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Abstract
The problem of computing a maximum a posteriori (MAP) configuration is a central computational
challenge associated with Markov random fields. There has been some focus on “tree-based” linear
programming (LP) relaxations for the MAP problem. This paper develops a family of super-linearly
convergent algorithms for solving these LPs, based on proximal minimization schemes using Breg-
man divergences. As with standard message-passing on graphs, the algorithms are distributed and
exploit the underlying graphical structure, and so scale well to large problems. Our algorithms have
a double-loop character, with the outer loop correspondingto the proximal sequence, and an inner
loop of cyclic Bregman projections used to compute each proximal update. We establish conver-
gence guarantees for our algorithms, and illustrate their performance via some simulations. We also
develop two classes of rounding schemes, deterministic andrandomized, for obtaining integral con-
figurations from the LP solutions. Our deterministic rounding schemes use a “re-parameterization”
property of our algorithms so that when the LP solution is integral, the MAP solution can be ob-
tained even before the LP-solver converges to the optimum. We also propose graph-structured
randomized rounding schemes applicable to iterative LP-solving algorithms in general. We ana-
lyze the performance of and report simulations comparing these rounding schemes.

Keywords: Graphical Models, MAP Estimation, LP Relaxation, ProximalMinimization, Round-
ing Schemes

1. Introduction

A key computational challenge that arises in applications of discrete graphical models is to compute
the most probable configuration(s), often referred to as themaximum a posteriori(MAP) problem.
Although the MAP problem can be solved exactly in polynomial time on trees (andmore generally,
graphs with bounded treewidth) using the max-product algorithm, it is computationally challenging
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for general graphs. Indeed, the MAP problem for general discretegraphical models includes a large
number of classical NP-complete problems as special cases, including MAX-CUT, independent set,
and various satisfiability problems.

This intractability motivates the development and analysis of methods for obtaining approximate
solutions, and there is a long history of approaches to the problem. One class of methods is based on
simulated annealing (Geman and Geman, 1984), but the cooling schedules required for theoretical
guarantees are often prohibitively slow. Besag (1986) proposed the iterated conditional modes algo-
rithm, which performs a sequence of greedy local maximizations to approximatethe MAP solution,
but may be trapped by local maxima. Greig et al. (1989) observed that forbinary problems with at-
tractive pairwise interactions (the ferromagnetic Ising model in statistical physics terminology), the
MAP configuration can be computed in polynomial-time by reduction to a max-flow problem. The
ordinary max-product algorithm, a form of non-serial dynamic-programming (Bertele and Brioschi,
1972), computes the MAP configuration exactly for trees, and is also frequently applied to graphs
with cycles. Despite some local optimality results (Freeman and Weiss, 2001; Wainwright et al.,
2004), it has no general correctness guarantees for graph with cycles, and even worse, it can con-
verge rapidly to non-MAP configurations (Wainwright et al., 2005), even for problems that are easily
solved in polynomial time (e.g., ferromagnetic Ising models). For certain graphical models arising
in computer vision, Boykov et al. (2001) proposed graph-cut based search algorithms that compute
a local maximum over two classes of moves. A broad class of methods are based on the principle of
convex relaxation, in which the discrete MAP problem is relaxed to a convexoptimization problem
over continuous variables. Examples of this convex relaxation problem include linear programming
relaxations (Koval and Schlesinger, 1976; Chekuri et al., 2005; Wainwright et al., 2005), as well
as quadratic, semidefinite and other conic programming relaxations (for instance, (Ravikumar and
Lafferty, 2006; Kumar et al., 2006; Wainwright and Jordan, 2004)).

Among the family of conic programming relaxations, linear programming (LP) relaxation is the
least expensive computationally, and also the best understood. The primary focus of this paper is a
well-known LP relaxation of the MAP estimation problem for pairwise Markov random fields, one
which has been independently proposed by several groups (Koval and Schlesinger, 1976; Chekuri
et al., 2005; Wainwright et al., 2005). This LP relaxation is based on optimizing over a set of
locally consistent pseudomarginals on edges and vertices of the graph. It is an exact method for any
tree-structured graph, so that it can be viewed naturally as a tree-based LP relaxation.1 The first
connection between max-product message-passing and LP relaxation was made by Wainwright et
al. (2005), who connected the tree-based LP relaxation to the class of tree-reweighted max-product
(TRW-MP) algorithms, showing that TRW-MP fixed points satisfying a strong“tree agreement”
condition specify optimal solutions to the LP relaxation.

