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Introduction

Routing game: players choose routes.
Population distributions: u(t) € AP x ... x AP«
Nash equilibria: N

o Under no-regret dynamics, i) = 137 _ u(") — V.
e Does u(t) — N7



@ Online learning in the routing game

e Convergence of fi(t)

© Convergence of p(t
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Routing game

Figure : Example network

o Directed graph (V, E)
@ Population X): paths Py
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Routing game

Figure : Example network

o Directed graph (V, E)

@ Population X): paths Py

o Player x € Xj: distribution over paths 7(x) € A%,

o Population distribution over paths uk € APk, k= S, m(x)dm(x)
@ Loss on path p: /(1)
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Routing game

Figure : Example network

o Directed graph (V, E)

@ Population X): paths Py

o Player x € Xj: distribution over paths 7(x) € A%,

o Population distribution over paths uk € APk, k= S, m(x)dm(x)
@ Loss on path p: /(1)



Online learning model

7t ¢ AP1 Sample p ~ 7(t) Discover £(t) € [0,1]71  Update 7(t+1)
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The Hedge algorithm

Hedge algorithm

@ Update the distribution according to observed loss

. ok(®)
(t41) o (8) g et
TI'p X 7Tp @ B
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Nash equilibria

Nash equilibrium

uw € N if Vk, Vp € Py with positive mass,

k k
Ep(”) < ep’(:u’) VP/ € P

@ How to compute Nash equilibria?
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Nash equilibria

Nash equilibrium

uw € N if Vk, Vp € Py with positive mass,

k k
Ep(”) < ep’(:u’) VP/ € P

@ How to compute Nash equilibria? Convex formulation
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Nash equilibria

Convex potential function

(Mp)e
V=3 /0 co(u)du

V is convex.
V.,V (k) = 4 (n).
Minimizer not unique.

How do players find a Nash equilibrium?

Iterative play.
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Nash equilibria

Convex potential function

(Mp)e
V=3 /0 co(u)du

V is convex.
V.,V (k) = 4 (n).
Minimizer not unique.

How do players find a Nash equilibrium?

Iterative play.

(]

Ideally: distributed, and has reasonable information requirements.
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Assume sublinear regret dynamics

@ Losses are in [0, 1].
o Expected loss is (m()(x), £5(pu(?))
@ Discounted regret

AN = Zeer e (T0 LW — ming B ety
ngT“Yt
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Assume sublinear regret dynamics

Losses are in [0, 1].
Expected loss is (7(9)(x), ¢5(u(®)))
Discounted regret

#7)(x)

Convergence of pu\®)
00000000000

_ Zth Tt <7T(t)(x)a ek(ﬂ(t)» — minp Ztgr W’tf;ﬁ(t)

Zth'Yf
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Convergence to Nash equilibria

Population regret

Fk(T) = 1 F(T) x)dm(x
m(»m/xk (x)dm(x)

Convergence of averages to Nash equilibria

If an update has sublinear population regret, then
AT =3 776/ 37 7e converges

lim d (ﬁ(T),N) =0

T—o0
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Convergence to Nash equilibria

Population regret

Fk(T) = 1 F(T) x)dm(x
m(»m/xk (x)dm(x)

| \

Convergence of averages to Nash equilibria

If an update has sublinear population regret, then
AT =3 776/ 37 7e converges

lim d (ﬁ(T),N) =0

T—o0

Proof: show

V() = v(pr) <) D
k

Similar result in Blum et al. (2006)
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Convergence of a dense subsequence

Proposition

Under any algorithm with sublinear discounted regret, a dense
subsequence of (1Y), converges to

@ Subsequence (1(*));c7 converges

Z:GT:th e — 1

° IImT*)OO Zt<T'Y'
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Convergence of a dense subsequence

Proposition

Under any algorithm with sublinear discounted regret, a dense
subsequence of (1Y), converges to

@ Subsequence (1(*));c7 converges

. ZtGT:t<T Ve
o limroyoe S8 iae =1
Proof.

@ Absolute Cesaro convergence implies convergence of a dense
subsequence.



Online learning in the routing game Convergence of a'*) Convergence of pu\®)
000000 00000 00000000000

Example: Hedge with learning rates ~,

(t+1) (t) g —7elk®
Ty ocmy e e

Regret bound

Under Hedge with n; = ¢,

In7©
F(x) < prmn

(x)+c Ztgr ¥2
Eth'Yt




Figure : Example network
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Simulations

- == path p; = (vo,v4,v6,v1)

2 i 107
- == path ps = (vo,v1) ! L

): Nash equilibrium

()

Po
- v v - 1(0) s
0 10 20 30 40 50 M uniform
T P2
T T T T
2.5 path py = (v2,v4,v5,v3) ||
path py = (v2,v4,v6, v3) Pa
ol path ps = (va, v3) |
= M(U): uniform
©
= 151 ]
IR

0
=

0.5 - *

lim 42”; Nash equilibrium
e

Figure : Path losses and strategies for the Hedge algorithm with
v =1/(10 4+ 1)
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Sufficient conditions for convergence of (u(*));

o Have () — NV,

Sufficient condition

If V(1)) converges (u(t) need not converge), then
o V(u®) =V,
o 1Y) — N (V is continuous, u(t) € A compact)
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Replicator dynamics

Imagine an underlying continuous time. Updates happen at
Y2

0 " Y1+ Y2
O O O—

Figure : Underlying continuous time
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Replicator dynamics

