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where o ischoserr by the minimization rule or the Armijo rule onthe ——
function f. (Such a method makes sense when V. F is much easier to
compute than VgV, F.) Show that if there exists v € (0, 1) such that

Ve(@)VyF (z,9(2) || <||VeF (z,9(x))|, Vze&"
then the method is convergent in the sense that all limit points of the
sequences that it generates are stationary points of f.

(b) Consider the constrained minimization problem

minimize f(z,y)

subject to h(z,y) =0

where f: R*™™ — R and h : R"T™ — R™ are continuously differen-
tiable functions of the two arguments z € R” and y € R™.. Consider
also a method of the form

xk+1 =z* — akvxf(xk, yk),

where y* is a solution of h(z*,y) =-0, viewed as a system of 7 equations
in the unknown vector y, and o is chosen by the minimization rule or
the Armijo rule. Formulate conditions that guarantee that this method
is convergent.

1.3 GRADIENT METHODS — RATE OF CONVERGENCE

The second major issue regarding gradient methods relates to the
rate (or speed) of convergence of the generated sequences {z*}. The mere
fact that {z*} converges to a stationary point z* will be of little practical
value unless the points z* are reasonably close to x* after relatively few
iterations. Thus, the study of the rate of convergence provides what are
often the dominant criteria for selecting one algorithm in favor of others
for solving a particular problem.

Approaches for Rate of Convergence Analysis
There are several approaches towards quantifying the rate of conver-

gence of nonlinear programming algorithms. We will discuss briefly three
possibilities and then concentrate on the third. '

(a) Computational complexity approach: Here we try to estimate the
number of elementary operations needed by a given method to find
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le or the Armijo r'uler 6n the an oﬁﬁiinal solution exactly or within an e-tolerance. Usually, this

vhen V. F is much easier to ; approach provides worst-case estimates, that is, upper bounds on the
e exists v € (0,1) such that : number of required operations over a class of problems of given di-

. mension and type (e.g. linear, convex, etc.). These estimates may also
(z)) H, vze®R, ’ “involve parameters such as the distance of the starting point from the

optimal solution set, etc. -

5 1l limit points of the o . ‘ | |
e that all limit p . (b) Informational complezity approach: One difficulty with the computa-

points of f- tional complexity approach is that for a diverse class of problems, it
oblem is often difficult or meaningless to quantify the amount of computa-
tion needed for a single function or gradient evaluation. For example,
in estimating the computational complexity of the gradient method
=0 applied to the entire class of differentiable convex functions, how are

we to compare the overhead for finding the stepsize and for updating
the x vector with the work needed to compute the cost function value
and its gradient? The informational complexity approach, which is
discussed in detail in [NeY83] and [TrW80], bypasses this difficulty
by estimating the number of function (and possibly gradient) eval-
uations needed to find an exact or approximately optimal solution
(as opposed to the number of necessary computational operations).
In other respects, the informational and computational complexity
, approaches are similar.

R™ are continuously differen-
€ ®" and y € R™.. Consider

e, 4"),

ved as a system of m equations
»n by the minimization rule or
at guarantee that this method
(¢) Local analysis: In this approach we focus on the local behavior of

~ the method in a neighborhood of an optimal solution. Local analysis
can describe quite accurately the behavior of a method near the so-
lution by using Taylor series approximations, but ignores entirely the
behavior of the method when far from the solution.

SJONVERGENCE The main potential advénta,ge of the computational and informational

complexity approaches is that they provide information about the method’s
progress when far from the eventual limit. Unfortunately, however, this in-
formation is usually pessimistic as it accounts for the worst possible prob-
_lem instance within the class considered. This has resulted in some striking
discrepancies between the theoretical model predictions and practical real-
_ world observations. For example, the most widely used linear programming
~method, the simplex method, is categorized as a “bad” method by worst-
“ case complexity analysis, because it performs very poorly on some specially
constructed examples, which, however, are highly unlikely in practice. On
he other hand, the ellipsoid method of Khachiyan [Kha79] (see [BGTS1]
or a survey), which was the first linear programming method with a poly-
‘Domial complexity bound, is categorized as much better than the simplex
method by worst-case complexity analysis, even though it performs very
poorly on most practical linear programs.

~ The computational complexity approach has received considerable at-
ention in the context of interior point methods. These methods, discussed
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in Sections 2.6, 4.2, and 4.4, were primarily motivated by Karmarkar’s
development of a linear programming algorithm with a polynomial com-
plexity bound that was more favorable than the one of the ellipsoid method
[Kar84]. It turned out, however, that the worst-case predictions for the re-
quired number of iterations of these methods were off by many orders of
magnitude from the practically observed number of iterations. Further-
more, the interior point methods that perform best in practice have poor
worst-case complexity, while the ones with the best complexity bounds are
very slow in practice.

The local analysis approach, which will be adopted exclusively in
this text, has enjoyed considerable success in predicting the behavior of
various methods near nonsingular local minima where the cost function
can be well approximated by a quadratic. However, the local analysis
approach also has some important drawbacks, the most important of which
is that it does not account for the rate of progress in the initial iterations.
Nonetheless, in many practical situations this is not a serious omission
because progress is fast in the initial iterations and slows down only in
the limit (the reasons for this seem hard to understand; they are problem-
dependent). Furthermore, often in practice, starting points that are near a
solution are easily obtainable by a combination of heuristics and experience,
in which case local analysis becomes more meaningful.

Local analysis is not very helpful for problems which either involve
singular local minima or which are difficult in the sense that the principal
methods take many iterations to get near their solution where local analysis
applies. It may be said that at present there is little theory and experience
to help a practitioner who is faced with such a problem.

1.3.1 The Local Analysis Approach

We now formalize the basic ingredients of our local rate of convergence
analvcis apprnanh These are:

SH Oalii. 21080 &

(a) We restrict attention to sequences {z*} that converge to a unique
limit point z*. \

(b) Rate of convergence is evaluated in terms of an error function e :
Rn — R satisfying e(z) > 0 for all z € R and e(z*) = 0. Typical
choices are the Euclidean distance

e(x) = ||z — z*|
and the cost difference

e(z) = |f(z) - f(=*)]-

(c) Our analysis is asymptotic, that is, we look at the rate of cbnvergence
of the tail of the error sequence {e(z*)}.
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(d) The generated error sequence {e(z*)} is compared with some “stan-
dard” sequences. In our case, we compare {e(z*)} with the geometric
progression )

: G5, k=0,1,...,

where 3 € (0,1) is some scalar. In particular, we say that {e(azk)}
converges linearly or geometrically, if there exist ¢ > 0 and 3 € (0,1)
such that for all &

e(zk) < ¢B*.

It is possible to show that linear convergence is obtained if for some
B € (0,1) we have
e(zk+1)
lim sup ——— < 0,
k-—)oop e(xk) B IB

that is, asymptotically, the error is dropping by a factor of at least
3 at each iteration (see Exercise 3.6, which gives several additional
convergence rate characterizations). If for every 8 € (0,1), there
exists ¢ such that the condition e(z*¥) < gB* holds for all k, we say
that {e(mk)} converges superlinearly. This is true in particular, if

; elzk+1
lim sup ﬁk—)- =0.
k—oo  €(zF)
To quantify further the notion of sﬁperlinear convergence, we may
compare {e(z*)} with the sequence

@t k=00,

where 8 € (0,1), and p > 1 are some scalars. This sequence con-
verges much faster than a geometric progression. We say that {e(m’“)}
converges at least superlinearly with order p, if there exist ¢ > 0,
B € (0,1), and p > 1 such that for all &

e(z*) < q(B)P".

The case where p = 2 is referred to as quadratic convergence. It is
possible to show that superlinear convergence with order p is obtained
if

lim sup

— < 0
PR E(Ik)p )

or equivalently, e(z*+1) = O(e(z*)P); see Exercise 3.7.

