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Abstract— We study convergence properties of distributed
learning dynamics in repeated stochastic routing games. The
game is stochastic in that each player observes a stochastic
vector, the conditional expectation of which is equal to the
true loss (almost surely). In particular, we propose a model
in which every player m follows a stochastic mirror descent
dynamics with Bregman divergence Dψm and learning rates
ηmt = θmt

−αm . We prove that if all players use the same
sequence of learning rates, then their joint strategy converges
almost surely to the equilibrium set. If the learning dynamics
are heterogeneous, that is, different players use different learn-
ing rates, then the joint strategy converges to equilibrium in
expectation, and we give upper bounds on the convergence rate.
This result holds for general routing games (no smoothness or
strong convexity assumptions are required).

These results provide a distributed learning model that is
robust to measurement noise and other stochastic perturbations,
and allows flexibility in the choice of learning algorithm of each
player. The results also provide estimates of convergence rates,
which are confirmed in simulation.

I. INTRODUCTION

The routing game is a model for congestion on networks
shared by selfish players, and dates back to the seminal work
of Wardrop [25] and Beckmann et al. [3], who modeled
congestion on transportation networks. The formulation has
since been extended, and used to model routing and con-
gestion in transportation and communication networks, see
for example Ozdaglar and Srikant [20], Roughgarden [23]
and the references therein. In particular, the routing game is
known to be a potential game, which makes the computation
of its equilibrium set tractable.

Beyond computing the equilibrium set of the game, dif-
ferent models have been proposed for how players reach
equilibrium using learning dynamics, or repeated play. These
learning dynamics can be used to model how players adjust
their strategies, for example by changing the route a driver
chooses for his/her daily commute, or by changing the
flow distribution of a router in a communication network.
Some models propose player dynamics in continuous time.
For example, Fischer and Vöcking [9] study the replicator
dynamics, and Hofbauer and Sandholm [11] study general
dynamics which satisfy a positive correlation condition with
the gradient field of the potential. Other studies propose
discrete-time models, i.e. repeated play. Such discrete models
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are to some extent a more natural model for decision
dynamics, especially in transportation networks, where the
time scale of the adjustement is day-to-day. Blum et al.
[4] study no-regret dynamics for the routing game, and
derive convergence rates for the time-averaged strategies.
Kleinberg et al. [13] study multiplicative weight updates, a
particular class of no-regret algorithms, and give estimates
of the convergence rates. In [16], we propose another family
of no-regret learning algorithms, based on distributed mirror
descent, and we prove convergence rates.

In this article, we seek to design learning algorithms
which are robust to measurement noise and other stochastic
perturbations. More precisely, we extend the previous models
by assuming that, at each iteration, instead of observing
the exact loss vector, the player rather observes a stochastic
vector, the conditional expectation of which is (almost surely)
equal to the loss of the routing game. This is a natural
extension for two reasons. First, the routing game model may
not capture all sources of congestion, some random variables
(such as weather and incidents) may affect the delay. The
stochastic perturbation vector can be used to model these
effects. Second, the delay measurements can be inherently
noisy, both in transportation and communication networks.

Stochastic learning models have been studied in online
learning theory, e.g. Bubeck and Cesa-Bianchi [7], adaptive
control theory, e.g. Kumar and Varaiya [17], as well as
convex optimization, e.g. Nemirovski et al. [18] and Juditsky
et al. [12]. Adpating ideas from these works, we propose
a family of stochastic distributed learning algorithms and
study their convergence. In our model, we assume that every
population m follows a stochastic mirror descent algorithm,
with Bregman divergence Dψm and learning rates (ηmt ). We
first prove that if the learning is homogeneous, that is, all
players use the same sequence of learning rates (but not
necessarily the same Bregman divergences), then the joint
strategy converges almost surely to the set of equilibria. This
result holds for general convex potential functions, without
additional assumptions on regularity or strong convexity, in
particular, convergence holds even when the equilibrium is
not unique, an assumption which was usually made when
proving similar almost sure convergence, e.g. [5], and which
we manage to relax. We also prove that under an additional
strong convexity assumption, the variance converges to zero
and we give a bound on the convergence rate. Then we
show that in the heterogeneous case, if ηmt = θmt

−αm ,
then the joint strategy converges in expectation to the set
of equilibria, at a O(ln t/tmin(αmin,1−αmax)) rate (the fastest
corresponding rate is O(ln t/

√
t)). This result also holds



for general convex potentials, and concerns the convergence
of the actual sequence of joint strategies rather than the
sequence of averages (a standard but weaker result, which
holds for any sublinear regret algorithm, see e.g. Blum et al.
[4]). The proof uses a combination of standard regret analysis
and a recent induction technique proposed by Shamir and
Zhang [24].

These results provide a model of distributed learning that
is robust to stochastic perturbations, and which is rather
flexible since it allows different populations to use different
learning algorithms with different learning rates. And while
our study is motivated by the routing game, these results also
apply to a more general distributed learning setting, in which
agents optimize over a product of convex compact feasible
sets. In the routing game, the feasible sets are the probability
simplexes over the set of paths available to each population.

In Section II, we give a formal definition of the routing
game and its equilibrium set, and review some basic prop-
erties. In Section III, we define the distributed stochastic
mirror descent algorithm and give a basic regret bound. In
Section IV, we prove the convergence results and derive
convergence rates. These results are formulated in the general
distributed learning setting, and applied to the routing game.
Finally, we illustrate these results on numerical examples
both in the strongly and non-strongly convex cases, which
show that the numerical convergence rates are consistent with
the rates predicted by our theorems.

