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Introduction

Routing game: players choose routes.
Population distributions: µ(t) ∈ ∆P1 × · · · ×∆PK

Nash equilibria: N
Under no-regret dynamics, µ̄(t) = 1

t

∑
τ≤t µ

(τ) → N .

Does µ(t) → N ?
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Routing game
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Figure : Example network

Directed graph (V ,E )

Population Xk : paths Pk

Player x ∈ Xk : distribution over paths π(x) ∈ ∆Pk ,
Population distribution over paths µk ∈ ∆Pk , µk =

∫
Xk
π(x)dm(x)

Loss on path p: `kp(µ)
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Online learning model

π(t) ∈ ∆P1 Sample p ∼ π(t) Discover `(t) ∈ [0, 1]P1 Update π(t+1)
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The Hedge algorithm

Hedge algorithm

Update the distribution according to observed loss

π(t+1)
p ∝ π(t)

p e−ηt`
k(t)
p
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Nash equilibria

Nash equilibrium

µ ∈ N if ∀k , ∀p ∈ Pk with positive mass,

`kp(µ) ≤ `kp′(µ) ∀p′ ∈ Pk

How to compute Nash equilibria?

Convex formulation
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Nash equilibria

Convex potential function

V (µ) =
∑

e

∫ (Mµ)e

0
ce(u)du

V is convex.
∇µk V (µ) = `k(µ).
Minimizer not unique.

How do players find a Nash equilibrium?
Iterative play.

Ideally: distributed, and has reasonable information requirements.
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Assume sublinear regret dynamics

Losses are in [0, 1].
Expected loss is

〈
π(t)(x), `k(µ(t))

〉
Discounted regret

r̄ (T )(x) =

∑
t≤T γt

〈
π(t)(x), `k(µ(t))

〉
−minp

∑
t≤T γt`

k(t)
p∑

t≤T γt

Assumptions

γ(t) > 0
γ(t) ↓ 0∑

t γ(t) =∞
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Convergence to Nash equilibria

Population regret

r̄k(T ) =
1

m(Xk)

∫
Xk

r̄ (T )(x)dm(x)

Convergence of averages to Nash equilibria

If an update has sublinear population regret, then
µ̄(T ) =

∑
t≤T γtµ

(t)/
∑

t≤T γt converges

lim
T→∞

d
(
µ̄(T ),N

)
= 0

Proof: show
V (µ̄(T ))− V (µ∗) ≤

∑
k

r̄k(T )

Similar result in Blum et al. (2006)
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Convergence of a dense subsequence

Proposition

Under any algorithm with sublinear discounted regret, a dense
subsequence of (µ(t))t converges to N

Subsequence (µ(t))t∈T converges

limT→∞
∑

t∈T :t≤T γt∑
t≤T γt

= 1

Proof.
Absolute Cesàro convergence implies convergence of a dense
subsequence.
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Example: Hedge with learning rates γτ

π(t+1)
p ∝ π(t)

p e−ηt`
k(t)
p

Regret bound

Under Hedge with ηt = γt ,

r̄ (T )(x) ≤ ρ
lnπ(0)

min(x) + c
∑

t≤T γ
2
t∑

t≤T γt
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Simulations
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Figure : Example network
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Simulations
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µ1(τ): Nash equilibrium
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Figure : Path losses and strategies for the Hedge algorithm with
γτ = 1/(10 + τ)
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Sufficient conditions for convergence of (µ(t))t

Have µ̄(t) → N .

Sufficient condition

If V (µ(t)) converges (µ(t) need not converge), then
V (µ(t))→ V∗
µ(t) → N (V is continuous, µ(t) ∈ ∆ compact)
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Replicator dynamics

Imagine an underlying continuous time. Updates happen at
γ1, γ1 + γ2, . . .

. . .
0 γ1 γ1 + γ2

Figure : Underlying continuous time

In the update equation µ(t+1)
p ∝ µ(t)

p e−γt`p(t), take γt → 0
We obtain the autonomous ODE:

Replicator equation

∀p ∈ Pk ,
dµk

p

dt
= µk

p
(〈
`k(µ), µk〉− `kp(µ)

)
(1)

Also in evolutionary game theory.
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Replicator dynamics

Replicator equation

∀p ∈ Pk ,
dµk

p

dt
= µk

p(
〈
`k(µ), µk〉− `kp(µ))

Theorem (Fischer and Vöcking (2004))

Every solution of the ODE (1) converges to the set of its stationary
points.

Proof: V is a Lyapunov function.
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AREP update

Discretization of the continuous-time replicator dynamics

π(t+1)
p − π(t)

p = ηtπ
(t)
p

(〈
`k(µ(t)), π(t)

〉
− `kp(µ(t))

)
+ ηtUk(t+1)

p

(U(t))t≥1 perturbations that satisfy for all T > 0,

lim
τ1→∞

max
τ2:

∑τ2
t=τ1 ηt<T

∥∥∥∥∥
τ2∑

t=τ1

ηtU(t+1)

∥∥∥∥∥ = 0

Benaïm (1999)
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Convergence to Nash equilibria

Theorem

Under any no-regret algorithm which is approximate REP, µ(t) → N .