Most optimization algorithms that are of interest in practice produce
sequences converging either linearly or superlinearly, at least when they
converge to nonsingular local minima. Linear convergence is a fairly sat-
isfactory rate of convergence for nonlinear programming algorithms, pro-
vided the factor 3 of the associated geometric progression is not too close
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to unity. Several nonlinear programming algorithms converge superlinearly
for particular classes of problems. Newton’s method is an important ex-
ample, as we will see in the present section and also in Section 1.4. For
convergence to singular local minima, slower than linear convergence rate
is quite common.

1.3.2 The Role of the Condition Number

Many of the important convergence rate characteristics of gradient
methods reveal themselves when the cost function is quadratic. To see
why, assume that a gradient method is applied to minimization of a twice
continuously differentiable function function f : ®" — R, and it generates a
sequence {z*} converging to a nonsingular local minimum z*. By Taylor’s
theorem we have :

(@) = f(z*) + 3@ — 2y V2 f(@*) (@ — o) +o(llz - z*||2).
Therefore, since V2 f (:c*) is positive definite, f can be accurately approxi-
mated near z* by the quadratic function ~

f(z*) + 3 (@ — ) V2 f (@) (@ — 27)-

We thus expect that asymptotic convergence rate results obtained for the
quadratic cost case have direct analogs for the general case. This conjecture
can indeed be established by rigorous analysis and has been substantiated
by extensive numerical experimentation. For this reason, we take the pos-
itive definite quadratic case as our point of departure. We subsequently
discuss what happens when V2 f(z*) is not positive definite, in which case
an analysis based on a quadratic model is inadequate.

eepest Descent for Q adratic Functions

Sog -

Convergence Rate of S

Suppose that the cost function f is quadratic with positive definite
Hessian Q. We may assume without loss of generality that f is minimized
at z* = 0 and that f(z*) = 0 [otherwise we can use the change of variables
y = & — z* and subtract the constant f (z*) from f(z)]. Thus we have

f(z)=32'Qz, V@) =Qz,  V(@)=0Q.
The steepest descent method takes the form
gkl = gk — ok V f(2F) = (I — o*Q)z>.
Therefore, we have

fzk+1]|2 = o+ (I — akQ)2zk.
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Since by Prop. A.18(b) of Appendix A, we have for all z € R"
/(I — okQ)2z < (maximum eigenvalue of (I — akQ)?)||zl|2,
we obtain
|zk+1|2 S (maximum eigenvalue of (I — a*Q)?) llz* 2.

Using Prop. A.13 of Appendix A, it can be seen that the eigenvalues of
(I — a*Q)? are equal to (1 — ak);)2, where \; are the eigenvalues of Q.
Therefore, we have '

maximum eigenvalue of (I — a*Q)? = max{ (1 — afm)?, (1 - akM)?},
where
m : smallest eigenvalue of @,
M : largest eigenvalue of Q.
It follows that for =¥ # 0, we have

lﬁ—;;%ﬂ fmax{ll —akml, |1 — ok M|} (3.1)

It can be seen that if |1 — a¥m| > |1 — oFM|, this inequality holds as
an equation if z* is proportional to an eigenvector corresponding to m.
Otherwise, if |1 — akm| < |1 — a*M]|, the inequality holds as an equation

if z* is proportional to an eigenvector corresponding to M.

Figure 1.3.1 illustrates the convergence rate bound of Eq. (3.1) as
a function of the stepsize a*. It can be seen that the value of ¥ that

minimizes the bound is )

“M+m

a*
in which case ‘
| s+ _ M —m
. =k — M+ m’
This is the best convergence rate bound for steepest descent with constant
stepsize.
There is another interesting convergence rate result, which holds when

ak is chosen by the line minimization rule. This result quantifies the rate
at which the cost decreases and has the form

FlzEry (M —m\?
e elGrm) o

The above inequality is verified in Prop. 1.3.1, given in the next subsection,
where we collect and prove the more formal results of this section. It can
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max {11 - oaml, i1 - aMi}

VM+mﬁi—rﬁ-

Stepsizes that
Guarantee Convergence

Figure 1.3.1. Illustration of the convergence rate bound Jja*+1||/||z*|| < max{ [1—

am|,|1 — aM I} for steepest descent. The bound is minimized for o such that
1—am = oM -1, that is, for a = 2/(M +m)-

be shown that the inequality is sharp in the sense that given any (), there
is a starting point 20 such that this inequality holds as an equation for all
k (see Fig. 1.3.2). _

The ratio M/m is called the condition number of Q, and problems
where M/m is large are referred as ill-conditioned. Such problems are
characterized by very elongated elliptical level sets. The steepest descent
method converges slowly for these problems as indicated by the convergence
rate bounds of Egs. (3.1) and (3.2), and as illustrated in Fig. 1.3.2.

Scaling and Steepest Descent

Consider now the more general method ,
zhtl = gk — ok DEV f(z¥), (3.3)

where DF is positive definite and symmetric; most of the gradient methods
of interest have this form as discussed in Section 1.2. It turns out that we
may view this iteration as a scaled version of steepest descent. In particu-
lar, this iteration is just steepest descent applied in a different coordinate
system, which depends on D*.

Indeed, let

S

S = (Dk)1/2

denote the positive definite square root of D¥ (cf. Prop. A.21 in Appendix
A), and consider a transformation of variables defined by

z = Sy.
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Figure 1.3.2. Example showing that the convergence rate bound

F@tYy (M —m)\?
ok (M+m)
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is sharp for the steepest descent method with the line minimization rule. Consider

the quadratic function

n
f@ =4 Nl
i=1

where 0 < m =X € X < < dn = M. Any positive definite quadratic
function can be put into this form by transformation of variables. Consider the

starting point
!
e = (m™1,0,. ,0,M7Y)

and apply the steepest descent method zh+1 = gk — ok V f(z*) with oF chosen
by the line minimization rule. We have V f(z%) = (1,0,...,0,1)" and it can
be verified that the minimizing stepsize is ol = 2/(M + m). Thus we obtain

1

1 i{ h 1 s /Af Iy Loan) ml— U S,
z} = 1/m —2/(M +m), zp, = /M ~2/(M +m), z; =0 for i = 2,...,n—1

Therefore,

M+m

S

o = (M;m) (m"l,o,...,o,—M-l)'

and, we can verify by induction that for all k,

— 2k _ 2k
22k — (M m) 0, z2kH= (M m) =y
M+m M+m

Thus, there exist starting points on the plane of points z of the form z
(€1,0,...,0,&n), &1 € R, &n € R, in fact two lines shown in the figure,
which steepest descent converges in a way that the inequality

F*tY) (M —m)\?
f(z*) s (M+m)

is satisfied as an equation at each iteration.

for
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Then, in the space of y, the problem is written as

minimize h(y) = f(Sy)

subject to y € . 34)
The steepest descent method for thisrproblem‘ takes the form
YR =k - aFVAQE). (3:5)
Multiplying with S, we obtain |
| Syk+1 = Syk — aFSVA(YE).
By passing back to the space of z, using the relations
zk = Syk, Vh(yk) = SV f(z*), 82 = Dk, (3.6)

we obtain N
zhtl = gk — ok DFV f(xk).

Thus the above gradient iteration is nothing but the steepest descent
method (3.5) in the space of y.

We now apply the convergence rate results for steepest descent to the
scaled iteration y*+1 = y* — ak¥Vh(y*), obtaining

[ < max{|1 — a*mk|, |1 — a* MF|}

lly*|

and )
k+1 k _ gk
h,(?{ 1,.\) < (M A = \) ’
h(yk) — \M*+m* )

[cf. the convergence rate bounds (3.1) and (3.2), respectively], where m*
and Mk are the smallest and largest eigenvalues of the Hessian V2h(y),
which is equal to SV2f(x)S = (D¥)/2Q(D¥)!/2. Using the equation yk =
(DF)—1/2gk to pass back to the space of z, we obtain the convergence rate
bounds ‘

mk—%—l’(Dk)—lxk-{-l
z*' (Dk)-1zk

< max{(1 — akmk)2, (1 — aF M*)?} | (8.7

and

pk+1 Mk —mk\?
f;(mk)) ) (Mk+mk> ’ 5:5)

where :
mk . smallest eigenvalue of (D*)1/2Q(DF¥)1/2,
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MF : largest eigenvalue of (D¥)1/2Q(D¥)!/2.
The stepsize that minimizes the right-hand side bound of Eq. (3.7) is

-2

T E (3.9)

The important point is that if M*/mF is much larger than unity,
the convergence rate can be very slow, even if an optimal stepsize is used.
Furthermore, we see that it is desirable to choose Dk as close as possible
to Q-1, so that (Dk)!/2 is close to @~1/2 (cf. Prop. A.21 in Appendix A)
and M* ~ mF ~ 1. Note that if D is so chosen, Eq. (3.9) shows that the
stepsize o = 1 is near optimal.