II. THE ROUTING GAME AND THE LEARNING MODEL

In this section, we review definitions and basic properties.
The routing game is given by a directed graph (V,E), and a
finite set of populations indexed by m ∈M. Each population
is given by an origin vertex and a destination vertex on
the graph, a set of paths Pm connecting them, and a total
population mass Rm (corresponding to the rate of drivers
or the rate of packets to be sent from the origin to the
destination). At each iteration, every population chooses a
flow distribution x

(t)
m in the scaled simplex Xm = {x ∈

R|Pm|+ :
∑
i∈Pm xi = Rm}, that is, a population distributes

its total mass on its available paths.
The product distribution (x

(t)
m )m∈M is denoted by x(t),

and determines the loss of each population m, given by〈
x

(t)
m , `m(x(t))

〉
, where 〈·, ·〉 is the canonical inner product

on R|Pm| and `m(x(t)) ∈ R|Pm|+ is the vector of losses
on paths in Pm, given as follows: for a given product
distribution x, the loss on a path p ∈ Pm is the sum
of edge losses along the path, `m,p(x) =

∑
e∈p ce(Mex)

where ce : R+ → R+ is an increasing function, called the
edge congestion function, and M ∈ {0, 1}|E|×

∑
m |Pm| is

an incidence matrix such that Me,p = 1 if e ∈ p and 0
otherwise, so that Mex is exactly the total flow on edge e.
Note in particular that the distribution of one population may
affect the loss of other populations because of shared edges
on the network.

A. Wardrop equilibria and the Rosenthal potential

The network is said to be at a Wardrop equilibrium1

if no population m can decrease its loss by unilaterally
changing its distribution xm. The set of Wardrop equilibria
will be denoted by W . Then we have the following simple
variational characterization of W:

x? ∈ W ⇔ ∀m, ∀xm ∈ Xm, 〈`m(x?), xm − x?m〉 ≥ 0

⇔ ∀x ∈ ×mXm, 〈`(x?), x− x?〉 ≥ 0 (1)

Rosenthal [22] proposed a convex potential function f de-
fined on the product of simplexes X = ×m∈MXm, that
satisfies the following property: for all x ∈ X , ∇xmf(x) =
`m(x). In other words, the loss vector field `(·) is exactly
the gradient of the potential f . As a consequence, the set of
minimizers of f over X is exactly the set of equilibriaW (the
variational characterization (1) is equivalent to the first order
optimality condition of f ). The potential function plays a
central role in the analysis of distributed learning dynamics:
indeed, a sequence (x(t)) converges to the equilibrium set
W if and only if f(x(t)) converges to f?, the minimum of
f on X . Thus, the joint dynamics of the population can be
viewed as a distributed descent of the potential function.

The potential function is defined as follows: f(x) =∑
e∈E

∫Mex

0
ce(u)du, and can be viewed as the composition

of the convex function f̃ : y 7→∑
e∈E

∫ ye
0
ce(u)du, and the

linear function x 7→ Mx. Note that when ce are differen-
tiable, f̃ is strongly convex if and only if the derivatives c′e(·)
are bounded below by a positive constant on R+, however,
even when f̃ is strongly convex, f may not be, due to the
composition with the incidence matrix M . For this reason,
it will be important to derive convergence guarantees that do
not rely on strong convexity of the potential function.

Algorithm 1 Distributed Stochastic Mirror Descent (DSMD)
with Bregman divergences Dψm and learning rates (ηmt ).

for t ∈ N do
for each population m ∈M do

Play x(t)
m

Observe ˆ̀(t)
m with `(t) ∆

= E[ˆ̀(t)|Ft−1]
a.s.
= ∇f(x(t))

Update

x(t+1)
m = arg min

xm∈Xm

〈
ˆ̀(t)
m , xm

〉
+

1

ηmt
Dψm(xm, x

(t)
m ) (2)

B. Learning Model

Previous models for discrete-time population dynamics,
such as the models used by Blum et al. [4] and Krichene
et al. [16], assume that at iteration t, each population chooses
a flow distribution x

(t)
m , then at the end of the iteration,

population m observes the loss vector `m(x(t)).
We extend this learning model to allow stochastic pertur-

bations of the loss vectors. That is, we now suppose that

1The notion of Wardrop equilibrium is due to Wardrop [25]. If every
population is identified with a measurable set of players with no atoms,
then the Wardrop equilibrium corresponds to a Nash equilibrium up to a
null set of players (see Krichene et al. [14]).



at iteration t, population m observes a stochastic vector ˆ̀(t)
m ,

which is unbiased in the sense that E
[
ˆ̀(t)
m |Ft−1

]
= `m(x(t))

a.s., where (Ft) is the natural filtration of the process (ˆ̀(t)).
Given this setting, we propose the following model for

distributed learning: we suppose that each population m
applies a stochastic mirror descent algorithm with Bregman
divergence Dψm and learning rates (ηmt ). The sequence (ηmt )
is assumed to be positive decreasing. The learning model is
summarized in Algorithm 1. In the next Section, we will give
a motivation and geometric interpretation of the model, then
analyze its convergence in Section IV.