For general graphs, this first-order LP relaxation could be solved—atleast in principle—by
various standard algorithms for linear programming, including the simplex and interior-point meth-
ods (Bertsimas and Tsitsikilis, 1997; Boyd and Vandenberghe, 2004). However, such generic meth-
ods fail to exploit the graph-structured nature of the LP, and hence do not scale favorably to large-
scale problems (Yanover et al., 2006). A body of work has extended theconnection between the LP
relaxation and message-passing algorithms in various ways. Kolmogorov (2005) developed a se-
rial form of TRW-MP updates with certain convergence guarantees; healso showed that there exist
fixed points of the TRW-MP algorithm, not satisfying strong tree agreement, that do not correspond

1. In fact, this LP relaxation is the first in a hierarchy of relaxations, based on the treewidth of the graph (Wainwright
et al., 2005).
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to optimal solutions of the LP. This issue has a geometric interpretation, related tothe fact that
coordinate ascent schemes (to which TRW-MP is closely related), need not converge to the global
optima for convex programs that are not strictly convex, but can become trapped in corners. Kol-
mogorov and Wainwright (2005) showed that this trapping phenomena does not arise for graphical
models with binary variables and pairwise interactions, so that TRW-MP fixedpoints are always LP
optimal. Globerson and Jaakkola (2007b) developed a related but different dual-ascent algorithm,
which is guaranteed to converge but is not guaranteed to solve the LP. Weiss et al. (2007) established
connections between convex forms of the sum-product algorithm, and exactness of reweighted max-
product algorithms; Johnson et al. (2007) also proposed algorithms related to convex forms of sum-
product. Various authors have connected the ordinary max-product algorithm to the LP relaxation
for special classes of combinatorial problems, including matching (Bayati et al., 2005; Huang and
Jebara, 2007; Bayati et al., 2007) and independent set (Sanghaviet al., 2007). For general problems,
max-product doesnot solve the LP; Wainwright et al. (2005) describe a instance of the MIN-CUT
problem on which max-product fails, even though LP relaxation is exact. Other authors (Feldman
et al., 2002a; Komodakis et al., 2007) have implemented subgradient methods which are guaranteed
to solve the linear program, but such methods typically have sub-linear convergence rates (Bertsimas
and Tsitsikilis, 1997).

This paper makes two contributions to this line of work. Our first contribution isto develop and
analyze a class of message-passing algorithms with the following properties:their only fixed points
are LP-optimal solutions, they are provably convergent with at least a geometric rate, and they have
a distributed nature, respecting the graphical structure of the problem. Allof the algorithms in this
paper are based on the well-established idea ofproximal minimization: instead of directly solving
the original linear program itself, we solve a sequence of so-called proximal problems, with the
property that the sequence of associated solutions is guaranteed to converge to the LP solution.
We describe different classes of algorithms, based on different choices of the proximal function:
quadratic, entropic, and tree-reweighted entropies. For all choices, we show how the intermedi-
ate proximal problems can be solved by forms of message-passing on the graph that are similar to
but distinct from the ordinary max-product or sum-product updates. An additional desirable fea-
ture, given the wide variety of lifting methods for further constraining LP relaxations (Wainwright
and Jordan, 2003), is that new constraints can be incorporated in a relatively seamless manner, by
introducing new messages to enforce them.