Diagonal Scaling

Many practical problems are ill-conditioned because of poor relative
scaling of the optimization variables. By this we mean that the units in
which the variables are expressed are incongruent, in the sense that single
unit changes of different variables have disproportionate effects on the cost.

As an example, consider a financial problem with two variables, in-
vestment denoted z1 and expressed in dollars, and interest rate denoted z2
and expressed in percentage points. If the effect on the cost function f due
to a million dollar increment of investment is comparable to the effect due
to a percentage point increment of interest rate, then the condition number
will be of the order of 1012!! [This rough calculation is based on estimating
the condition number by the ratio

02 f (z1,22) /321‘(:61,3?2)
@3) | (@m)

approximating the second partial derivatives by the finite difference formu-

02 f(x1,72) _ f(.xl + h1,22) + f(z1 — h1,z2) — 2f (21, T2)

R o ’
2 f(xy,22) _ fla, 2+ he) + fla1, 22 — hg) — 2f(z1,72)
O % | ’

and using the relations flzr + h1,22) = f(z1,22 + h2), flz1 — hi,T2) ~

fz1,z2 — h2), and hy = 105, ho = 1, which express the comparability of
the effects of a million dollar investment increment and an interest rate
percentage point increment.]

The ill-conditioning in such problems can be significantly alleviated by
changing the units in which the optimization variables are expressed, which
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amounts to diagonal scaling of the variables. By this, we mean working in
a new coordinate system of a vector y related to z by a transformation,

T = 5Y,

where S is a diagonal matrix. In the absence of further information, a
reasonable choice of S is one that makes all the diagonal elements of the
Hessian of the cost

SV2f(z)S

in the y-coordinate system approximately equal to unity. For this, we must

have
f - (azf(@ V2
8§i =~ (6.’131)2) 3

where s; is the ith diagonal element of S. As discussed earlier, we may
express any gradient algorithm in the space of variables y as a gradient
algorithm in the space of variables z. In particular, steepest descent in the
y-coordinate system, when translated in the z-coordinate system, yields
the diagonally scaled steepest descent method

zk+l = gk — ok DV f(z*),

where

d 0 0 - 0 0 0
0 d& 0 --- 0 0 0
D=1} ¢ o 0o : ,
0o 0 0 --- 0 di, O
0 0 0 ---0 0 d&
and

e (B12)

" This method is also valid for nonquadratic problems-as long as d,’f are

chosen to be positive. It is not guaranteed to improve the convergence
rate of steepest descent, but it is simple and often surprisingly effective in
practice.

Nongquadratic Cost Functions

1t is possible to show that our main conclusions on rate of convergence
carry over to the nonquadratic case for sequences converging to nonsingular
local minima.

Let f be twice continuously differentiable and consider the gradient
method )
zk+l = gk — ok DFV f(zF), (3.10))
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where Dk is positive definite and symmetric. Consider a generated sed.uence
{z*}, and assume that

zk — z*, Vf(z*) =0, V2 f(z*) : positive definite, (3.11)
and that z* # z* for all k. Then, denoting .
mk : smallest eigenvalue of (Dk)1/2V2f(:rk)(Dk)1/2,
MF : largest eigenvalue of (D’“)lﬂvzf(xk)(Dk)l/Z,

it is possible to show the following:

(a) There holds

) (zh+1 — *) (Dk)=1 (gh+! — z¥)
1
B SIP ok — a7y (DR~ (= — )
= limsup max{|1 — akmk|2, |1 — akMk|2}.

k—00

(b) If aF is chosen by the line minimization rule, there holds

C flaR) = £ Mk —mk\?
i Sup “F ) - 1) S“i‘i‘i"(Mumk) - G

The proof of these facts essentially involves a repetition of the proofs
for the quadratic case. However, the details are complicated and tedious
and will not be given.

From Eq. (3.12), we see that if D* converges to some positive definite
‘matrix as zk — z*, the sequence {f(z*)} converges to f(z*) linearly. When

Dk = V2f(e*) 7,

we have limg_ oo MF = limk—oo mk = 1 and Eq. (3.12) shows that the con-
vergence rate of {f (z*)} is superlinear. A somewhat more general version
of this result for the case of the Armijo rule is given in the Prop. 1.3.2,.
which is given in the next subsection. In particular, it is shown that if the
direction

dk = —D*V f(z*)

approaches asymptotically the Newton direction — (V2 f (z¥)) Y f(z¥) and
the Armijo rule is used with initial stepsize equal to one, the rate of con-~

vergence is superlinear.
There is a consistent theme that emerges from our analysis, namely
that to achieve asymptotically fast convergence of the gradient method

gh+1 = gk — ak DRV f(2¥),
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one should try to choose the matrices D* as close as possible to (V2 f (z*)) !
so that the maximum and minimum eigenvalues of (D*)1/2V2 f(z*)(D*)1/2
satisfy M* =~ 1 and m* ~ 1. Furthermore, when DF¥ is so chosen, the initial
stepsize s = 1 is a good choice for the Armijo rule and other related rules,
or as a starting point for one-dimensional minimization procedures used in
minimization stepsize rules. This finding has been supported by extensive
numerical experience and is one of the most reliable guidelines for selecting
and designing optimization algorithms for unconstrained problems. Note,
however, that this guideline is valid only for problems where the cost func-
tion is twice differentiable and has positive definite Hessian near the points
of interest. We discuss next problems where this condition is not satisfied.

Singular and Difficult Problems

We now consider problems where the Hessian matrix either does not
exist or is not positive definite at or near local minima of interest. Ex-
pressed mathematically, there are local minima z* and directions d such
that the slope of f along d, which is V f(z* 4+ ad)’d, changes very slowly
or very rapidly with «, that is, either

* 1d *\/
limo Vf(z -i—ad)ad Vf(z*)d ~0, (3.13)

or

im Vf(z* + ad)d— Vf(z*)d

lim. - (3.14)

The case of Eq. (3.13) is characterized by flatness of the cost along the
direction d; large excursions from z* along d produce small changes in
cost. In the case of Eq. (3.14) the reverse is true; the cost rises steeply
along d. An example is the function

f(z1,2) = |w1|4 + |z2]3/2

g A\ ~ 7

where for the minimum z* = (0,0), Eq. (3.13) holds along the direction
d = (1,0) and Eq. (3.14) holds along the direction d = (0,1). Gradient
methods that use directions that are comparable in size to the gradient
may require very large stepsizes in the case of Eq. (3.13) and very small
stepsizes in the case of Eq. (3.14). This suggests potential difficulties in the
implementation of a good stepsize rule; certainly a constant stepsize does
not look like an attractive possibility. Furthermore, in the Armijo rule,
the initial stepsize should not be taken constant; it should be adjusted
according to a suitable scheme, although designing such a scheme may not
be easy. :
From the point of view of speed of convergence one may view the
cases of Egs. (3.13) and (3.14) as corresponding to an “infinite condition
~ number,” thereby suggesting slower than linear convergence rate for the
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method of steepest descent. Proposition 1.3.3 of the next subsection quan-
tifies the rate of convergence of gradient methods for the case of a convex
function whose gradient satisfies the Lipschitz condition

IV£(z) - VIl < Lllz -yl - (315)

for some L, and all z and ¥ in a neighborhood of z* [this assumption is
consistent with the “fat” cost case of Eq. (3.13), but not with the “steep”
cost case of Eq. (3.14)]. It is shown in particular that for a gradient method
with the minimization rule, we have :

Fla*) — f(z*) = o(1/k).