III. DISTRIBUTED STOCHASTIC MIRROR DESCENT

We start by giving a brief review of the mirror descent
method (MD). MD is a general method for constrained
convex optimization, proposed by Nemirovsky and Yudin
[19]. Consider the problem

minimize f(x)

subject to x ∈ X
where f : Rd → R is a convex function defined on a convex,
compact set X ⊂ Rd, and call f? the minimum value of f
on X .

f(x(t))

f(x(t+1))

f(x)

f(x(t)) + 〈∇f(x(t)), x− x(t)〉
f(x(t)) + 〈∇f(x(t)), x− x(t)〉+ 1

ηt
Dψ(x, x

(t))

Fig. 1. Mirror Descent iteration

MD can be interpreted, as observed by Beck and Teboulle
[2], as minimizing, at each iteration t, a local approxima-
tion of the objective function around the current iterate, as
follows:

x(t+1) = arg min
x∈X

〈
∇f(x(t)), x

〉
+

1

ηt
Dψt(x, x

(t))

= arg min
x∈X

f(x(t)) +
〈
∇f(x(t)), x− x(t)

〉
+

1

ηt
Dψt(x, x

(t))

The first term, f(x(t))+
〈
∇f(x(t)), x− x(t)

〉
is the first order

Taylor approximation of the function around the current
iterate, and the second term, Dψ(x, x(t)), is the Bregman
divergence of x with respect to x(t), and penalizes deviations
from x(t). The parameter ηt is a generalized step size which
determines the tradeoff between the two terms. This is
illustrated in Figure 1.

The Bregman divergence associated to the convex, differ-
entiable function ψ : X → R is given by

Dψ(x, y) = ψ(x)− ψ(y)− 〈∇ψ(y), x− y〉

By convexity of ψ, the Bregman divergence is non-negative
and convex in its first argument. The function ψ is said
to be µ-strongly convex w.r.t. a reference norm ‖ · ‖ (not
necessarily the Euclidean norm) if for all x, y, Dψ(x, y) ≥
µ
2 ‖x − y‖2. In particular, if we take ψ(x) = 1

2‖x‖22, then
the Bregman divergence is Dψ(x, y) = 1

2‖x − y‖22, and the
mirror descent update becomes a projected gradient descent
update. In this sense, MD is a generalization of gradient
descent. For a more detailed discussion on the properties of
Bregman divergences, see for example Banerjee et al. [1].

We now adapt this convex optimization setting to the
stochastic routing model proposed in Section II. First, since
the set of joint strategies in the routing game is the Cartesian
product of simplexes, we will assume that the feasible set
X is a Cartesian product of convex feasible sets, X =
×m∈MXm.

A. Stochastic optimization

Next, since the loss vectors are assumed stochastic (and
the loss vector field coincides with the gradient field of the
Rosenthal potential), we will assume that, at each iteration
t, we have access to a stochastic vector ˆ̀(t), such that
the conditional expectation `(t)

∆
= E[ˆ̀(t)|Ft−1] is equal to

∇f(x(t)) almost surely, where (Ft) is the natural filtration
of the stochastic process (ˆ̀(t)).

This stochastic framework is motivated by the stochastic
routing game, however, it is also useful in modeling problems
where computing the exact gradient can be prohibitively ex-
pensive, such as large-scale optimization problems where the
objective function is a sum of individual convex loss terms
over a large set of samples, that is, f(x) = 1

|I|
∑
i∈I `(x, zi).

A cheap estimate of the subgradient of f can then be obtained
by randomly drawing a small subset of samples I(t) ⊂ I,
and defining ˆ̀(t) to be ˆ̀(t) = 1

|I(t)|
∑
i∈I(t) ∇x`(x(t), zi).

In the Distributed Stochastic Mirror Descent model
(DSMD) described in Algorithm 1, the next iterate x(t+1) is
obtained by minimizing, over each feasible set Xm, the sum
of terms

〈
ˆ̀(t)
m , xm

〉
+ 1

ηmt
Dψm(xm, x

(t)
m ). In this case, the

sequence of iterates (x(t)) also forms a stochastic process,
such that x(t) is Ft−1 measurable. We further assume that
the first iterate x(1) is deterministic, i.e. F0 is trivial.

We will make the following important assumptions:
Assumption 1: (i) For each m, the Bregman divergence
Dψm is strongly convex w.r.t. a reference norm ‖ · ‖,
and bounded on Xm, that is, there exists µm > 0 and
Dm > 0 such that for all x, y ∈ Xm, µm

2 ‖x − y‖2 ≤
Dψm(x, y) ≤ Dm,

(ii) The noisy gradient vectors are uniformly square inte-
grable in the dual norm, that is, there exists G > 0

such that for all t, E
[
‖ˆ̀(t)‖2∗

]
≤ G2.

B. A fundamental lemma

The following lemma is an essential step in proving the
convergence results in the next section. It is a generalization
of Lemma 2.1 in Nemirovski et al. [18]. To be self-contained,
we give a proof in the Appendix.



Proposition 1: Consider the DSMD algorithm with Breg-
man divergences Dψm and decreasing learning rates (ηmt )
and let (x(t)) be the resulting stochastic process. Then for
all t2 > t1 ≥ 1, for all m, and all Ft1−1-measurable xm,

t2∑
τ=t1

E
[〈
`(τ)
m , x(τ)

m − xm
〉]
≤

E
[
Dψm(xm, x

(t1)
m )

]
ηmt1

+Dm

(
1

ηmt2
− 1

ηmt1

)
+

G2

2µm

t2∑
τ=t1

ηmτ (3)

This bound can be interpreted as a regret bound, if we
adopt an online learning point of view, as in Zinkevich
[26], Hazan et al. [10], Cesa-Bianchi and Lugosi [8]. The
sum

∑t2
τ=t1

〈
`
(τ)
m , x

(τ)
m − xm

〉
is the cumulative regret of

population m with respect to the stationary process xm.

