## Efficient Bregman Projections Onto the Simplex

Walid Krichene Syrine Krichene Alexandre Bayen

Electrical Engineering and Computer Sciences, UC Berkeley

ENSIMAG and Criteo Labs, France





December 16, 2015











| Introduction               | Projection Algorithms | Numerical experiments |
|----------------------------|-----------------------|-----------------------|
| ●00                        | 0000000               | 0000                  |
| Bregman Projections onto t | he simplex            |                       |

Bregman projections are the building block of mirror descent (Nemirovski and Yudin) and dual averaging (Nesterov).

- Convex optimization: min<sub>x∈X</sub> f(x)
- Online learning (regret minimization).

| Introduction                | Projection Algorithms | Numerical experiments |
|-----------------------------|-----------------------|-----------------------|
| •00                         | 0000000               | 0000                  |
| Bregman Projections onto th | ne simplex            |                       |

Bregman projections are the building block of mirror descent (Nemirovski and Yudin) and dual averaging (Nesterov).

- Convex optimization: min<sub>x∈X</sub> f(x)
- Online learning (regret minimization).

Algorithm 2 Mirror descent method

- 1: for  $\tau \in \mathbb{N}$  do
- 2: Query a sub-gradient vector  $g^{( au)} \in \partial f(x^{( au)})$  (or loss vector)
- 3: Update

$$x^{(\tau+1)} = \underset{x \in \mathcal{X}}{\arg\min} D_{\psi}(x, (\nabla \psi)^{-1} (\nabla \psi(x^{(\tau)}) - \eta_{\tau} g^{(\tau)}))$$
(1)

- $\psi:$  strongly convex distance generating function.
- $D_{\psi}$ : Bregman divergence.

Numerical experiments

## Illustration of Bregman projections



Figure: Illustration of a mirror descent iteration.

$$x^{(\tau+1)} = \operatorname*{arg\,min}_{x \in \mathcal{X}} D_{\psi}(x, (\nabla \psi)^{-1} (\nabla \psi(x^{(\tau)}) - \eta_{\tau} g^{(\tau)}))$$

| Introduction   | Projection Algorithms | Numerical experiments |
|----------------|-----------------------|-----------------------|
| 000            | 0000000               | 0000                  |
| More precisely |                       |                       |

• Feasible set is the simplex (or cartesian product of simplexes)

$$\Delta = \left\{ x \in \mathbb{R}^d_+ : \sum_i x_i = 1 \right\}$$

Motivation: online learning, optimization with probability distributions.

| Introduction   | Projection Algorithms | Numerical experiments |
|----------------|-----------------------|-----------------------|
| 000            | 0000000               | 0000                  |
| More precisely |                       |                       |

• Feasible set is the simplex (or cartesian product of simplexes)

$$\Delta = \left\{ x \in \mathbb{R}^d_+ : \sum_i x_i = 1 \right\}$$

Motivation: online learning, optimization with probability distributions. • DGF is induced by a potential.

$$\psi(\mathbf{x}) = \sum_{i} f(\mathbf{x}_i)$$

 $f(x) = \int_1^x \phi^{-1}(u) du$ ,  $\phi$  increasing, called the potential. Consequence: known expression of  $\nabla \psi$  and  $(\nabla \psi)^{-1}$ .

Projection Algorithms

Numerical experiments

# Outline



Projection Algorithms



Projection Algorithms

Numerical experiments

## Projection algorithms

General strategy:

## Derive optimality conditions

## Design algorithm to satisfy conditions.

Projection Algorithms

Numerical experiments

## Optimality conditions

$$x^{\star} = \operatorname*{arg\,min}_{x \in \mathcal{X}} D_{\psi}(x, (\nabla \psi)^{-1} (\nabla \psi(\bar{x}) - \bar{g}))$$

#### Optimality conditions

 $x^*$  is optimal if and only if  $\exists \nu^* \in \mathbb{R}$ :

$$egin{aligned} & \forall i, \quad x_i^\star = \left( \phi(\phi^{-1}(ar{x}_i) - ar{g}_i + oldsymbol{
u}^\star) 
ight)_+, \ & \left( \sum_{i=1}^d x_i^\star = 1, \end{aligned}$$

Proof: write KKT conditions, eliminate complementary slackness.