“This type of estimate suggests that for many practical singular problems

one may be unable to obtain a highly accurate approximation of an optimal
solution. In the “steep” cost case where Eq. (3.14) holds for some directions
d, computational examples suggest that the rate of convergence can be
slower than linear for the method of steepest descent, although a formal
analysis of this conjecture does not seem to have been published.

It should be noted that problems with singular local minima are not
the only ones for which gradient methods may converge slowly. There
are problems where a given method may have excellent asymptotic rate
of convergence, but its progress when far from the eventual limit can be

* very slow. A prominent example is when the cost function is continu-

ously differentiable but its Hessian matrix is discontinuous and possibly
singular in some regions that are outside a small neighborhood of the so-
lution; such functions arise for example in augmented Lagrangian methods
for inequality constrained problems (see Section 4.2). Then the powerful
Newton-like methods may require a very large number of iterations to get
to the small neighborhood of the eventual limit where their convergence
rate is favorable. What happens here is that these methods use second
derivative information in sophisticated ways, but this information may be
misleading due to the Hessian discontinuities.

Generally, there is a tendency to think that difficult problems should
be addressed with sophisticated methods, such as Newton-like methods.
This is often true, particularly for problems with nonsingular local minima
that are poorb; conditioned. However, it is important to realize that often
the reverse is true, namely that for problems with “difficult” cost functions
and singular local minima, it is best to use simple methods such as (perhaps
diagonally scaled) steepest descent with simple stepsize rules such as a
constant or a diminishing stepsize. The reason is that methods that use
sophisticated descent directions and stepsize rules often rely on assumptions
that are likely to be violated in difficult problems. We also note that for
difficult problems, it may be helpful to supplement the steepest descent
method with features that allow it to deal better with multiple local minima
and peculiarities of the cost function. An often useful modification is the
heavy ball method, discussed in Exercise 3.9.
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1.3.3 Convergence Rate Results

We first derive the convergence rate of steepest descent with the min-
imization stepsize rule when the cost is quadratic.

Proposition 1.3.1; Consider the quadratic function
f(z) = $2'Qx, (3.16)

where Q is positive definite and symmetric, and the method of steepest
descent

ghtl = gk — ok V f(zF), (3.17)

where the stepsize o is chosen according to the minimization rule
f(z* — ok Vf(zF)) = m;%f(xk — aVf(z*)).
a>
Then, for all k,

M-m
flzk+1) < (M+m

)2 Fa),

‘where M and m are the largest and smallest eigenvalues of @, respec-
tively. :

Proof: Let us denote
g% = Vf(a*) = Qu*. (3.18)

The result clearly holds if g¢ = 0, so we assume g* # 0. We first compute

the minimizing stepsize a. We have

VOPOIALT o VYO iV

d

o f(a* —agh) = —g¥'Qak — agh) = —g¥ gk + agh'Qgk.

By setting this derivative equal to zero, we obtain

oh o 579"
g+’ Qgk

We have, using Egs. (3.16)-(3.18),

(3.19)
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and using Eq. (3.19),

flak+t) =3 (xk!ka - 7+ Qg*

Thus, usihg the fact f(z*) = Lok’ Qb = Lgk' Q—1gk, we obtain
: 3 2

Sk = (1 B (g’“iQ;Z;c(i’t');“gk)) 7 (320

At this point we need the following lemma.

Lemma 3.1: (Kantorovich Inequality) Let Q be a positive defi-
nite and symmetric n x n matrix. Then for any vector y € R,y # 0,

- there holds
(y'y)? 4Mm

> ]
' Qy)(yQ1y) ~ (M +m)?
" where M and m are the largest and smallest eigenvalues of @, respec-
tively. -

Proof: Let \1,...,\, denote the eigenvalues of @ and assume that
O<m=A< A< <A =M

Let S be the matrix consisting of the n’ orthogonal eigenvectors of @), nor-
malized so that they have unit norm (cf. Prop. A.27 in Appendix A). Then,
it can be seen that S'QS is diagonal with diagonal elements A1, ..., An. By
using if necessary a transformation of the coordinate system that replaces
y by Sz, we may assume that Q is diagonal and that its diagonal elements
are A, ..., An. We have for y = (Y1, yn) #0

N R >3V &
/ 1)—1 2\
(v QY)Y Q Y) (Z?:I Azyf) (2?:1 ?;‘_11)

By letting

2
gj - lel yz2
and by defining |
C Ry
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we obtain :
wy)?  _ ¢&)

Q)Y Qty) ¥

Figure 153.3 shows that we have ‘

BlE) . i
() = Du+ A

which proves the desired inequality. Q.E.D.

Returning to the proof of Prop. 1.3.1, we have by using the Kan-
torovich inequality in Eq. (3.20)

o) < (1 o) ftat) = (ﬁ;mz o).

Q.E.D.

The following proposition shows superlinear convergence for methods

where d¥ approaches the Newton direction —(V2 I (a:*))‘lv f(z*) and the
Armijo rule is used.

Proposition 1.3.2: (Superlinear Convergence of Newton-Like
Methods) Let f be twice continuously differentiable. Consider a
sequence {z*} generated by the gradient method zk+l = gk + akdk
and suppose that

zk —o*,  Vf(z*) =0, V2f(z*): positive definite. (3.21)
Assume further that Vf(z*) # 0 for all kK and

‘ o 18+ (V27@) @)
oo ViG]

0. (3.22)

Then, if ok is chosen by means of the Armijo rule with initial stepsize
s=1and o < 1/2, we have

et o]
lim ————— = 2
o) |zF — x*|| (3.23)
Furthermore, there exists an integer k > 0 such that o = 1 for all
k > k (i.e., eventually no reduction of the initial stepsize will be taking
place).
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N
M+An- Y EN
i=1

Ao n
yE) =X éi
i=1\i

o(€)= -,-,-1—"
igagmi

Figure 1.3.3. Proof of the Kantorovich inequality. Consider the function 1/A.
The scalar E:;l £;\; represents, for any £ = (€1,...,6n) With & 2 0, 22;1 &=
1, a point in the line segment [A1,Mn]. Thus, the values ¢(€) = 1/ Z;;l EiNi
correspond to the thick part of the curve 1/A. On the other hand, the value ¥(§) =
Z?:l(&; /i) is a convex combination of 1/A1,:..,1/An and hence corresponds
to a point in the shaded area in the figure. For the same vector ¢, both ¢(¢) and
P(&) are represented by points on the same vertical line. Hence,

N
WO 2 1B, TR

n

The minimum is attained for A = (A1 + An)/2 and we obtain

$O) o ik
$(E) T a0

which is used to show the result.