IV. CONVERGENCE GUARANTEES OF HOMOGENEOUS
AND HETEROGENEOUS DSMD

In this section, we study convergence properties of the
DSMD model proposed in Algorithm 1. The results will be
formulated for general convex functions over a Cartesian
product set X = ×m∈MXm. These results can then be
applied to the stochastic routing game by taking Xm to be
the scaled simplex over paths Pm, and the objective function
f to be the Rosenthal potential.

A. Convergence of averages
We begin with a relatively weak result, which concerns

convergence of the sequence of averages, x̄(t) =
∑t
τ=1 x

(τ)

t .
We show that if the algorithm has a sublinear regret in

expectation, that is,
∑t
τ=1 E[〈ˆ̀(t),x(τ)−x〉]

t converges to 0 as
t → ∞, then f

(
E
[
x̄(t)
])

converges to f?. This can be
guaranteed when (ηmt ) have appropriate decay rates, as in
the following Corollary.

Corollary 1: Consider the DSMD method with ηmt =
θmt
−αm , with θm > 0 and αm ∈ (0, 1). Then

f
(
E
[
x̄(t)
])
− f? ≤

∑
m∈M

(
Dm

θmt1−αm
+

θm
1− αm

G2

2µm

1

tαm

)
The bound is O

(
t−min(αmin,1−αmax)

)
, where αmin and αmax

are, respectively, the smallest and largest rate αm.
Proof: Let x? be a minimizer of f over X . We have

by convexity of f and the fact that `(τ) a.s.= ∇f(x(τ)),

f
(
E
[
x̄(t)
])
− f? ≤

∑t
τ=1 E

[
f(x(τ))− f?

]
t

≤
∑
m

∑t
τ=1 E

[〈
`
(τ)
m , x

(τ)
m − x?m

〉]
t

Then by Proposition 1, and since x? is F0-measurable
(deterministic),

f
(
E
[
x̄(t)
])
− f? ≤

∑t
τ=1 E

[〈
`(τ), x(τ) − x

〉]
t

≤
∑
m∈M

E
[
Dψm(x?m, x

(1)
m )
]

ηm1 t
+
Dm
t

(
1

ηmt
− 1

ηm1

)
+

G2

2µm

∑t
τ=1 η

m
τ

t

≤
∑
m∈M

Dm
tηmt

+
G2

2µm

∑t
τ=1 η

m
τ

t

Finally, since u 7→ u−α is a decreasing function over
R+,

∑t
τ=1 η

m
τ ≤ θm

∫ t
0
u−αmdu = θm

1−αm t
1−αm , which

concludes the proof.

B. Almost sure convergence to X ? in the homogeneous case

Let us denote the set of minimizers by X ? ∆
=

arg minx∈X f(x). We say that a sequence x(t) converges
to X ?, and write x(t) → X ?, if d(x(t),X ?)→ 0 as t→∞
where d is the distance to the set defined as d(x,X ?) =
infy∈X ‖x− y‖.

The bound of Proposition 1 can be used to show that
x(t) a.s.→ X ?, if the learning is homogeneous, i.e. all pop-
ulations use the same learning rates (but not necessarily the
same Bregman divergence).

Theorem 1: Consider the DSMD method, and suppose
that the learning rates (ηt) do not depend on the popula-
tion m. Suppose further that

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <

∞. Then

x(t) a.s.−→ X ?.
Note that a similar almost sure convergence result is known
in the stochastic optimization literature, see for example Bot-
tou [5]. However, such results assume uniqueness of the min-
imizer. We relax this uniqueness assumption by analyzing the
sequence of Bregman divergences from the set of minimizers
to the current iterate, as follows.

Proof: First, we define a Bregman divergence on the
Cartesian product X = ×mXm as follows: for all x ∈ X , let

ψ(x) =
∑
m

ψm(xm). (4)

Then the corresponding Bregman divergence is
Dψ(x, y) =

∑
mDψm(xm, ym). Now let Dψ(X ?, x) =

infx?∈X? Dψ(x?, x). Since Dψ is continuous and X ? is
compact (it is a closed subset of the compact set X ),
we have that the infimum is attained and Dψ(X ?, ·) is
continuous. By continuity of Dψ(X ?, ·) and compactness
of X , we have x(t) → X ? if and only if Dψ(X ?, x(t))→ 0.

We start by showing that Dψ(X ?, x(t)) converges almost
surely, using a semi martingale convergence theorem. From
the proof of Proposition 1, (equation (11) in the Appendix),
we have for all Fτ−1-measurable x, Dψm(xm, x

(τ+1)
m ) ≤

Dψm(xm, x
(τ)
m )− ητ

〈
ˆ̀(τ)
m , x

(τ)
m − xm

〉
+

η2τ
2µm
‖ˆ̀(τ)
m ‖2∗. Thus

summing over m and letting µ be the harmonic mean of
(µm)m∈M, we have

Dψ(x, x(τ+1)) ≤ Dψ(x, x(τ))−ητ
〈

ˆ̀(τ), x(τ) − x
〉

+
η2
τ

2µ
‖ˆ̀(τ)‖2∗

In particular, taking x to be equal to x?(τ) ∆
=

arg minx?∈X? Dψ(x?, x(τ)), we have

Dψ(X ?, x(τ+1)) ≤ Dψ(x?(τ), x(τ+1))

≤ Dψ(x?(τ), x(τ))− ητ
〈

ˆ̀(τ), x(τ) − x?(τ)
〉

+
η2
τ

2µ
‖ˆ̀(τ)‖2∗

= Dψ(X ?, x(τ))− ητ
〈

ˆ̀(τ), x(τ) − x?(τ)
〉

+
η2
τ

2µ
‖ˆ̀(τ)‖2∗



Then, we take conditional expectations with respect to Fτ−1,
and observe that since x(τ) and x?(τ) are Fτ−1-measurable,

E
[〈

ˆ̀(τ), x(τ) − x?(τ)
〉
|Fτ−1

]
=
〈
E
[
ˆ̀(τ)|Fτ−1

]
, x(τ) − x?(τ)

〉
a.s.
=
〈
∇f(x(τ)), x(τ) − x?(τ)

〉
≥ f(x(τ))− f?