Our second contribution is to develop various types of rounding schemes that allow for early
termination of LP-solving algorithms. There is a substantial body of past work (e.g., (Raghavan
and Thompson, 1987)) on rounding fractional LP solutions so as to obtainintegral solutions with
approximation guarantees. Our use of rounding is rather different: instead, we consider round-
ing schemes applied to problems for which the LP solution is integral, so that rounding would be
unnecessary if the LP were solved to optimality. In this setting, the benefit of certain rounding pro-
cedures (in particular, those that we develop) is allowing an LP-solving algorithm to be terminated
beforeit has solved the LP, while still returning the MAP configuration, either with a deterministic
or high probability guarantee. Our deterministic rounding schemes apply to a class of algorithms
which, like the proximal minimization algorithms that we propose, maintain a certain invariant of
the original problem. We also propose and analyze a class of graph-structured randomized rounding
procedures that apply to any algorithm that approaches the optimal LP solution from the interior of
the relaxed polytope. We analyze these rounding schemes, and give finitebounds on the number of
iterations required for the rounding schemes to obtain an integral MAP solution.
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The remainder of this paper is organized as follows. We begin in Section 2 withbackground
on Markov random fields, and the first-order LP relaxation. In Section 3, we introduce the notions
of proximal minimization and Bregman divergences, then derive various ofmessage-passing algo-
rithms based on these notions, and finally discuss their convergence properties. Section 4 is devoted
to the development and analysis of rounding schemes, both for our proximal schemes as well as
other classes of LP-solving algorithms. We provide experimental results in Section 5, and conclude
with a discussion in Section 6.

2. Background

We begin by introducing some background on Markov random fields, andthe LP relaxations that are
the focus of this paper. Given a discrete spaceX = {0,1,2, . . . ,m−1}, let X = (X1, . . . ,XN) ∈ X N

denote aN-dimensional discrete random vector. (While we have assumed the variables take values
in the same setX , we note that our results easily generalize to the case where the variables take
values in different sets with differing cardinalities.) We assume that the distributionP of the random
vector is a Markov random field, meaning that it factors according to the structure of an undirected
graphG = (V,E), with each variableXs associated with one nodes∈ V, in the following way.
Lettingθs : X →R andθst : X ×X →R be singleton and edgewise potential functions respectively,
we assume that the distribution takes the form

P(x;θ) ∝ exp
{

∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)
}
.

The problem ofmaximum a posteriori(MAP) estimation is to compute a configuration with
maximum probability—i.e., an element

x∗ ∈ arg max
x∈X N

{
∑
s∈V

θs(xs)+ ∑
(s,t)∈E

θst(xs,xt)
}
, (1)

where the argmax operator extracts the configurations that achieve the maximal value. This problem
is an integer program, since it involves optimizing over the discrete spaceX

N. For future reference,
we note that the functionsθs(·) andθst(·) can always be represented in the form

θs(xs) = ∑
j∈X

θs; jI[xs = j] (2a)

θst(xs,xt) = ∑
j,k∈X

θst; jkI[xs = j; xt = k], (2b)

where them-vectors{θs; j , j ∈ X } and m×m matrices{θst; jk, ( j,k) ∈ X × X } parameterize the
problem.

The first-order linear programming (LP) relaxation (Koval and Schlesinger, 1976; Chekuri et al.,
2005; Wainwright et al., 2005) of this problem is based on a set of pseudomarginalsµs andµst,
associated with the nodes and vertices of the graph. These pseudomarginals are constrained to be
non-negative, as well to normalize and be locally consistent in the following sense:

∑
xs∈X

µs(xs) = 1, for all s∈V, and (3a)

∑
xt∈X

µst(xs,xt) = µs(xs) for all (s, t) ∈ E, xs ∈ X . (3b)
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The polytope defined by the non-negativity constraintsµ≥ 0, the normalization constraints (3a) and
the marginalization constraints (3b), is denoted byL(G). The LP relaxation is based on maximizing
the linear function

〈θ, µ〉 := ∑
s∈V

∑
xs

θs(xs)µs(xs)+ ∑
(s,t)∈E

∑
xs,xt

θst(xs,xt)µst(xs,xt), (4)

subject to the constraintµ∈ L(G).
In the sequel, we write the linear program (4) more compactly in the form maxµ∈L(G)〈θ, µ〉.

