mu_p^k}{dt} = \mu_p^k(\langle \ell^k(\mu), \mu^k \rangle - \ell_p^k(\mu))$$

Convergence of $\bar{\mu}^{(t)}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{d\mu_p^k}{dt} = \mu_p^k(\langle \ell^k(\mu), \mu^k \rangle - \ell_p^k(\mu))$$

Theorem (Fischer and Vöcking (2004))

Every solution of the ODE (1) converges to the set of its stationary points.

Convergence of $\bar{\mu}^{(t)}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

Replicator dynamics

Replicator equation

$$\forall p \in \mathcal{P}_k, \frac{d\mu_p^k}{dt} = \mu_p^k(\langle \ell^k(\mu), \mu^k \rangle - \ell_p^k(\mu))$$

Theorem (Fischer and Vöcking (2004))

Every solution of the ODE (1) converges to the set of its stationary points.

Proof: V is a Lyapunov function.

Convergence of $\bar{\mu}^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

AREP update

Discretization of the continuous-time replicator dynamics

$$\pi_{\rho}^{(t+1)} - \pi_{\rho}^{(t)} = \eta_t \pi_{\rho}^{(t)} \left(\left\langle \ell^k(\mu^{(t)}), \pi^{(t)} \right\rangle - \ell_{\rho}^k(\mu^{(t)}) \right) + \eta_t U_{\rho}^{k(t+1)}$$

 $(U^{(t)})_{t\geq 1}$ perturbations that satisfy for all T > 0,

$$\lim_{\tau_1 \to \infty} \max_{\tau_2: \sum_{t=\tau_1}^{\tau_2} \eta_t < T} \left\| \sum_{t=\tau_1}^{\tau_2} \eta_t U^{(t+1)} \right\| = 0$$

Benaïm (1999)

Convergence of $\bar{\mu}^{(t)}$

Convergence to Nash equilibria

Theorem

Under any no-regret algorithm which is approximate REP, $\mu^{(t)} \rightarrow \mathcal{N}$.

Convergence of $\bar{\mu}^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Convergence to Nash equilibria

Theorem

Under any no-regret algorithm which is approximate REP, $\mu^{(t)} \rightarrow \mathcal{N}$.

Proof uses two facts

- Affine interpolation of $\mu^{(t)}$ is an asymptotic pseudo trajectory for the ODE.
- V is a Lyapunov function for Nash equilibria.

Convergence of $\bar{\mu}^{(t)}$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

REP update

In particular

• REP update: take U = 0

$$\pi_{\rho}^{(t+1)} - \pi_{\rho}^{(t)} = \eta_t \pi_{\rho}^{(t)} \left(\left\langle \ell^k(\mu^{(t)}), \pi^{(t)} \right\rangle - \ell_{\rho}^k(\mu^{(t)}) \right)$$

Convergence of $\bar{\mu}^{(t)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

REP update

In particular

• REP update: take U = 0

$$\pi_{\rho}^{(t+1)} - \pi_{\rho}^{(t)} = \eta_t \pi_{\rho}^{(t)} \left(\left\langle \ell^k(\mu^{(t)}), \pi^{(t)} \right\rangle - \ell_{\rho}^k(\mu^{(t)}) \right)$$

Hedge

$$\pi_{p}^{(t+1)} - \pi_{p}^{(t)} = \eta_{t} \pi_{p}^{(t)} \frac{e^{-\eta_{t} \ell_{p}^{k}(\mu^{(t)})} - 1}{\eta_{t} \sum_{p'} e^{-\eta_{t} \ell_{p'}^{k}(\mu^{(t)})}}$$

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

Mirror Descent

Consider the convex problem $\text{minimize}_{\mu \in \Delta} V(\mu)$

where D_{ψ} is a Bregman divergence

$$\mathcal{D}_\psi(\mu,
u)=\psi(\mu)-\psi(
u)-\langle
abla\psi(
u),\mu-
u
angle$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Convergence of $\bar{\mu}^{(t)}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Mirror Descent