Therefore, we have a.s.

E
[
Dψ(X ?, x(τ+1))|Fτ−1

]
≤ Dψ(X ?, x(τ))

− ητ (f(x(τ))− f?) +
η2
τ

2µ
E
[
‖ˆ̀(τ)‖2∗|Fτ−1

]
By the previous inequality, and the fact that

(i) ητ (f(x(τ))− f?) ≥ 0, and
(ii)

∑∞
τ=1

η2τ
2µ‖ˆ̀(τ)‖2∗ is a.s. finite by assumption on (ηt)

and E[‖ˆ̀(τ)‖2∗],
the process

(
Dψ(X ?, x(t))

)
is an almost super-martingale.

Therefore, by the Robbins and Siegmund [21] conver-
gence Theorem, Dψ(X ?, x(τ)) converges almost surely, and∑∞
τ=1 ητ (f(x(τ))− f?) is a.s. finite.
To show that the limit of Dψ(X ?, x(t)) is almost surely 0,

suppose that for some realization, Dψ(X ?, x(t)) converges
to d > 0, then there exists T > 0 such that for all t ≥ T ,
Dψ(X ?, x(t)) > d/2. Let δ ∆

= inf{x∈X :Dψ(X?,x)> d
2 } f(x) −

f?. By continuity of f , we have that δ > 0, thus∑∞
τ=1 ητ (f(x(τ)) − f?) ≥ δ

∑
t≥T ητ = ∞. Therefore

the event limt→∞Dψ(X ?, x(t)) > 0 is a subset of the
event

∑
τ ητ (f(x(τ)) − f?) = ∞, which proves that

Dψ(X ?, x(τ))
a.s.→ 0.

C. Convergence in the homogeneous, strongly convex case

In this section, we assume that f is µf -strongly convex
with respect to Dψ , in the following sense: for all x, y ∈ X ,

f(x) ≥ f(y)+〈∇f(y), x− y〉+µf max(Dψ(x, y), Dψ(y, x)).

We show that under this assumption, the variance of the
iterates converges to 0. First, we observe that by strong
convexity of ψ, we have E

[
‖x− x?‖2

]
≤ 2

µ E [Dψ(x?, x)],
thus it suffices to show the convergence of E

[
Dψ(x?, x(t))

]
.

First, we show the following Lemma.
Lemma 1: Suppose f is µf -strongly convex with respect

to Dψ , and let x? be the minimizer of f over X . Then for
all y ∈ X , 〈∇f(y), y − x?〉 ≥ 2µfDψ(x?, y).

Proof: By strong convexity of f , we have

f(x?) ≥ f(y) + 〈∇f(y), x? − y〉+ µfDψ(x?, y)

f(y) ≥ f(x?) + µfDψ(x?, y)

and we conclude by summing the two inequalities.
We now show convergence of E

[
Dψ(x?, x(t))

]
.

Proposition 2: Suppose that f is µf -strongly convex with
respect to Dψ , where ψ is defined as the sum of ψm, as in
equation (4). Then the homogeneous DSMD algorithm with
homogeneous learning rates (ηt) guarantees

E
[
Dψ(x?, x(t+1))

]
≤ (1− 2µfηt)E

[
Dψ(x?, x(t))

]
+
G2

2µ
η2
t

Proof: We start from equation (11) in the Appendix.
Taking expectation with xm = x?m, and summing over m, it
follows that

E[Dψ(x?, x(t+1))] ≤ E[Dψ(x?, x(t))]

− ηtE[〈ˆ̀(t), x(t) − x∗〉] +
E ‖ˆ̀(t)‖2∗

2µ
η2
t

and since E
[
ˆ̀(t)|Ft−1

]
= ∇f(x(t)) a.s., we have by

Lemma 1

−E
[
〈ˆ̀(t), x(t) − x?〉

]
≤ −2µf E

[
Dψ(x?, x(t))

]

combining the two inequalities, we have the claim.
Theorem 2 (Convergence of variance for ηt = Θ(t−α)):

Suppose that f is µf strongly convex with respect to Dψ ,
and consider the homogeneous DSMD with learning rates
ηt = θ

2µf tα
, α ∈ (0, 1). Then for all t ≥ t0

E
[
Dψ(x?, x(t))

]
≤ C

tα
(5)

where t0 =
⌈(

2α
θ

) 1
1−α
⌉

and C = max(Dtα0 ,
G2θ
4µµ2

f
).

Proof: We show the claim by induction on t ≥ t0. For
t = t0, we have by assumption on Dψ

E
[
Dψ(x?, x(t0))

]
≤ D ≤ C

tα0
.