By construction, this relaxation is guaranteed to be exact for any problemon a tree-structured
graph (Wainwright et al., 2005), so that it can be viewed as a tree-based relaxation. The main
goal of this paper is to develop efficient and distributed algorithms for solving this LP relaxation2,
as well as strengthenings based on additional constraints. For instance,one natural strengthening is
by “lifting”: view the pairwise MRF as a particular case of a more general MRF with higher order
cliques, define higher-order pseudomarginals on these cliques, and use them to impose higher-order
consistency constraints. This particular progression of tighter relaxations underlies the Bethe to
Kikuchi (sum-product to generalized sum-product) hierarchy (Yedidiaet al., 2005); see Wainwright
and Jordan (2003) for further discussion of such LP hierarchies.

3. Proximal Minimization Schemes

We begin by defining the notion of a proximal minimization scheme, and various types of diver-
gences (among them Bregman) that we use to define our proximal sequences. Instead of dealing
with the maximization problem maxµ∈L(G)〈θ, µ〉, it is convenient to consider the equivalent mini-
mization problem,

min
µ∈L(G)

−〈θ, µ〉. (5)

3.1 Proximal Minimization

The class of methods that we develop are based on the notion of proximal minimization (Bertsekas
and Tsitsiklis, 1997). Instead of attempting to solve the LP directly, we solve a sequence of problems
of the form

µn+1 = arg min
µ∈L(G)

{
−〈θ, µ〉+ 1

ωnD f (µ‖µn)

}
, (6)

where for iteration numbersn= 0,1,2, . . ., the vectorµn denotes current iterate, the quantityωn is a
positive weight, andD f is a generalized distance function, known as the proximal function. (Note
that we are using superscripts to represent the iteration number,not for the power operation.)

The purpose of introducing the proximal function is to convert the originalLP—which is convex
but not strictly so—into a strictly convex problem. The latter property is desirable for a number of
reasons. First, for strictly convex programs, coordinate descent schemes are guaranteed to converge
to the global optimum; note that they may become trapped for non-strictly convexproblems, such as
the piecewise linear surfaces that arise in linear programming. Moreover,the dual of a strictly con-
vex problem is guaranteed to be differentiable (Bertsekas, 1995); a guarantee which need not hold

2. The relaxation could fail to be exact though, in which case the optimal solution to the relaxed problem will be
suboptimal on the original MAP problem
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for non-strictly convex problems. Note that differentiable dual functionscan in general be solved
more easily than non-differentiable dual functions. In the sequel, we show how for appropriately
chosen generalized distances, the proximal sequence{µn} can be computed using message passing
updates derived from cyclic projections.

We note that the proximal scheme (6) is similar to an annealing scheme, in that it involves per-
turbing the original cost function, with a choice of weights{ωn}. While the weights{ωn} can be
adjusted for faster convergence, they can also be set to a constant, unlike for standard annealing
procedures in which the annealing weight is taken to 0. The reason is thatD f (µ‖µ(n)), as a gen-
eralized distance, itself converges to zero as the algorithm approaches the optimum, thus providing
an “adaptive” annealing. For appropriate choice of weights and proximal functions, these proximal
minimization schemes converge to the LP optimum with at least geometric and possiblysuperlinear
rates (Bertsekas and Tsitsiklis, 1997; Iusem and Teboulle, 1995).

In this paper, we focus primarily on proximal functions that are Bregman divergences (Censor
and Zenios, 1997), a class that includes various well-known divergences, among them the squared
ℓ2-distance and norm, and the Kullback-Leibler divergence. We say that afunction f : S 7→ R, with
domainS⊆ R

p, is aBregman functionif int S 6= /0 and it is continuously differentiable and strictly
convex on intS. Any such function induces aBregman divergence Df : S× intS 7→ R as follows:

D f (µ
′ ‖ν) := f (µ′)− f (ν)−〈∇ f (ν), µ′−ν〉. (7)