Projection Algorithms

Numerical experiments

## Optimality conditions

$$x^{\star} = \operatorname*{arg\,min}_{x \in \mathcal{X}} D_{\psi}(x, (\nabla \psi)^{-1} (\nabla \psi(\bar{x}) - \bar{g}))$$

#### Optimality conditions

 $x^*$  is optimal if and only if  $\exists \nu^* \in \mathbb{R}$ :

$$egin{aligned} &orall i, \quad x_i^\star = \left(\phi(\phi^{-1}(ar{x}_i) - ar{g}_i + oldsymbol{
u}^\star)
ight)_+, \ &\sum_{i=1}^d x_i^\star = 1, \end{aligned}$$

 $\label{eq:proof: write KKT conditions, eliminate complementary slackness. Comments:$ 

- Reduced a problem in dimension *d* to a problem in dimension 1.
- The function  $c: \nu \mapsto \sum_i \left(\phi(\phi^{-1}(\bar{x}_i) \bar{g}_i + \nu)\right)_+$  is increasing.
- Can solve for  $\nu^{\star}$  using bisection.

Projection Algorithms

Numerical experiments

## Bisection algorithm for general divergences

**Algorithm 3** Bisection method to compute the projection  $x^*$  with precision  $\epsilon$ .

- 1: Input:  $\bar{x}, \bar{g}, \epsilon$ .
- 2: Initialize

$$\bar{\nu} = \phi^{-1}(1) - \max_{i} \phi^{-1}(\bar{x}_{i}) - \bar{g}_{i}$$
$$\underline{\nu} = \phi^{-1}(1/d) - \max_{i} \phi^{-1}(\bar{x}_{i}) - \bar{g}_{i}$$

3: while  $c(\overline{\nu}) - c(\underline{\nu}) > \epsilon$  do 4: Let  $\nu^+ \leftarrow \frac{\overline{\nu} + \nu}{2}$ 5: if  $c(\nu^+) > 1$  then 6:  $\overline{\nu} \leftarrow \nu^+$ 7: else 8:  $\underline{\nu} \leftarrow \nu^+$ 9: Return  $\tilde{x}(\overline{\nu}) = (\phi(\phi^{-1}(\overline{x}_i) - \overline{g}_i + \overline{\nu}))_+$ 

#### Theorem

The algorithm terminates after  $\mathcal{O}(\ln \frac{1}{\epsilon})$  iterations, and outputs  $\tilde{x}$  such that

 $\|\tilde{x}(\bar{\nu}) - x^{\star}\| \leq \epsilon$ 

| Introd | luction |
|--------|---------|
| 000    |         |

Numerical experiments

## Exact projections for exponential divergences

Special case 1:  $\psi(x) = ||x||^2$ : can compute the solution exactly [1].

<sup>[1]</sup> J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the  $\ell_1$  Ball for Learning in High Dimensions, ICML 2008.

Projection Algorithms

Numerical experiments

#### Exact projections for exponential divergences

Special case 1:  $\psi(x) = ||x||^2$ : can compute the solution exactly [1]. Special case 2: Exponential divergence:

$$\phi_{\epsilon}: (-\infty, +\infty) \to (-\epsilon, +\infty)$$
  
 $u \mapsto e^{u-1} - \epsilon,$ 

<sup>[1]</sup> J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the  $\ell_1$  Ball for Learning in High Dimensions, ICML 2008.

Projection Algorithms

Numerical experiments

#### Exact projections for exponential divergences

Special case 1:  $\psi(x) = ||x||^2$ : can compute the solution exactly [1]. Special case 2: Exponential divergence:

$$\phi_{\epsilon}: (-\infty, +\infty) \to (-\epsilon, +\infty)$$
$$u \mapsto e^{u-1} - \epsilon,$$

• For 
$$\epsilon = 0$$
:  
 $\psi(x) = H(x) = \sum_{i} x_i \ln x_i$  (negative entropy).  
 $D_{\psi}(x, y) = D_{KL}(x, y)$ .

<sup>[1]</sup> J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the  $\ell_1$  Ball for Learning in High Dimensions, ICML 2008.