$\mathsf{Hedge} = \mathsf{Mirror} \mathsf{ descent} \mathsf{ on } V$

- Take $D_{\psi}(\mu, \nu) = \sum_{k} D_{\mathcal{KL}}(\mu^{k}, \nu^{k})$
- Update:

$$\mu^{(t+1)} = \arg\min_{\mu \in \Delta^1 \times \dots \times \Delta^K} \sum_k \left(\left\langle \ell^k(\mu^{(t)}), \mu^k \right\rangle + \frac{1}{\eta_t} D_{\mathsf{KL}}(\mu^k, \mu^{k(t)}) \right)$$

Convergence of $\bar{\mu}^{(t)}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Mirror Descent

$\mathsf{Hedge} = \mathsf{Mirror \ descent \ on \ } V$

- Take $D_{\psi}(\mu, \nu) = \sum_{k} D_{\mathcal{KL}}(\mu^{k}, \nu^{k})$
- Update:

$$\mu^{(t+1)} = \arg\min_{\mu \in \Delta^1 \times \dots \times \Delta^K} \sum_k \left(\left\langle \ell^k(\mu^{(t)}), \mu^k \right\rangle + \frac{1}{\eta_t} D_{\mathsf{KL}}(\mu^k, \mu^{k(t)}) \right)$$

 $\bullet\,$ Solution: Hedge algorithm with learning rate η

$$\mu_{
m p}^{k(t+1)} \propto \mu_{
m p}^{k(t)} e^{-\eta \ell_{
m p}^{k(t)}}$$

Convergence of $\bar{\mu}^{(t)}$

Mirror Descent

Hedge = Mirror descent on V

- Take $D_{\psi}(\mu, \nu) = \sum_{k} D_{\mathcal{KL}}(\mu^{k}, \nu^{k})$
- Update:

$$\mu^{(t+1)} = \arg\min_{\mu \in \Delta^1 \times \dots \times \Delta^K} \sum_k \left(\left\langle \ell^k(\mu^{(t)}), \mu^k \right\rangle + \frac{1}{\eta_t} D_{\mathsf{KL}}(\mu^k, \mu^{k(t)}) \right)$$

 $\bullet\,$ Solution: Hedge algorithm with learning rate η

$$\mu_{p}^{k(t+1)} \propto \mu_{p}^{k(t)} e^{-\eta \ell_{p}^{k(t)}}$$

General result

Convergence of $\bar{\mu}^{(T)} = \frac{\sum_{t \leq \tau} \eta_t \mu^{(t)}}{\sum_{t \leq \tau} \eta_t}$ to \mathcal{N} for Any Mirror Descent method

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

Strong convergence of Mirror Descent

Convex V with L-Lipschitz gradient

If η_t small enough, MD update guarantees $V(\mu^{(t+1)}) \leq V(\mu^{(k)})$.

Figure : Mirror Descent iteration for a function with L-Lipschitz gradient.

Convergence of $\bar{\mu}^{(t)}$

Convergence of $\mu^{(t)}$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Strong convergence of Mirror Descent

Convex V with L-Lipschitz gradient

If η_t small enough, MD update guarantees $V(\mu^{(t+1)}) \leq V(\mu^{(k)})$.

Figure : Mirror Descent iteration for a function with L-Lipschitz gradient.

 $V(\mu^{(t)})$ is monotone, converges, so $\mu^{(t)} o \mathcal{N}.$

Convergence of $\bar{\mu}^{(t)}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Summary

Summary

- Convergence of $\bar{\mu}^{(t)}$ under no-regret updates.
- Convergence of a dense subsequence $(\mu^{(t)})_{t\in\mathcal{T}}$.
- Convergence of $\mu^{(t)}$ for no-regret AREP updates.
 - Hedge, REP
- Convergence of $\mu^{(t)}$ for MD updates (+ convergence rate)
 - Hedge

Convergence of $\bar{\mu}^{(t)}$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Summary

Summary

- Convergence of $\bar{\mu}^{(t)}$ under no-regret updates.
- Convergence of a dense subsequence $(\mu^{(t)})_{t\in\mathcal{T}}$.
- Convergence of $\mu^{(t)}$ for no-regret AREP updates.
 - Hedge, REP
- Convergence of $\mu^{(t)}$ for MD updates (+ convergence rate)
 - Hedge

Future work

- Bandit setting.
- Stochastic perturbations on the losses.

Thank you.

Poster M43

walid@cs.berkeley.edu benjamin.drighes@polytechnique.edu bayen@berkeley.edu