Figure 1 illustrates the geometric interpretation of this definition in terms of the tangent approxi-
mation. A Bregman divergence satisfiesD f (µ′ ‖ν)≥ 0 with equality if and only ifµ′ = ν, but need
not be symmetric or satisfy the triangle inequality, so it is only a generalized distance. Further re-
strictions on the inducing functionf are thus required for the divergence to be “well-behaved,” for
instance that it satisfy the property that for any sequenceνn → ν∗, whereνn ∈ int S, ν∗ ∈ S, then
D f (ν∗ ‖νn) → 0. Censor and Zenios (1988) impose such technical conditions explicitly in their
definition of a Bregman function; in this paper, we impose the stronger yet more easily stated con-
dition that the Bregman functionf (as defined above) be of Legendre type (Rockafellar, 1970). In
this case, in addition to the Bregman function properties, it satisfies the following property: for any
sequenceµn → µ∗ whereµn ∈ int S, µ∗ ∈ ∂S, it holds that‖∇ f (µn)‖→+∞. Further, we assume that
the range∇ f (int S) = R

p.
Let us now look at some choices of divergences, proximal minimizations (6)based on which we

will be studying in the sequel.

Quadratic divergence: This choice is the simplest, and corresponds to setting the inducing Breg-
man functionf in (7) to be the quadratic function

q(µ) :=
1
2

{
∑
s∈V

∑
xs∈X

µ2
s(xs)+ ∑

(s,t)∈E
∑

(xs,xt)∈X ×X
µ2

st(xs,xt)

}
, (8)

defined over nodes and edges of the graph. The divergence is then simply the quadratic norm across
nodes and edges

Q(µ‖ν) :=
1
2 ∑

s∈V

‖µs−νs‖2+
1
2 ∑
(s,t)∈E

‖µst−νst‖2, (9)

where we have used the shorthand‖µs− νs‖2 = ∑xs∈X |µs(xs)− νs(xs)|2, with similar notation for
the edges.
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f

µ′

ν

µ

D f (µ′ ‖ν)

f (ν)+ 〈∇ f (ν), µ′−ν〉

Figure 1: Graphical illustration of a Bregman divergence.

Weighted entropic divergence:Another choice for the inducing Bregman function is the weighted
sum of negative entropies

H̄α(µ) = ∑
s∈V

αsH̄s(µs)+ ∑
(s,t)∈E

αstH̄st(µst), (10)

whereH̄s andH̄st are defined by

H̄s(µs) := ∑
xs∈X

µs(xs) logµs(xs), and

H̄st(µst) := ∑
(xs,xt)∈X ×X

µst(xs,xt) logµst(xs,xt),

corresponding to the node-based and edge-based negative entropies, respectively. The correspond-
ing Bregman divergence is a weighted sum of Kullback-Leibler (KL) divergences across the nodes
and edges. In particular, lettingαs > 0 andαst > 0 be positive weights associated with nodes and
edge(s, t) respectively, we define

Dα(µ‖ν) = ∑
s∈V

αsD(µs‖νs)+ ∑
(s,t)∈E

αstD(µst‖νst), (11)

whereD(p‖q) := ∑x

(
p(x) log p(x)

q(x) −
[
p(x)− q(x)

])
is the KL divergence. An advantage of the

KL divergence, relative to the quadratic norm, is that it automatically acts to enforce non-negativity
constraints on the pseudomarginals in the proximal minimization problem. (See Section 3.4 for a
more detailed discussion of this issue.)

Tree-reweighted entropic divergence:Our last example is based on atree-reweightedentropy.
The notion of a tree-reweighted entropy was first proposed by Wainwright et al. (2002). Their
entropy function however while a Bregman function is not of the Legendretype. Nonetheless let
us first describe their proposed function. Given a setT of spanning treesT = (V,E(T)), and a
probability distributionρ overT , we can obtain edge weightsρst ∈ (0,1] for each edge(s, t) of the

7
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graphG asρst = ∑T∈T I((s, t) ∈ E). Given such edge weights, define

ftrw(µ) := ∑
s∈V

H̄s(µs)+ ∑
(s,t)∈E

ρstIst(µst), (12)

whereH̄ is the negative entropy as defined earlier, while the quantityIst defined as