Now suppose by induction that E
[
Dψ(x?, x(t))

]
≤ C

tα . Then
by Proposition 2,

E
[
Dψ(x?, x(t+1))

]
≤
(

1− θ

tα

)
E
[
Dψ(x?, x(t))

]
+
G2θ2

8µµ2
f

1

t2α

≤
(

1− θ

tα

)
C

tα
+
G2θ2

8µµ2
f

1

t2α

=
C

(t+ 1)α

[(
t+ 1

t

)α(
1 +

1

tα

(
−θ +

G2θ2

8µµ2
fC

))]

≤ C

(t+ 1)α
exp

[
α

t
+

1

tα

(
G2θ2

8µµ2
fC
− θ

)]
To conclude, it suffices to prove that the exponential term is
less than one. By definition of C, G2θ2

8µµ2
fC
− θ ≤ − θ2 , thus

the exponential term is less than one if α
t − θ

2tα ≤ 0, i.e.

t ≥
(

2α
θ

) 1
1−α , which is true if t ≥ t0. Therefore we have

E
[
Dψ(x?, x(t+1))

]
≤ C

(t+ 1)α

which completes the induction.
We observe that when α = 1, the inequality 1

t− θ
2t ≤ 0 holds

whenever θ ≥ 2, in which case t0 = 1, and we recover the
O( 1

t ) bound of Shamir and Zhang [24] for the Euclidean
case with ηt = 1

µf t
.

In fact, we can show that E
[
Dψ(x?, x(t))

]
converges to 0

for any sequence of learning rates such that ηt → 0 and∑
t ηt =∞.



Lemma 2: Let (d(t)) be a sequence of non-negative num-
bers that satisfy the following inequality

d(t+1) ≤ (1− νt)d(t) + Γν2
t

for some Γ > 0 and a positive decreasing sequence νt with∑
t νt =∞. Then for all T with νT ≤ 1, and all t > T ,

d(t) ≤ νTΓ + d(T )e−
∑t−1
τ=T ντ

The Lemma is proved in the Appendix. Combining Proposi-
tion 2 and Lemma 2, we can take νt = µfηt and Γ = G2

2µµ2
f

to obtain

E
[
Dψ(x?, x(t))

]
≤ G2

2µµf
ηT +De−

∑t−1
τ=T µfητ

for any t > T such that µfηT ≤ 1. In particular, this proves
that E

[
Dψ(x?, x(t))

]
→ 0.

D. Convergence in the heterogeneous case

We now analyze the convergence of E
[
f(x(t))

]
for gen-

eral convex functions, under the heterogeneous DSMD model
with learning rates ηmt = θmt

−αm , αm ∈ (0, 1). Shamir and
Zhang [24] prove the convergence of the last iterate in the
case of stochastic gradient descent (a special case of SMD)
for α = 1

2 . Our analysis uses their technique and extends it
to the SMD method with heterogeneous learning rates and
general αm ∈ (0, 1).

Theorem 3: Consider DSMD with learning rates ηmt =
θmt
−αm . Then for all t ≥ 1,

E
[
f(x(t))

]
− f?

≤
∑
m

(
Dm
θm

1

t1−αm
+

θG2

2µm(1− αm)

1

tαm

)
(2 + ln t) (6)

This bound is a O(t−min(αmin,1−αmax) ln t).
Proof: Let t be fixed. Adapting the proof of Shamir

and Zhang [24], we define Sk to be

Sk =
1

k + 1

t∑
τ=t−k

E
[
f(x(τ))

]
We have by convexity of f ,

t∑
τ=t−k

E
[
f(x(τ))− f(x(t−k))

]
≤

t∑
τ=t−k

E
[〈
`(τ), x(τ) − x(t−k)

〉]
=
∑
m∈M

t∑
τ=t−k

E
[〈
`(τ)
m , x(τ)

m − x(t−k)
m

〉]
and applying Proposition 1 with t1 = t − k, t2 = t, and
xm = x

(t−k)
m , which is Ft−k−1-measurable, we have

t∑
τ=t−k

E
〈
`(τ)
m , x(τ)

m − x(t−k)
m

〉
≤ Dm

(
1

ηmt
− 1

ηmt−k

)
+
G2θm
2µm

t∑
τ=t−k

τ−αm

≤ Dm
θm

(tαm − (t− k)αm) +
θmG

2

2µm(1− αm)
(t1−αm − (t− k − 1)1−αm)

where we used the integral bound
∑t
τ=t−k τ

−αm ≤∫ t
t−k−1

u−αmdu. To simplify this bound, we can use the fact
that −(t− k − 1)−αm ≤ −t−αm and write

t1−αm − (t− k − 1)1−αm ≤ t− (t− k − 1)

tαm
=
k + 1

tαm

Similarly, tαm − (t− k)αm ≤ k
t1−αm . Therefore

t∑
τ=t−k

E
[
f(x(τ))− f(x(t−k))

]
≤
∑
m

(
Dm
θm

k + 1

t1−αm
+

θmG
2

2µm(1− αm)

k + 1

tαm

)
(7)

Dividing by k + 1, we have

−E
[
f(x(t−k))

]
≤ −Sk +

∑
m

(
Dm
θm

1

t1−αm
+

θmG
2

2µm(1− αm)

1

tαm

)
Therefore

Sk−1 =
1

k

(
(k + 1)Sk − E

[
f(xt−k)

])
≤ Sk +

∑
m

(
Dm
θm

1

t1−αm
+

θG2

2µm(1− αm)

1

tαm

)
1

k
(8)

We seek to derive a bound on E
[
f(x(t))

]
− f? = S0 − f?,

thus, we can sum inequality (8) for k ∈ {1, . . . , t}, we have

S0 − f? ≤ St−1 − f?