Projection Algorithms

Numerical experiments

#### Exact projections for exponential divergences

Special case 1:  $\psi(x) = ||x||^2$ : can compute the solution exactly [1]. Special case 2: Exponential divergence:

$$\phi_{\epsilon}: (-\infty, +\infty) \to (-\epsilon, +\infty)$$
$$u \mapsto e^{u-1} - \epsilon,$$

• For 
$$\epsilon = 0$$
:  
 $\psi(x) = H(x) = \sum_{i} x_{i} \ln x_{i}$  (negative entropy).  
 $D_{\psi}(x, y) = D_{KL}(x, y)$ .

• For 
$$\epsilon > 0$$
:  
 $\psi(x) = H(x + \epsilon)$   
 $D_{\psi}(x, y) = D_{KL}(x + \epsilon, y + \epsilon)$ .

<sup>[1]</sup> J. Duchi, S. Shalev-Schwartz, Y. Singer, T. Chandra, Efficient Projections onto the  $\ell_1$  Ball for Learning in High Dimensions, ICML 2008.

Projection Algorithms

Numerical experiments

### Motivation

#### Bregman projection with KL divergence.

- Hedge algorithm in online learning.
- Multiplicative weights algorithm.
- Exponentiated gradient descent.
- Has closed-form solution in  $\mathcal{O}(d)$

Projection Algorithms

Numerical experiments

### Motivation

Bregman projection with KL divergence.

- Hedge algorithm in online learning.
- Multiplicative weights algorithm.
- Exponentiated gradient descent.
- Has closed-form solution in  $\mathcal{O}(d)$

#### However:

- $D_{KL}(x, y)$  unbounded on the simplex (problematic for stochastic mirror descent).
- H(x) is not a smooth function (problematic for accelerated mirror descent).

Taking  $\epsilon > 0$  solves these issues.



Projection Algorithms

Numerical experiments

## Optimality conditions

Recall general optimality condition:  $x_i^{\star} = \left(\phi(\phi^{-1}(\bar{x}_i) - \bar{g}_i + \nu^{\star})\right)_+$ .

Optimality conditions with exponential divergence

Let  $x^*$  be the solution and  $\mathcal{I} = \{i : x_i^* > 0\}$  its support. Then

$$\begin{cases} \forall i \in \mathcal{I}, \quad x_i^{\star} = -\epsilon + \frac{(\bar{x}_i + \epsilon)e^{-\bar{g}_i}}{Z^{\star}}, \\ Z^{\star} = \frac{\sum_{i \in \mathcal{I}} (\bar{x}_i + \epsilon)e^{-\bar{g}_i}}{1 + |\mathcal{I}|\epsilon}. \end{cases}$$
(2)

Furthermore, if  $\bar{y}_i = (\bar{x}_i + \epsilon)e^{-\bar{g}_i}$ , then

 $(i \in \mathcal{I} \text{ and } \bar{y}_j > \bar{y}_i) \Rightarrow j \in \mathcal{I}$ 

Projection Algorithms

Numerical experiments

## A sorting-based algorithm

Algorithm 4 Sorting method to compute the Bregman projection with  $D_{\psi_\epsilon}$ 

- 1: Input:  $\bar{x}, \bar{g}$
- 2: Output: *x*\*
- 3: Form the vector  $\bar{y}_i = (\bar{x}_i + \epsilon)e^{-\bar{g}_i}$
- 4: Sort  $\bar{y}$ , let  $\bar{y}_{\sigma(i)}$  be the *i*-th smallest element of *y*.
- 5: Let  $j^*$  be the smallest index for which

$$(1 + \epsilon(d - j + 1))\overline{y}_{\sigma(j)} - \epsilon \sum_{i \ge j} \overline{y}_{\sigma(i)} > 0$$

6: Set 
$$Z = \frac{\sum_{i \ge j^*} \bar{y}_{\sigma(i)}}{1 + \epsilon(d - j^* + 1)}$$
  
7: Set  
 $x_i^* = \left(-\epsilon + \frac{\bar{y}_i}{Z}\right)_+$ 

#### Complexity: $\mathcal{O}(d \ln d)$

Projection Algorithms

Numerical experiments

## A randomized-pivot algorithm

Adapted from the QuickSelect algorithm: Select  $i^{th}$  element of a vector  $\bar{y}$ .