Ist(µst) := ∑
(xs,xt)∈X ×X

µst(xs,xt) log
µst(xs,xt)

[∑x′t µst(xs,x′t)][∑x′s µst(x′s,xt)]
(13)

is the mutual information associated with edge(s, t). It can be shown that the functionftrw is
strictly convex and continuously differentiable when restricted toµ∈ L(G); and in particular that it
is a Bregman function with domainL(G). Within its domainL(G), the function can be re-expressed
as a weighted negative entropy family (10),

ftrw(µ) = ∑
s∈V

(1− ∑
t:(s,t)∈E

ρst)H̄t(µt)+ ∑
(s,t)∈E

ρstH̄st(µst), (14)

but where the node entropy weightsαs := 1−∑t:(s,t)∈E ρst are not always positive. The correspond-
ing Bregman divergence belongs to the weighted entropic family (11), with node weightsαs defined
above, and edge-weightsαst = ρst. However as stated above, this tree-reweighted entropy function
is not of Legendre type, and hence is not admissible for our proximal minimization procedure (6).

However, Globerson and Jaakkola (2007a) proposed an alternativetree reweighted entropy that
while equal toftrw(µ) for µ∈ L(G) is yet convex for allµ (not just when restricted toL(G)). Their
proposed function is described as follows. For each undirected edge inE, construct two oriented
edges in both directions; denote the set of these oriented edges byĒ. Then given node weights
ρos∈ (0,1] for each nodes∈V, and edge weightsρs|t ∈ (0,1] for oriented edges(t → s) ∈ Ē, define

fotw(µ) := ∑
s∈V

ρosH̄s(µs)+ ∑
(t→s)∈Ē

ρs|tH̄s|t(µst), (15)

where the quantitȳHs|t defined as

H̄s|t(µst) := ∑
(xs,xt)∈X ×X

µst(xs,xt) log
µst(xs,xt)

∑x′s µst(x′s,xt)
, (16)

is the conditional entropy ofXs givenXt with respect to the joint distributionµst. It can be shown
that this oriented tree-reweighted entropy is not only a Bregman function withdomain the non-
negative orthantRp

+, but is also of Legendre type, so that it is indeed admissible for our proximal
minimization procedure. The corresponding divergence is given as,

Dρ(µ‖ν) = ∑
s∈V

ρosD(µs‖νs)+ ∑
t→s∈Ē

ρs|t(D(µst‖νst)+ D̃(µst‖νst)),

whereD(p‖q) is the KL divergence, and̃D(·‖ ·) is a KL divergence like term, defined as

D̃(µst‖νst) := ∑
(xs,xt)∈X ×X

µst(xs,xt) log
[∑x′s νst(x′s,xt)]

[∑x′s µst(x′s,xt)]

+
νst(xs,xt)

[∑x′s νst(x′s,xt)]
[µst(xs,xt)−νst(xs,xt)].

8
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3.2 Proximal Sequences via Bregman Projection

The key in designing an efficient proximal minimization scheme is ensuring that the proximal se-
quence{µn} can be computed efficiently. In this section, we first describe how sequences of prox-
imal minimizations (when the proximal function is a Bregman divergence) can bereformulated as
a particular Bregman projection. We then describe how this Bregman projection can itself be com-
puted iteratively, in terms of a sequence of cyclic Bregman projections (Censor and Zenios, 1997)
based on a decomposition of the constraint setL(G). In the sequel, we then show how these cyclic
Bregman projections reduce to very simple message-passing updates.