Imagine an underlying continuous time. Updates happen at
Y2

0 " Y1+ Y2
O O O—

Figure : Underlying continuous time

In the update equation uffﬂ) o /iﬁf)e*“/zfp(t), take vy — 0

We obtain the autonomous ODE:

Replicator equation

k

¥p € Pro T2 — s (#4(u). ) — £5(1) W

Also in evolutionary game theory.
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Replicator dynamics

Replicator equation

d k
Vp € Px, p—up(@k(u k) = £5(1))
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Replicator dynamics

Replicator equation

d k
¥p € P, L = = pp ({6 (), p*) —

Theorem (Fischer and Vécking (2004))

Every solution of the ODE (1) converges to the set of its stationary
points.
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Replicator dynamics

Replicator equation

d k
¥p € P, L = = pp ({6 (), p*) —

Theorem (Fischer and Vécking (2004))

Every solution of the ODE (1) converges to the set of its stationary
points.

Proof: V is a Lyapunov function.
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AREP update

Discretization of the continuous-time replicator dynamics

Convergence of p\®)
000@0000000

(U(t))tzl perturbations that satisfy for all T > 0,

T2
lim max g n U =0
Ti 00 330 2 me<T =

Benaim (1999)
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Convergence to Nash equilibria

Under any no-regret algorithm which is approximate REP, (9 — A/ l
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Convergence to Nash equilibria

Under any no-regret algorithm which is approximate REP, 1(t) — /. l

Proof uses two facts

o Affine interpolation of x(t) is an asymptotic pseudo trajectory for the
ODE.

@ V is a Lyapunov function for Nash equilibria.



In particular

o REP update: take U =0

m{tHD) — 20 = pr(® ((0(t), 70} — ()
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REP update

In particular
o REP update: take U =10

w0 — w0 = perld) ((£(u0), 7 ) — £4(u))

o Hedge
e—mlﬁ(,u(')) -1

ok ()
nt Zp/ e Nt P/(l" )

(t)

ntﬂ-p

7T,(Jt+1) _ ngt) —
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Mirror Descent

Convergence of p\®)
00000080000

Consider the convex problem

minimize,ca V(1)

Algorithm 1 Mirror Descent Method

1: for t € N do

2: pt+1) = arg min <VV(ﬂ(t)),;t> +
HEA
Dy (1, 1)
3: end for

where Dy, is a Bregman divergence

Dy (p,v) = ¢(p) — Y(v) — (Vp(v), u — v)

— v
=== V) (VD) = )

== VM) 9V ™) w = u ) + 2Dy n )

Figure : Mirror Descent iteration.
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Mirror Descent

Hedge = Mirror descent on V
o Take Dy(p,v) = >, Drr(pk,v¥)
e Update:

1
(t+1) — g fk (t) k D k  k(t)
I ClEd el Ek << (1), >+_m e (1, ))
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Mirror Descent

Hedge = Mirror descent on V
o Take Dy(p,v) = >, Drr(pk,v¥)
e Update:

1
(t+1) — g fk (t) k D k  k(t)
I ClEd el Ek << (1), >+_m e (1, ))

@ Solution: Hedge algorithm with learning rate n

k(t
MII;(H—I) e Mz(t)e—nzp()
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Mirror Descent

Hedge = Mirror descent on V
o Take Dy (p,v) =3, Drr(p*,v%)
o Update:

1
(t+1) _ . <£k (D) k D Kk k(t)
p argﬂ@g{pﬂ%j( (1), 1) + 7y Dre (e, 1)

@ Solution: Hedge algorithm with learning rate n

k(¢
Pk o Mg(r)e—nép”

General result

Me ® 0
Convergence of jil7) = %Ti]ﬁ to AV for Any Mirror Descent method
t<T'It
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Strong convergence of Mirror Descent

Convex V with L-Lipschitz gradient

If 77; small enough, MD update guarantees V/(u(tt1)) < V/(pu(k).

— V) —V(n

=== VD) £ (V) = u ) == VD) (V) - u)

= V) IV EO) u = u ) 2Dy () = V) (VD) = p )+ EDy ()
(a) Large n (b) Small n

Figure : Mirror Descent iteration for a function with L-Lipschitz gradient.
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Strong convergence of Mirror Descent

Convex V with L-Lipschitz gradient

If 77; small enough, MD update guarantees V/(u(tt1)) < V/(pu(k).

— V) —V(n

=== VD) £ (V) = u ) == VD) (V) - u)

= V) IV EO) u = u ) 2Dy () = V) (VD) = p )+ EDy ()
(a) Large n (b) Small n

Figure : Mirror Descent iteration for a function with L-Lipschitz gradient.

V((®)) is monotone, converges, so u(t) — N
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Summary

Summary
o Convergence of ji{*) under no-regret updates.
o Convergence of a dense subsequence (u(!));c7.

o Convergence of pu(t) for no-regret AREP updates.
o Hedge, REP

o Convergence of pu(t) for MD updates (4 convergence rate)
o Hedge
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Summary

Summary
o Convergence of ji{*) under no-regret updates.
o Convergence of a dense subsequence (u(!));c7.

e Convergence of u(t) for no-regret AREP updates.
o Hedge, REP
Convergence of ;(*) for MD updates (4 convergence rate)

o Hedge
Future work
o Bandit setting.

@ Stochastic perturbations on the losses.
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Thank you.

Poster M43
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