Proof uses two facts
Affine interpolation of µ(t) is an asymptotic pseudo trajectory for the
ODE.
V is a Lyapunov function for Nash equilibria.
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REP update

In particular
REP update: take U = 0

π(t+1)
p − π(t)

p = ηtπ
(t)
p

(〈
`k(µ(t)), π(t)

〉
− `kp(µ(t))

)

Hedge

π(t+1)
p − π(t)

p = ηtπ
(t)
p

e−ηt`
k
p(µ(t)) − 1

ηt
∑

p′ e
−ηt`kp′ (µ

(t))
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Mirror Descent

Consider the convex problem
minimizeµ∈∆V (µ)

Algorithm 1 Mirror Descent Method
1: for t ∈ N do
2: µ(t+1) = arg min

µ∈∆

〈
∇V (µ(t)), µ

〉
+

1
ηt

Dψ(µ, µ(t))

3: end for

where Dψ is a Bregman divergence

Dψ(µ, ν) = ψ(µ)− ψ(ν)− 〈∇ψ(ν), µ− ν〉

V (µ(t))

V (µ(t+1))

V (µ)

V (µ(t)) + 〈∇V (µ(t)), µ− µ(t)〉

V (µ(t)) + 〈∇V (µ(t)), µ− µ(t)〉 + 1
η
Dψ(µ, µ(t))

Figure : Mirror Descent iteration.
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Mirror Descent

Hedge = Mirror descent on V

Take Dψ(µ, ν) =
∑

k DKL(µk , νk)

Update:

µ(t+1) = arg min
µ∈∆1×···×∆K

∑
k

(〈
`k(µ(t)), µk

〉
+

1
ηt

DKL(µk , µk(t))

)

Solution: Hedge algorithm with learning rate η

µk(t+1)
p ∝ µk(t)

p e−η`
k(t)
p

General result

Convergence of µ̄(T ) =
∑

t≤T ηtµ
(t)∑

t≤T ηt
to N for Any Mirror Descent method



Online learning in the routing game Convergence of µ̄(t) Convergence of µ(t)

Mirror Descent

Hedge = Mirror descent on V

Take Dψ(µ, ν) =
∑

k DKL(µk , νk)

Update:

µ(t+1) = arg min
µ∈∆1×···×∆K

∑
k

(〈
`k(µ(t)), µk

〉
+

1
ηt

DKL(µk , µk(t))

)
Solution: Hedge algorithm with learning rate η

µk(t+1)
p ∝ µk(t)

p e−η`
k(t)
p

General result

Convergence of µ̄(T ) =
∑

t≤T ηtµ
(t)∑

t≤T ηt
to N for Any Mirror Descent method



Online learning in the routing game Convergence of µ̄(t) Convergence of µ(t)

Mirror Descent

Hedge = Mirror descent on V

Take Dψ(µ, ν) =
∑

k DKL(µk , νk)

Update:

µ(t+1) = arg min
µ∈∆1×···×∆K

∑
k

(〈
`k(µ(t)), µk

〉
+

1
ηt

DKL(µk , µk(t))

)
Solution: Hedge algorithm with learning rate η

µk(t+1)
p ∝ µk(t)

p e−η`
k(t)
p

General result

Convergence of µ̄(T ) =
∑

t≤T ηtµ
(t)∑

t≤T ηt
to N for Any Mirror Descent method



Online learning in the routing game Convergence of µ̄(t) Convergence of µ(t)

Strong convergence of Mirror Descent

Convex V with L-Lipschitz gradient

If ηt small enough, MD update guarantees V (µ(t+1)) ≤ V (µ(k)).

V (µ(t))

V (µ(t+1))

V (µ)

V (µ(t)) + 〈∇V (µ(t)), µ− µ(t)〉

V (µ(t)) + 〈∇V (µ(t)), µ− µ(t)〉 + 1
η
Dψ(µ, µ(t))

(a) Large η

V (µ(t))

V (µ(t+1))

V (µ)

V (µ(t)) + 〈∇V (µ(t)), µ− µ(t)〉

V (µ(t)) + 〈∇V (µ(t)), µ− µ(t)〉 + 1
η
Dψ(µ, µ(t))

(b) Small η

Figure : Mirror Descent iteration for a function with L-Lipschitz gradient.

V (µ(t)) is monotone, converges, so µ(t) → N .
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Summary

Summary
Convergence of µ̄(t) under no-regret updates.
Convergence of a dense subsequence (µ(t))t∈T .

Convergence of µ(t) for no-regret AREP updates.
Hedge, REP

Convergence of µ(t) for MD updates (+ convergence rate)
Hedge

Future work
Bandit setting.
Stochastic perturbations on the losses.
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Thank you.
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