Proof: We ﬁrét prove that there exists a % > 0 such that for all k > k,
flzk + d¥) — f(aF) < oV f(k)dE,

that is, the unity initial stepsize passes the test of the Armijo rule. By the
mean value theorem, we have

o+ d8) = F(ak) = VI + 4T,

where T is a point on the line segment joining zk and z*F + dF. Thus, it
will be sufficient to show that for k sufficiently large, we have

Vf(zk)de + 3deV2F(EF)dE < oV f(ak)dE.
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By defining
Pk = __V_fix_k)_’ gk = ___d_k_—’
| IV £ (=)l IV £ ()
this condition is written
(1— o)pHa + 3a¥ V2 F(E*)g* <0. (3:24)

From Eq. (3.22), we have gk — (V2f(z*))~'p¥ — 0. Since V2f(z*) is
positive definite and |[p*|| = 1, it follows that {g*} is a bounded sequence,
and in view of ¢F = d& /|| V f(z*)|| and Vf(z*k) — 0, we obtain dt — 0.
Hence, z*+dk — z*, and it follows that Z*F — z* and V2f(Z*) — V2f(z*).
We now write Eq. (3.22) as
-1
¢t = —(V2f(a*) Pk + 65 |

where {3} denotes a vector sequence with B¢ — 0. By using the above
relation and the fact V2f(Z*) — V2f(z*), we may write BEq. (3.24) as

(1 — ) (V2 £ () Pk — 40 (V2 (@) PF 2%,

where {y*} is some scalar sequence with v — 0. Thus Eq. (3.24) is -

“equivalent to
(4 - 0)p¥ (V24(@) T PF 27

Since 1/2 > o, |lp*|| = 1, and V2f(z*) is positive definite, the above
relation holds for sufficiently large k. Thus, the unity initial stepsize is

acceptable for sufficiently large k, as desired.
To complete the proof, we note that from Eq. (3.22), we have

& + (V2f(@*) T V(zk) = | VF*)Is, (3.25)

where 8k is some vector sequence with &% — 0. From Taylor’s theorem we
obtain

Vi(ak) = V2 f(z*)(z* — z*) + olllzk — z*[)),
from "which ; _
(V2£(@*)) " V(@) = ok -z + ofla* — 2],
|V f(z*)|| = O(llz* — z*|))-
Using the above two relations in Eq. (3.25), we obtain
dk + zk — z* = o||zF — z*))- 7 (3.26)
Since for sufficiently large k we have dk + xk = k+1, Eq. (3.26) yields

ok =z = ofe* — ),
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7f(z*)lI8k, (3.25)
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(lle* = 2*1)),

o(flz* — z*1),

-

: obtain
). (3.26)

. gk+1, Eq. (3.26) yields

1
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from which

et ollet el
k—oo ||lzk — z*|| k—oo ||lzF — x|

Q.E.D.

Note that the equation limg—co (||zF+1 — 2*||/|lz* — z*||) = 0 implies
that {]|Jz% — z*||} converges superlinearly (see Exercise 3.6). In particu-
lar, we see that Newton’s method, combined with the Armijo rule with
unity initial stepsize, converges superlinearly when it converges to a local
minimum z* such that V2f(z*) is positive definite. The capture theorem
(Prop. 1.2.5) together with the preceding proposition suggest that Newton-
like methods with the Armijo rule and a unity initial stepsize converge to
a local minimum z* such that V2f(z*) is positive definite, whenever they
are started sufficiently close to such a local minimum. The proof of this is
left as Exercise 3.2 for the reader. '

We finally consider the convergence rate of gradient methods for sin-
gular problems whose cost is sufficiently flat for a Lipschitz condition on
the gradient to hold.

Proposition 1.3.3: (Convergence Rate of Gradient Methods
for Singular Problems) Suppose that the cost function f is convex
and its gradient satisfies for some L the Lipschitz condition

Vi)~ Vil < Ljz—yll, Vz,yeR™ (3.27)

Consider a gradient method z*+! = zF + akd* where o is chosen
by the minimization rule, and the angle between d* and Vf (z*) is
bounded away from 90 degrees, that is, for some ¢ > 0 and all k£ we
have ‘

Virydt <~ Vi) la.  (328)
Suppose that the set of global minima X* of f is nonempty and
bounded. Then : ;

f(z*) = f* = o(1/k),

where f* = min, f(z) is the optimal value.

Proof: We assume that Vf(z¥) # 0 and therefore also d* # 0 for all
k; otherwise the method terminates finitely at a global minimum and the
result holds trivially. Let

_ |Vf(ak)d|
~ Liles2

ik (3.29)
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k= gk + akdk. (3.30)

By using the descent lemma (Prop. A.24 in Appendix A), and Egs. (3.28)
and (3.29), we have

F(@) — f(ak) < —GF|V F(z*)/dH] + 3 (@F)2L] a2

= gk (_Iv'f(xk);dk‘ 4 %IVf(xk)/dki)

i

v sabya

[VSayaep
L2

. _IviEIE

- 2L

Using this relation together with the fact f(z*+!) < f (z*), we obtain

Fzkt) < flak) - Eﬁﬂ%‘v_k)_uz_ ' (3.31)

Since X*, the set of global minima of f, is nonempty and compact,
all the level sets of f are compact (Prop. B.9 in Appendix B). Thus, {z*}
is bounded, and by Prop. 1.2.1, all limit points of {z*} belong to X*, and
the distance of z* from X*, defined by

k *) — i k — m*
(e, X*) = mig, ot ==

converges to 0. Using the convexity of f, we also have for every global
minimum z*

fla*) = fl@) S VIhy ek ) < V£ - ek = 2],

from which, by minimizing over x* € X*,

f(@*) = f* < |V f(F)ll dlz*, X). (3.32)
Let us-denote for all k » '
ek = f(*) — f*.
Combining Egs. (3.31) and (3.32), we obtain
: 2(ek)2
okt < ek — — ) vk, (3.33)

2Ld(zk, X*)2’

where we assume without loss of generality that d(z*, X*) # 0.
We will show that Eq. (3.33) implies that e = o(1/k). Indeed we

0okt <ok (1 c2ek
< U ——
e e ( 2Ld(a;k,X*)2>’

have
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(3.30)
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) < f(&k), we obtain
M2 - (331)

nonempty and kcompact,
Appendix B). Thus, {z*}
f {z*} belong to X*, and

=1,

Jso have for every global
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c2ek

R A—
0<d=3Tagr, X7y’

from which

62
SN L A —
()™ + Sra(r X

Summing this inequality over all k, we obtain

k-1
c2
k< 0)—1 — ) *\—2
e _((e) +2L;=0d(m,X) ) ,

or

R 1 2 = 9
< | =+ — i X*)—
kek < keo+2Lk;d(m,X)

Since d(z?, X*) — 0, we have d(zi, X*)~2 — oo and

e
c2

Therefore the right-hand side of Eq. (3.34) tends to 0, implying that ek =

o(1/k). QE.D.

Note that the preceding proof can be modified to ¢
the Lipschitz condition (3.27) holds within the set {z | f(
thermore, the proof goes through for any stepsize rule for which a relation
of the form f(zk+1) < f(zk) — |V f(z¥)||? can be established for some

v > 0 [cf. Eq. (3.31)]; see Exercise 3.8.

With additional assumptions on the structure of the function f some
more precise copvergence rate results can be obtained. In particular, if f
is convex, has a unique minimum %, and satisfies the f

condition

f@)— f(@) 2 ale—a*[|?, V@ such that f(z) < f(20),

for some scalars ¢ > 0 and 8 > 2, it can be shown [Dun81] that for the
method of steepest descent with the Armijo rule we have

f(a¥) ~ (@) = O (——i—) .

kB2

-1
— Zd(mi,X*)'z — 00.
2Lk prd

over the case where
z) < f(x9)}. Fur-

ollowing growth

75

. ’ -1 . ; .
(eh+1)=1 > (ek)~1 {1~ ____‘f?f___ > (ek)-1 14 ___c_zik____
- 2Ld(zk, X*)? - 2Ld(zk, X*)?

(3.34)
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EXERCISES

3.1

Estimate the rate of convergence of steepest descent with the line minimiza-
tion rule when applied to the function of two variables flz,y) = 2% +41.999zy+
y%. Find a starting point for which this estimate is sharp (cf. Fig. 1.3.2).

3.2

Let f be twice continuously differentiable. Consider a sequence {mk} gener-
ated by the gradient method 25+l = zF 1 o*d* and suppose that z* is a non-
singular local minimum. Assume that, for all k, V f(x*)# 0 and d* = d(z*),
where d(-) is a continuous function of x with

L@+ (i@ @]
s,V f(2)70 | vr@)| -

Furthermore, o is chosen by means of the Armijo rule with initial stepsize
=1and ¢ < 1/2. Show that there exists an € > 0 such that if |2° —z*|| < €,
then:

(a) {z*} converges to z.
(b) a® =1 for all k.

(0) limpooo([lz*+? = 2 |l/lla* — *|l) =0.