+
∑
m∈M

(
Dm
θm

1

t1−αm
+

θmG
2

2µm(1− αm)

1

tαm

) t−1∑
k=1

1

k
(9)

and from Corollary 1, we have

St−1 − f? ≤
∑
m∈M

(
Dm

θmt1−αm
+

θmG
2

2µm(1− αm)

1

tαm

)
(10)

Finally, combining the inequalities (9) and (10) and using
the fact that

∑t−1
k=1

1
k ≤ 1 + ln t, gives the desired bound.

In particular, for ψ(x) = 1
2‖x‖22, the Bregman divergence

is Dψ(x, y) = 1
2‖x − y‖22, which is strongly convex with

respect to the Euclidean norm with constant µ = 1. Then,
taking α = 1

2 yields the same bound obtained by Shamir and
Zhang [24], Theorem 2.

V. NUMERICAL EXAMPLES
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2 3 4

Fig. 2. Example network with a weakly convex Rosenthal potential.

To illustrate the convergence results of Section IV, we
simulate the stochastic distributed routing on an example
network given in Figure 2. The resulting Rosenthal potential
function f is not strongly convex. The path losses are taken
to be bounded by 1. We add, to each path, a centered
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Fig. 3. Potential values f(x(τ)) − f?, averaged across 100 sim-
ulations (with a 1 standard deviation in dotted lines), for differ-
ent choices of learning rate sequences. The dashed lines show the
O(t−minm min(αm,1−αm) log t) rate predicted by Theorem 3.

Gaussian noise with standard deviation σ, which results
in stochastic loss vectors with a bounded second moment,
E
[
‖ˆ̀‖2∞

]
≤ 1 + σ2. For the population dynamics, we

implement the DSMD given by Algorithm 1, with a Breg-
man divergence generated by a regularized entropy function
ψε(x)

∆
=
∑
i(xi + ε) ln(xi + ε), for some parameter ε >

0. The corresponding Bregman divergence is Dψε(x, y) =∑
i(xi + ε) ln xi+ε

yi+ε
. This choice of function ψ ensures that

the Bregman divergence remains bounded on the simplex,
and that the update step x(t+1)

m = arg minx∈Xm

〈
ˆ̀(τ)
m , xm

〉
+

1
ηmτ
Dψ(xm, x

(τ)
m ) can be solved efficiently: if Xm is a scaled

d-dimensional simplex, then the update can be solved either
in O(d ln d) time using a deterministic algorithm or in
O(d) expected time using a randomized pivot algorithm,
see Krichene et al. [15].

The results of the simulations are given in Figure 3,
in which we report, in log-log scale, the potential values
averaged over 100 realizations, for two different choices of
(heterogeneous) learning rates. The empirical convergence
rates observed in simulation are consistent with those pre-
dicted by Theorem 3.

In addition to the convergence of E
[
f(x(t))

]
, Theorem 2

provides a bound on E
[
Dψ(x?, x(t))

]
if the potential f is

strongly convex and the populations use the same sequence
of learning rates. To illustrate this result, we simulate the
stochastic routing game on a second network, given in
Figure 4, for which the Rosenthal potential is strongly
convex. We implement the DSMD dynamics with homo-
geneous learning rates ηt = θ

t . We report the sequence
E
[
Dψ(x?, x(t))

]
in Figure 5. The empirical convergence rate

is consistent with the O(1/t) bound predicted by Theorem 2.
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Fig. 4. Example network with a strongly convex Rosenthal potential.
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Fig. 5. Bregman divergence to equilibrium, averaged across 100 simu-
lations. The dashed line shows the O(t−1) convergence rate predicted by
Theorem 2.

VI. CONCLUSION

We study a model of stochastic routing, in which the
observed loss vectors are noisy. We propose a distributed
model of learning, based on the stochastic mirror descent
method.

We analyzed the convergence of the DSMD dynamics for
non-smooth convex potentials. In the homogeneous case, i.e.
assuming all populations use learning rates with the same
decay, we prove almost sure convergence of x(t) to the set
of minimizers X ?, and convergence of the variance under an
additional strong convexity assumption.

Under the more general, heterogeneous case, we prove
that with learning rates ηmt = θmt

−αm , αm ∈ (0, 1), the
sequence of expected potentials E

[
f(x(t))

]
converges to f?

at a O(t−min(αmin,1−αmax) ln t) rate. This result holds for
general convex functions (non-smooth, non strongly convex),
and proves convergence of the actual sequence, as opposed to
the weaker result of convergence for the sequence of averages
x̄(t) =

∑t
τ=1 x

(τ)

t , as discussed in Section IV-A.
These results provide a general model for population

dynamics for distributed routing, under which convergence
is robust to stochastic perturbations: convergence of the last
iterate is guaranteed (with a bound on the convergence rate
in expectation), even when different populations use different
Bregman divergences and different learning rates.

Beyond convergence of the DSMD learning model, a
related problem is to study its privacy guarantees: for ex-
ample, if populations have parameters which they would
like to keep private, such as the total mass Rm, one can
show that the presence of noise in the observations provides
differential privacy guarantees. We are currently investigating
this problem, in order to quantify these guarantees.
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〈
ˆ̀(τ)
m , x(τ)

m − xm
〉

=
〈

ˆ̀(τ)
m , x(τ+1)

m − xm
〉

+
〈

ˆ̀(τ)
m , x(τ)

m − x(τ+1)
m

〉
≤ 1

ηmτ

(
Dψm(xm, x

(τ)
m )−Dψm(xm, x

(τ+1)
m )−Dψm(x(τ+1)

m , x(τ)
m )
)

+
ηmτ

2µm
‖ˆ̀(τ)
m ‖2∗ +

µm
2ηmτ
‖x(τ)

m − x(τ+1)
m ‖2

≤ 1

ηmτ

(
Dψm(xm, x

(τ)
m )−Dψm(xm, x

(τ+1)
m )