Given a Bregman divergenceD, theBregman projectionof a vectorν onto a convex setC is
given by

µ̂ := argmin
µ∈C

D f (µ‖ν). (17)

That this minimum is achieved and is unique follows from our assumption that the function f is of
Legendre type and from Theorem 3.12 in (Bauschke and Borwein, 1997), so that the projection is
well-defined. We define the projection operator

ΠC(ν) := argmin
µ∈C

D f (µ‖ν), (18)

where we have suppressed the dependence on the Bregman functionf in the notation. When the
constraint setC = ∩M

i=1Ci is an intersection of simpler constraint sets, then a candidate algorithm
for the Bregman projection is to compute it in acyclic manner: by iteratively projecting onto the
simple constraint sets{Ci} (Censor and Zenios, 1997). Define the sequence

µt+1 = ΠCi(t)
(µt), (19)

for some control sequence parameteri : N 7→ {1, . . . ,M} that takes each output value an infinite
number of times, for instancei(t) = t modM. It can be shown thatwhen the constraints are affine
then such cyclic Bregman projectionsµt converge to the projection̂µ onto the entire constraint set as
defined in (17) so thatµt → µ̂ (Censor and Zenios, 1997). But when a constraintCi is non-affine, the
individual projection would have to be followed by a correction (Dykstra,1985; Han, 1988; Censor
and Zenios, 1997) in order for such convergence to hold. In Appendix A we have outlined these
corrections briefly for the case where the constraints are linear inequalities. For ease of notation, we
will now subsume these corrections into the iterative projection notation,µt+1 = ΠCi(t)

(µt), so that
the notation assumes that the Bregman projections are suitably corrected when the constraintsCi(t)

are non-affine. In this paper, other than positivity constraints, we will beconcerned only with affine
constraints, for which no corrections are required.

Let us now look at the stationary condition characterizing the optimumµ̂ of (17). As shown in for
instance Bertsekas (1995), the optimumµ̂ of any constrained optimization problem minµ∈C g(µ) is
given by the stationary condition,

〈∇g(µ̂), µ− µ̂〉 ≥ 0, (20)

for all µ ∈ C. For the projection problem (17), the gradient of the objectiveD f (µ‖ν) := f (µ)−
f (ν)−〈∇ f (ν), µ−ν〉 with respect to the first argumentµ is given by∇ f (µ)−∇ f (ν), which when
substituted in (20) yields the stationary condition of the optimumµ̂ as

〈∇ f (µ̂)−∇ f (ν), µ− µ̂〉 ≥ 0, (21)

9
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for all µ∈C. Now consider the proximal minimization problem to be solved at stepn, namely the
strictly convex problem

min
µ∈L(G)

{
−〈θ, µ〉+ 1

ωnD f (µ‖µn)

}
. (22)

Solving for the derivative of this objective with respect toµ as−θ+ 1
ωn (∇ f (µ)−∇ f (µn)), and

substituting in (20), we obtain the conditions defining the optimumµn+1 as

〈∇ f (µn+1)−∇ f (µn)−ωnθ, µ−µn+1〉 ≥ 0, (23)

for all µ∈ L(G). Comparing these with the conditions for Bregman projection (21), we see that if
there exists a vectorν such that

∇ f (ν) = ∇ f (µn)+ωnθ, (24)

then the proximal iterateµn+1 is the Bregman projection of this vectorν onto the setL(G). As
shown in (Bauschke and Borwein, 1997), for any functionf of Legendre type with domainS, the
gradient∇ f is a one-to-one function with domain intS, so that its inverse(∇ f )−1 is a well-defined
function on the range∇ f (int S) of ∇ f . Since we have assumed that this range isR

p, we can thus
obtain the uniqueν which satisfies the condition in (24) asν = (∇ f )−1(∇ f (µ)+ωnθ) (Note that
the range constraint could be relaxed to only require that the range of∇ f be a cone containingθ).
Accordingly, we set up the following notation: for any Bregman functionf , induced divergenceD f ,
and convex setC, we define the operator

Jf (µ,ν) := (∇ f )−1(∇ f (µ)+ν).

We can then write the proximal update (22) in a compact manner as the compounded operation

µn+1 = ΠL(G)

(
Jf (µ

n,ωnθ)
)
.

Consequently, efficient algorithms for computing the Bregman projection (17) can be leveraged to
compute the proximal update (22). In particular, we consider a decomposition of the constraint set
as an intersection—L(G) =∩M

k=1Lk(G)— and then apply the method of cyclic Bregman projections
discussed above. Initializingµn,0 = µn and updating fromµn,τ 7→ µn,τ+1 by projectingµn,τ onto con-
straint setLi(τ)(G), wherei(τ) = τ modM, for instance, we obtain the meta-algorithm summarized
in Algorithm 1.