3.3

Consider a positive definite quadratic problem with Hessian matrix Q. Sup-
pose we use scaling with the diagonal matrix whose ith diagonal element is
q;;}, where gi; is the ith diagonal element of Q. Show that if Q is 2 x 2, this
diagonal scaling improves the condition number of the problem and the con-
vergence rate of steepest descent. (Note: This need not be true for dimensions

higher than 2.)

3.4 (Steepest Descent with Errors) -
e
p
Consider the steepest descent met/béd
/
"t = xkr S(Vf(fl)k) + ek),

where s is a constant stepsize, ek\\ is an error satisfying ||e*|| <6 for all k, and
f is the positive definite quadratic function

f@) = 4z -2 Qz—=z).
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Let ‘ -
q= max{ll —sm],|1 - le},
where
m : smallest eigenvalue of Q, M : largest eigenvalue of @,

and assume that ¢ < 1. Show that for all k, we have

86

lz* =2 < 7= P Fllz” ~ 2"l

3.5

Consider the positive definite quadratic func’mon flx) = iz 'Qx and the steep-
est descent method with the stepsize o chosen by the Goldstein rule. Show
that for all k,

f(?kﬂ)ﬁ (1—%—;‘))—2—> F(z*).

Explain why when o = 1/2 this relation yields the result of Prop. 1.3.1. Hint:
Use the result of Exercise 2.9.

3.6 [Ber82a]

Consider a scalar sequence {e*} with e* > 0 for all k, and ed — 0. We
say that {ek} converges faster than lmearly with convergence ratio 8, where
0 < B < 1, if for every B € (8,1) and ¢ > 0, there exists % such that

& <qf’, VEkxFk

We say that {ek} converges slower than linearly with convergence ratio B,
where 0 < 8 < 1, if for every § € (8,1) and g > 0, there exists k such that

°

q—ﬁ—kgek, Vk>k.

We say that {e*} converges linearly with convergence ratio B if it converges
both faster and slower than linearly with convergence ratio 3. Show-that:

(a) {€*} converges faster than linearly with convergence ratio 3 if and only
- if .
limsup(e®)*/* < B.

k—oo

{e*} converges slower than linearly with convergence ratio 3 if and only
if

liminf(e )1/k > 5.
k—o0
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{e*} converges linearly with convergence ratio 3 if and only if
lim (¥)V* = 3.
k—oc0

(b) Assume that e* # 0 for all &, and denote

k1 k+1
. .. p€ .

B = liminf ——, B2 = lim sup
k—oo € k<00

ek’

Show that if 0 < 81 < B2 < 1, then {e*} converges faster than linearly
with convergence ratio 32 and slower than linearly with convergence ra-
tio B1. Furthermore, if 81 = B2 = 0, then {€*} converges superlinearly.

3.7

Consider a scalar sequence {e*} with e* > 0 for all k, and e® — 0. Show that
{e*} converges superlinearly with order p if

k+1

lim sup eT)P

k—o0

< oo

3.8

Prove the result of Prop. 1.3.3 for the steepest descent case [d* = —V f (z*)],
and assuming that the stepsize is not chosen by the line minimization rule
but is instead a sufficiently small constant.

3.9 (The Heavy Ball Method [Pol64])

Consider the following variant of the steepest descent method:

2 = oF — oV f(2F) + B(a* — 271, k=1,2,...,

where « is a constant positive stepsize and 3 is a scalar with 0 < 8 < 1.

(a) Let f be the quadratic function f(z) = (1/ 2)2'Qz + 'z, where Q is
positive definite and symmetric, and let m and M be the minimum and
the maximum eigenvalues of @, respectively. Show that the method
converges linearly to the unique solution if 0 < a < 2(1 + §)/M. Show
that with optimal choices of o and 3, the ratio of linear convergence is

VM - ym
VM +m’
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which, if m < M, is faster than the corresponding ratio of the steepest
descent method where 3 = 0 and « is chosen optimally [cf. Eq. (3.1)].
Hint: Consider the iteration

(m’“”) _ ((1+ﬂ)[—aQ —m) ( z* )
;vk - I 0 ; :1:’“”1‘

and show that v is an eigénvalue of the matrix in the above equation if
and only if v + 8/v is equal to 1+ 8 — aA where ) is an eigenvalue of
. Q ‘

(b) It is generally conjectured that in comparison to steepest descent, the

method is less prone to getting trapped at “shallow” local minima, and

~ tends to behave better for difficult problems where the cost function is

alternatively very flat and very steep. Argue for or against this conjec-
ture.

(¢) In support of your answer in (b), write a computer program to test the
method with 8 = 0 and 8 > 0 with one-dimensional cost functions of
the form

f(z) = 32 (1 + v cos()),

where v € (0,1), and
fl@) =14 |z — tanh(zy:),
=1

where z; and y; are given scalars.

1.4 NEWTON’S METHOD AND VARIATIONS

In the last two sections we emphasized a basic tradeoff in gradient
methods: implementation simplicity versus fast convergence. ‘We have al-
ready discussed steepest descent, one of the simplest but also one of the
slowest methods.. We now consider its opposite extreme, Newton’s method,
which is arguably the most complex and also the fastest of the gradient
methods (under appropriate conditions).

Newton’s method consists of the iteration

phH = gk — ok (V2f(z*)) TV f(ah), (4.1)
assumihg that the Newton direction

dk = —(V2f(a¥)) T V() (4.2)
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is defined and is a direction of descent [i.e., di'V f(z*) < 0]. As explained
in the preceding section, one may view this iteration as a scaled version of
steepest descent where the “optimal” scaling matrix (V2 (:::’“))_1 is used.
It is worth mentioning in this connection that Newton’s method is “scale-
free”, in the sense that it cannot be affected by a change in coordinate
system as is true for steepest descent (see Exercise 4.1).

When the Armijo rule is used with initial stepsize s = 1, then no
reduction of the stepsize will be necessary near a nonsingular minimum
(positive definite Hessian), as shown in Prop. 1.3.2. Thus, near convergence
the method takes the form

okl = gk — (V2f(zk)) TV f(a*), (4.3)

which will be referred to as the pure form of Newton’s method. Onthe
other hand, far from such a local minimum, the Hessian matrix may be
singular or the Newton direction of Eq. (4.2) may not be a direction of
descent because the Hessian V2 f(z*) is not positive definite. Thus the
analysis of Newton’s method has two principal aspects:

(a) Local convergence, dealing with the behavior of the pure form of the
method near a nonsingular local minimum.

(b) Global convergence, addressing the modifications that are necessary
to ensure that the method is valid and is likely to converge to a local
minimum when started far from all local minima.

We consider these issues in this section and we also discuss some
variations of Newton’s method, which are aimed at reducing the overhead
for computing the Newton direction.

Local Convergence

gether with the superlinear convergence result for Newton-like methods
(Prop. 1.3.2) suggest that the pure form of Newton’s method converges
superlinearly when started close enough to a nonsingular local minimum.
Results of this type hold for a more general form of Newton’s method, that
can be used to solve the system of n equations with n unknowns

The local convergence result for gradient methods (Prop. 1.2.5) to-

g9(x) =0, (4.4)

where g : R — Rn is a continuously differentiable function. This method
has the form

oh+l = gk — (Vg(ak)) " g(a*), (4.5)

and for the special case where g(z) is equal to the gradient V f(z), it yields
the pure form of Eq. (4.3). [A continuously differentiable function g : R —
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% need not be equal to the gradient of some function. In particular,
g(z) = Vf(z) for some [ : R +— R, if and only if the n X n matrix
Vg(x) is symmetric for all z ([OrR70], p. 95). Thus, the equation version
of Newton’s method (4.5) is more broadly applicable than the optimization
version of Eq. (4.3).] , o

There is a simple argument that shows the fast convergence of New-
ton’s method (4.5). Suppose that the method generates a sequence {z*}
that converges to a vector z* such that g(z*) =0 and Vg(z*) is invertible.
Let us use Taylor’s theorem to write

0 = g(z*) = gla*) + Vg(at) (z* — &) + ol — z*]).
By multiplying this relation with (Vg(m’“)’)_l we have
ok =z — (Vg(¥)) " g(a*) = o(llz* = =),
so for the pure Newton iteration z*+1 = z¥ — (Vg(x’“)’)—1 g(z*) we obtain
| ghtl — z* = o(||:1:k — :1;*”);
or, for z* # z*,

ekt —ar) o o(llek —all)
lim =8 = lim " =0,
koo |k —z*||  kmoe [laF —a*||
implying superlinear convergence. This argument can also be used to show
convergence to z* if the initial vector x0 is sufficiently close to xz*. The
following proposition proves a more detailed result.