)
+

ηmτ
2µm
‖ˆ̀(τ)
m ‖2∗ by strong convexity of ψm

(11)

t2∑
τ=t1

〈
ˆ̀(τ)
m , x(τ)

m − xm
〉
≤

t2∑
τ=t1

1

ηmτ

(
Dψm(xm, x

(τ)
m )−Dψm(xm, x

(τ+1)
m )

)
+

t2∑
τ=t1

ηmτ
2µm
‖ˆ̀(τ)‖2∗

=
1

ηt1
Dψm(xm, x

(t1)
m )− 1

ηt2
Dψm(xm, x

(t2+1)
m ) +

t2∑
τ=t1+1

Dψm(xm, x
(τ)
m )

(
1

ηmτ
− 1

ηmτ−1

)
+

t2∑
τ=t1

ηmτ
2µm
‖ˆ̀(τ)
m ‖2∗

≤ 1

ηt1
Dψm(xm, x

(t1)
m ) +Dm

t2∑
τ=t1+1

(
1

ηmτ
− 1

ηmτ−1

)
+

t2∑
τ=t1

ηmτ
2µm
‖ˆ̀(τ)
m ‖2∗ since

1

ηmτ
− 1

ηmτ−1

≥ 0

=
1

ηmt1
Dψm(xm, x

(t1)
m ) +Dm

(
1

ηmt2
− 1

ηmt1

)
+

t2∑
τ=t1

ηmτ
2µm
‖ˆ̀(τ)
m ‖2∗ (12)

APPENDIX

A. Proof of Proposition 1
To prove the proposition, we will use the following lemmas.
Lemma 3 (Fenchel-Young inequality): Let ‖·‖ be a norm on Rd

and ‖ · ‖∗ its dual norm. Then for all x, y ∈ Rd and all α > 0

〈x, y〉 ≤ 1

2α
‖x‖2 +

α

2
‖y‖2∗ (13)

This uses the fact that the functions 1
2
‖ · ‖2 and 1

2
‖ · ‖2∗ are convex

conjugates.
Lemma 4 (Optimality in constrained optimization): Let h be a

differentiable convex function defined on X . Then

x? ∈ arg min
x∈X

h(x)⇔ 〈∇h(x?), x− x?〉 ≥ 0 ∀x ∈ X (14)

In other words, a point is optimal if the gradient at that point forms
an acute angle with all feasible directions [6].

Lemma 5 (Bregman identity): For all x, y, z,

Dψ(x, y) = Dψ(x, z)+Dψ(z, y)+〈∇ψ(z)−∇ψ(y), x−z〉
(15)

The identity can be proved using the definition of a Bregman
divergence and simple algebraic manipulation, see e.g. Beck and
Teboulle [2]. We are now ready to prove the proposition.

Proof: [Proposition 1] By definition of the DSMD update, we
have x

(τ+1)
m ∈ arg minxm∈Xm〈ˆ̀

(τ)
m , xm〉 + 1

ηmτ
Dψm(xm, x

(τ)
m ).

The gradient of this function is ˆ̀(τ)
m + 1

ηmτ
(∇ψm(xm) −

∇ψm(x
(τ)
m )), so by Lemma 4, we have for all xm ∈ Xm

〈ˆ̀(τ)
m , x(τ+1)

m − xm〉 ≤
1

ηmτ

〈
∇ψm(x(τ+1)

m )−∇ψ(x(τ)
m ), xm − x(τ+1)

m

〉
,

and using the Bregman identity (15),

〈ˆ̀(τ)
m , x(τ+1)

m − xm〉 ≤
1

ηmτ

(
Dψm(xm, x

(τ)
m )−Dψm(xm, x

(τ+1)
m )−Dψm(x(τ+1)

m , x(τ)
m )
)

Now by Fenchel-Young’s inequality (13),

〈ˆ̀(τ)
m , x(τ)

m − x(τ+1)
m 〉 ≤ ηmτ

2µm
‖ˆ̀(τ)
m ‖2∗ +

µm
2ηmτ
‖x(τ)

m − x(τ+1)
m ‖2

Combining the two inequalities, we obtain equation (11) at the top
of the page. Summing over τ from t1 to t2 and using an Abel
transformation, we obtain inequality (12). To conclude, it suffices
to take expectations and observe that since x(τ) − x is Fτ−1-
measurable for all τ ≥ t1,

E
[〈

ˆ̀(τ)
m , x(τ)

m − xm
〉]

= E
[
E
[〈

ˆ̀(τ)
m , x(τ)

m − xm
〉
|Fτ−1

]]
= E

[〈
E
[
ˆ̀(τ)
m |Fτ−1

]
, x(τ)
m − xm

〉]
= E

[〈
`(τ)
m , x(τ)

m − xm
〉]

B. Proof of Lemma 2
Proof: Let T be fixed in N, and such that νT ≤ 1. Then

d(t+1)−ΓνT ≤ (1− νt)d(t) + Γν2
t − ΓνT

≤ (1− νt)d(t) + ΓνT νt − ΓνT since νt ≤ νT
= (1− νt)(d(t) − ΓνT )

And since (1 − ντ ) ≥ 0 for all t ≥ T , we have by induction on
t > T

d(t) − ΓνT ≤ Πt−1
τ=T (1− ντ )(d(T ) − νTΓ)

And we conclude by bounding the product Πt−1
τ=T (1 − ντ ) ≤

Πt−1
τ=T e

−ντ = e−
∑t−1
τ=T

ντ
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