- Can sort then return  $i^{th}$  element:  $\mathcal{O}(d \ln d)$ .
- QuickSelect: expected  $\mathcal{O}(d)$ , worst-case  $\mathcal{O}(d^2)$ .

| Intro | du | cti | on |
|-------|----|-----|----|
| 000   |    |     |    |

Numerical experiments

| Intro | du | cti | on |
|-------|----|-----|----|
| 000   |    |     |    |

Numerical experiments

$$k = 5$$
 9 1 4 8 7 2 3 5 6

| Intro | du | cti | on |
|-------|----|-----|----|
| 000   |    |     |    |

Numerical experiments

| k = 5 | 9 | 1 | 4 | 8 | 7 | 2 | 3 | 5 | 6 |
|-------|---|---|---|---|---|---|---|---|---|
|       | 1 | 2 | 9 | 4 | 8 | 7 | 3 | 5 | 6 |

| Introd | uction |
|--------|--------|
| 000    |        |

Numerical experiments

| k = 5 | 9 | 1 | 4 | 8 | 7 | 2 | 3 | 5 | 6 |
|-------|---|---|---|---|---|---|---|---|---|
|       | 1 | 2 | 9 | 4 | 8 | 7 | 3 | 5 | 6 |
| k = 3 |   |   | 9 | 4 | 8 | 7 | 3 | 5 | 6 |

| Introd | uction |
|--------|--------|
| 000    |        |

Numerical experiments

| k = 5 | 9 | 1 | 4 | 8 | 7 | 2 | 3 | 5 | 6 |
|-------|---|---|---|---|---|---|---|---|---|
|       | 1 | 2 | 9 | 4 | 8 | 7 | 3 | 5 | 6 |
| k = 3 |   |   | 9 | 4 | 8 | 7 | 3 | 5 | 6 |

| Introd | uction |
|--------|--------|
| 000    |        |

Numerical experiments

| k = 5 | 9 | 1 | 4 | 8 | 7 | 2 | 3 | 5 | 6 |
|-------|---|---|---|---|---|---|---|---|---|
|       | 1 | 2 | 9 | 4 | 8 | 7 | 3 | 5 | 6 |
| k = 3 |   |   | 9 | 4 | 8 | 7 | 3 | 5 | 6 |
|       |   |   | 4 | 3 | 5 | 6 | 9 | 8 | 7 |

| Introc | luction |
|--------|---------|
| 000    |         |

Numerical experiments



| Introc | luction |
|--------|---------|
| 000    |         |

Numerical experiments



Projection Algorithms

Numerical experiments



Projection Algorithms

Numerical experiments

## Outline



Projection Algorithms





Numerical experiments

# Scaling of the SortProject and QuickProject



Figure: Execution time of the SortProject and QuickProject algorithms, as a function of problem dimension  $\boldsymbol{d}$ 

Projection Algorithms

Numerical experiments

### Accelerated entropic descent with and without smoothing



Figure: Entropic descent, with and without smoothing [2]. Offline video

 $<sup>\</sup>left[2\right]$  W. Krichene, A. Bayen, P. Bartlett, Accelerated Mirror Descent in Continuous and Discrete Time, NIPS 2015.

| Introduction |  |  |  |  |  |
|--------------|--|--|--|--|--|
| 000          |  |  |  |  |  |
| Summary      |  |  |  |  |  |



Used for

- Convex optimization on the simplex.
- Online learning.
- Accelerated entropic descent.
- Code implementation: github.com/walidk

Projection Algorithms

### Summary

| Bregman projection     | Method          | Complexity                            |  |  |
|------------------------|-----------------|---------------------------------------|--|--|
| General divergence     | Bisection       | $\mathcal{O}(\ln \frac{1}{\epsilon})$ |  |  |
| Exponential divergence | SortProjection  | $\mathcal{O}(d \ln d)$                |  |  |
| Exponential divergence | QuickProjection | $\mathcal{O}(d)$ in expection         |  |  |

Used for

- Convex optimization on the simplex.
- Online learning.
- Accelerated entropic descent.
- Code implementation: github.com/walidk

Thank you!

eecs.berkeley.edu/~walid/

Projection Algorithms

Numerical experiments

## Accelerated entropic descent with and without smoothing

▶ Back



Figure: Entropic descent, with and without smoothing