Proposition 1.4.1: Consider a function g : ®" — R, and a vector
z* such that g(z*) = 0. For § > 0, let S5 denote the sphere {z |
llz — z*|| < 6}. Assume that g is continuously differentiable within
some sphere S5 and that Vg(z*) is invertible. '

(a) There exists 6 > 0 such that if 20 € Sj, the sequence {z*}
generated by the iteration

zhH = ok — (Vg(*)) " glak)

is defined, belongs to S5, and converges to z*. Furthermore,
{ll=* — z*||} converges superlinearly.
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(b) If for some L >0, M >0, § > 0, and for all z and y in S5,
19 - V@) < le—l, || (V@) <4 09)
then, if 0 € S’g,»we’ ha;/e . .
ok — 2] g%{nxk Celr, Vk=0,1,..

so {||lz% — z*||} converges superlinearly with order at least two.

Proof: (a) Let § > 0 be such that (Vg(m)’)#l exists within Ss and let
M > 0 be such that _

“(Vg(x)')“ln <M, Vz€Ss
Assuming = € Ss, and using the relation
g(zF) = /01 Vg(w* + t(xk — x*))/dt(xk — %),
we estimate ||zF+t1 — z*|| as

|k +1 — 2| = “ack —z* — (Vg(xk)')_lg(xk)“

— [|(Za(e*)) ™ (Volaby (@ - o) - gab) | RN %)

= (Vg(:r:’“)’)—1 (Vg(x’“)’ - /0 Vg(z* + t(xk - x*))’dt) (zk —z*)

= (Vg(ac’“)’)_1 (/01 [Vg(x’“)’ —Vg(z* + t(z* - x*)?'] dt) (zk — z*)

1 .
<M ( /{) [Vg(a*) — Vg(a* +t(z* — )| dt) llzk — o).

By continuity of Vg, we can take & sufficiently small to ensure that the
term under the integral sign is arbitrarily small. The convergence zk — x*
and the superlinear convergence of ||z* — z*|| follow.

(b) If the condition (4.6) holds, Eq. (4.7) yields
1
ot el < ([ Lot - oelde) | = o) = Sk — P
~ 0 ; v

Q.E.D.
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(4.7)

P x*))/dt) (zk —z*)

7 2]

ik — :z:*))l] dt) (zF — x*)

st =l

- small to ensure that the
The convergence z¥ — z*
llow.

o = Bt - a7l
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A related result is the following. Its proof is left for the reader.

Proposition 1.4.2: Under the assumptions of Prop. 1.4.1(a), given
‘any 7 > 0, there exists a § > 0 such that if |zF — z*|| < 6, then

b+t — g+ < rllak —ell,  lg@ )l < rlg(ak)ll

Thus, once it gets “near” a solution z* where Vg(z*) is invertible, the
pure form of Newton’s method converges extremely fast, typically taking
a handful of iterations to achieve very high solution accuracy; see Fig.
1.4.1. Unfortunately, it is typically difficult to predict whether a given
starting point is sufficiently near to a solution for the fast convergence
rate of Newton’s method to become effective right away. Thus, in practice
one can only expect that eventually the fast convergence rate of Newton’s
method will become effective. Figure 1.4.2 illustrates how the method can
fail to converge when started far from a solution.

'Global Convergence

Newton’s method in its pure form for unconstrained minimization of
f has several serious drawbacks.

(a) The inverse (V2f (sv:’“))—1 may fail to exist, in which case the method
breaks down. This will happen, for example, in regions where fis
linear (V2f = 0).

(b) The pure form is not a descent method; it may happen that f(zk+1) >
f(zF).

(c) The pure form tends to be attracted by local maxima just as much

as it is attracted by local minima. It just tries to solve the system of
equations V f(z) = 0.

For these reasons, it is necessary to modify the pure form of Newton’s
method to turn it into a reliable minimization algorithm. There are several
schemes that accomplish this by converting the pure form into a gradient
method with a gradient related direction sequence. Simultaneously the
modifications are such that, near a nonsingular local minimum, the algo-
rithm assumes the pure form of Newton’s method (4:3) and achieves the
attendant fast convergence rate.

A simple possibility is to replace the Newton direction by the steepest
descent direction (possibly after diagonal scaling), whenever the Newton.
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[
gix)=e*-1
k Xk gk
0 - 1.00000 |- 0.63212
1 0.71828 | 1.05091
2 0.20587 | 0.22859
3 0.01981 0.02000
4 0.00019 | 0.00019
5 0.00000 | 0.00000
|
0 1
X =‘ -1 0 X2 : X1 -
: / X

Figure 1.4.1. Fast convergence of Newton’s method for solving the equation
e —1=0. )

 9(x)

=¥

-

Figure 1.4.2. Divergence of Newton’s method for solving an equation g(z) = 0
of a single variable z, when the starting point is far from the solution. This
phenomenon typically happens if || Vg(z)|| tends to decrease as |z|| — oo.

direction is either not defined or is not a descent direction.f With proper

1 Interestingly, this motivated the development of steepest descent by M.
Augustin Cauchy. In his original paper [Caud7], Cauchy states as motivation for
the steepest descent method its capability to obtain a close approximation to the
solution, in which case “... one can obtain new approximations very rapidly with
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safeguards, such a method has appropriate convergence and asymptotic
rate of convergence properties (see Exercise 4.3 and for a related method,
see Exercise 4.4). However, its performance at the early iterations may be
quite slow, whether the Newton direction or the steepest descent direction
is used in these iterations. ‘ . ‘

‘Generally, no modification of Newton’s method can be guaranteed
to converge fast in the early iterations, but there are schemes that can use
second derivative information effectively, even when the Hessian is not pos-
itive definite. These schemes are based on making diagonal modifications
to the Hessian; that is, they obtain the direction d* by solving a system of

the form
(V2 (@) + AF)dk = =V f(z*),

whenever the Newton direction does not exist or is not a descent direction.
Here Ak is a diagonal matrix such that

V2 f(zk) + Ak : positive definite.
We outline some possibilities.
Modified Cholesky Factorization™ .

Tt can be shown that every positive definite matrix @ has a unique factoriza-
tion of the form ‘
Q=LL,
where L is a lower triangular matrix; this is known as the Cholesky factor-
ization of @ (see Appendix D). Systems of equations of the form Qz = b can
be solved by first solving for y the triangular system Ly = b, and then by
- solving for z the triangular system L'z = y. These triangular systems can
be solved easily [in O(n2) operations as opposed to general systems, which
require O(n?) operations; see Appendix D). Since calculation of the Newton
direction involves solution of the system

V2 (et = -V ("),

it is natural to compute d* by attempting to form the Cholesky factorization
of V2f(z*). During this process, one can detect whether V2f(z*) is either
nonpositive definite or nearly singular, in which case some of the diagonal
elements of V2 f(z*) are suitably increased to ensure that the resulting matrix
is positive definite. This is done sequentially during the factorization process,
so in the end we obtain

LkLk' — vzf(mk)_‘_Ak’

where L is lower triangular and nonsingular, and A* is diagonal.

the aid of the linear or Newton’s method ...”" (Note the attribution to Newton
by Cauchy.) '
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As an illustration, consider the 2-dimensional case (for the general case,

see Appendix D). Let
2. kv [ b1 ha2
v. 1) = (hm ; hzz>

and leﬁ the desired factorization be of the form

0 a v\ .
=% - .
(”f p ) ( 0 A8 >
We choose a, 3, and 7, so that V2f(z") = LL if V2 f(x"*) is positive definite,

and we appropriately modify hy1 and hg2 otherwise. This determines the first
diagonal element & according to the relation

o= vhi1 if hi1 >0
Vhi1 + 61 otherwise

where & is such that hi1 + 61 > 0. Given o, we can calculate v by equating
the corresponding elements of V2 f (mk) and LL'. We obtain yo = haz or

hag
Y= =

e
We can now calculate the second diagonal element 8 by equating the corre-
sponding elements of V2f (mk) and LL', after appropriately modifying hao if

necessary,
ﬂ" w/hzg—’yz ifh22>’72,
/haz — 7%+ 62 otherwise,

where 83 is such that hes — 4% 4 62 > 0. The method for choosing the incre-
ments 8; and 62 is largely heuristic. One possibility is discussed in Appendix
D, which also describes more sophisticated versions of the above procedure
where a positive increment is added to the diagonal elements of the Hes-
sian even when the corresponding diagonal elements of the factorization are
positive but very close to zero.

Given the LELF factorization, the direction d¥ is obtained by solving
the system -
LFLE'dF = =V f(z).

-

The next iterate is

="+ adk,
where o is chosen according to the Armijo rule or one of the other stepsize
rules we have discussed. :

To guarantee convergence, the increments added to the diagonal ele-
ments of the Hessian can be chosen so that {d*} is gradient related (cf. Prop.
1.2.1). Also, these increments can be chosen to be zero near a nonsingular
local minimum. In particular, with proper safeguards, near such a point, the
method becomes identical to the pure form of Newton’s method and achieves
the corresponding superlinear convergence rate (see Appendix D). ‘
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Trust Region Methods*

As explained in Section 1.2, the pure Newton step is obtained by minimizing

over d the second order Taylor series approximation of f around z*, given by
F(d) = f(a*) + V(") d+ §d V2 f(=")d.

We know that f*(d) is a good approximation of f(zF + d) when d is in a
small neighborhood of zero, but the difficulty is that with unconstrained min-
imization of f*(d) one may obtain a step that lies outside this neighborhdod‘
It therefore makes sense to consider a restricted Newton step d* obtained by
minimizing f*(d) over a suitably small neighborhood of zero, called the trust
region: :
d® = arg min 5 (d), (4.8)
, lall<v
where " is some positive scalar. [It can be shown that the restricted Newton
step d* also solves a system of the form (V2 fla®)+651 ) d = -V f(z*), where
I is the identity matrix and §% is a nonnegative scalar (a Lagrange multiplier
in the terminology of Chapter 3), so the preceding method of determining
d* fits the general framework of using a correction of the Hessian matrix by
a positive semidefinite matrix.] An approximate solution of the constrained
minimization problem of Eq. (4.8) can be obtained quickly using the fact that
it has only one constraint (see [MoS83]).

An important observation here'is that even if V2 f(x*) is not positive
definite or, more generally, even if the pure Newton direction is not a descent
direction, the restricted Newton step d* improves the cost, provided V f (a:k) #
0 and " is sufficiently small. To see this, note that we have for all d with
lidl < +* o
f* +d) = £5(d) + (")),
so that

fla* 4+ ) = £4(@) +o((0"))
=fw5+M?FM{Vﬂde+§JVH%ﬁM}+o«ff)
dj| <y )

Therefore, denoting
3= V£(z*) o
. INZICRl

we have

Fa* 4+ d) <f(a¥) + VHEHE + 3d VD +o((FF))
- _ O :

+0((7*)?).

For v* sufficiently small, the negative term —~*||V f(z*)|| dominates the last
two terms on the right-hand side above, showing that

Fa") < f(z").
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It can be seen in fact from the preceding relations that a cost improvement
is possible even when Vf (z*) = 0, provided ~* is sufficiently small and f
has a direction of negative curvature at z*, that is, V2f(z*) is not positive
semidefinite. Thus the preceding procedure will fail to improve the cost only
if Vf(z*) = 0and V2f (z*) is positive semidefinite, that is, z® satisfies the
first and second order necessary conditions. In particular, one can typically
make progress even if z* is a stationary point that is not a local minimum.
We are thus motivated to consider a method of the form

k
2 =28+ d,

where d* is the restricted Newton step corresponding to a suitably chosen
scalar 4 as per Eq. (4.8). Here, for a given z*, 4* should be small enough so
that there is cost improvement; one possibility is to start from an initial trial
~* and successively reduce 4" by a certain factor as many times as necessary
until a cost reduction occurs [f(z**!) < f(z*)]. The choice of the initial
trial value for 4 is crucial here; if it is chosen too large, a large number
of reductions may be necessary before a cost improvement occurs; if it is
chosen too small the convergence rate may be poor. In particular, to maintain
the superlinear convergence rate of Newton’s method, as z® approaches a
nonsingular local minimum, one should select the initial trial value of 7*
sufficiently large so that the restricted- Newton step and the pure Newton
step coincide.

A reasonable way to adjust the initial trial value for +* is to increase
this value when the method appears to be progressing well and to decrease
this value otherwise. One can measure progress by using the ratio of actual
over predicted cost improvement [based on the approximation E(d)]

e 1)~ £
F@) - )

In particular, it makes sense to increase the initial trial value for v (v > 7¥)
if this ratio is close to or above unity, and decrease « otherwise. The following
algorithm is a typical example of such a method. Given z* and an initial trial
value v*, it determines #*+1 and an initial trial value ¥**' by using two
threshold values o1, o2 with 0 < g1 < 02 < 1 and two factors B, B2 with
0 < B <1< p (typical values are 01 = 0.2, o2 = 0.8, B =0.25, B2 =2).

Step 1: Find
‘ d* =arg min f*(d), 4.9)
lajj<v* : :

It f5(d*) = f(z*) stop (z® satisfies the first and second order necessary

conditions for a local minimum); else go to Step 2.
Step 2: If f(zF +d¥) < f(x¥) set

ot =2* 4 dF (4.10)

-calculate .
' * f(xk) - f($k+1)

= 5@ = @) (+11)
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and go to Step 3; else set 4* ;= B1]|d¥|| and go to Step 1.
Step 3: Set

Boy®  if 62 < 7 and [|d¥]] =", (4.12)

~* otherwise.

ki {ﬂlnd’“ll if ¥ < o1,

Go tov the next iteration.

Assuming that f is twice continuously differentiable, it is possible to
show that the above algorithm is convergent in the sense that if {z*} is a
bounded sequence, there exists a limit point of {z*} that satisfies the first
and the second order necessary conditions for optimality. Furthermore, if
{wk} converges to a nonsingular local minimum z*, then asymptotically, the
method is identical to the pure form of Newton’s method, thereby attaining a
superlinear convergence rate; see the references given at the end of the chapter
for proofs of these and other related results for trust region methods.

Newton’s Method with Periodic Reevaluation of the Hessian

A variation of Newton’s method is obtained if the Hessian matrix
V2§ is recomputed every p > 1 iterations rather than at every iteration.

"In particular, this method, in unmodified form, is given by

gkl = gk — ok DEV f(zk),
where
Dipti = (V2f(z®)) ",  §=0,1,.,p—1,i=0,1,..
The idea here is to save the computation and the inversion (or factorization)

of the Hessian for the iterations where j # 0. This reduction in overhead
is achieved at the expense of what is usually a small degradation in speed

of convergence.

Truncated Newton Methods*

We have so far implicitly assumed that the system V?2f (zk)dk =
—V f(z*) will be solved for the direction dk by Cholesky factorization or
Gaussian elimination, which require a finite number of arithmetic opera-
tions [O(n3)]. When the dimension n is large, the calculation required for
exact solution of the system may be prohibitive, and one may have to be
satisfied with only an approximate solution. Such an approximation may
be obtained by using an iterative method. This approach is often used
for solving very large linear systems of equations, arising in the solution
of partial differential equations, where an adequate approximation to the