As shown in the following sections, by using a decomposition ofL(G) over the edges of the
graph, the inner loop steps correspond to local message-passing updates, slightly different in nature
depending on the choice of Bregman distance. Iterating the inner and outerloops yields a prov-
ably convergent message-passing algorithm for the LP. Convergencefollows from the convergence
properties of proximal minimization (Bertsekas and Tsitsiklis, 1997), combinedwith convergence
guarantees for cyclic Bregman projections (Censor and Zenios, 1997). In the following section, we
derive the message-passing updates corresponding to various Bregman functions of interest.

3.3 Quadratic Projections

Consider the proximal sequence with the quadratic distanceQ from equation (9); the Bregman
function inducing this distance is the quadratic functionq(y) = 1

2y2, with gradient∇q(y) = y. A
little calculation shows that the operator Jq takes the form

Jq(µ,ωθ) = µ+ωθ, (25)

10
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Algorithm 1 Basic proximal-Bregman LP solver
Given a Bregman distanceD, weight sequence{ωn} and problem parametersθ:

• Initialize µ0 to the uniform distribution:µ(0)s (xs) =
1
m, µ(0)st (xs,xt) =

1
m2 .

• Outer Loop: For iterationsn= 0,1,2, . . ., updateµn+1 = ΠL(G)

(
Jf (µn,ωnθ)

)
.

– Solve Outer Loop viaInner Loop:

(a) Inner initializationµn,0 = Jf (µn,ωnθ).
(b) Fort = 0,1,2, . . ., seti(t) = t modM.

(c) Updateµn,t+1 = ΠLi(t)(G)

(
µn,t
)
.

whence we obtain the initialization in equation (27a).

We now turn to the projectionsµn,τ+1 = Πq(µn,τ,Li(G)) onto the individual constraintsLi(G).
For each such constraint, the local update is based on the solving the problem

µn,τ+1 = arg min
ν∈Li(G)

{
q(ν)−〈ν, ∇q(µn,τ)〉

}
. (26)

In Appendix B.1, we show how the solution to these inner updates takes the form (28a) given in
Algorithm 2. The{Zs,Zst} variables correspond to the dual variables used to correct the Bregman
projections for positivity (and hence inequality) constraints, as outlined in (55) in Section 3.2.

3.4 Entropic Projections

Consider the proximal sequence with the Kullback-Leibler distanceD(µ‖ν) defined in equation (11).
The Bregman functionhα inducing the distance is a sum of negative entropy functionsf (µ) =
µlogµ, and its gradient is given by∇ f (µ) = log(µ)+~1. In this case, some calculation shows that
the mapν = Jf (µ,ωθ) is given by

ν = µexp(ωθ/α),

whence we obtain the initialization equation (30a). In Appendix B.2, we derive the message-passing
updates summarized in Algorithm 3.

3.5 Tree-reweighted Entropy Proximal Sequences

In the previous sections, we saw how to solve the proximal sequences following the algorithmic
template 1 and using message passing updates derived from cyclic Bregmanprojections. In this
section, we show that for the tree-reweighted entropic divergences (15), in addition to the cyclic
Bregman projection recipe of the earlier sections, we can also use tree-reweighted sum-product
or related methods (Globerson and Jaakkola, 2007b; Hazan and Shashua, 2008) to compute the
proximal sequence.

11
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Algorithm 2 Quadratic Messages forµn+1

Initialization:

µ(n,0)st (xs,xt) = µ(n)st (xs,xt)+wnθst(xs,xt) (27a)

µ(n,0)s (xs) = µ(n)s (xs)+wnθs(xs) (27b)

Zs(xs) = µ(n,0)s (xs)

Zst(xs,xt) = µ(n)st (xs,xt)

repeat
for each edge(s, t) ∈ E do

µ(n,τ+1)
st (xs,xt) = µ(n,τ)st (xs,xt)+

(
1

m+1

)(
µ(n,τ)s (xs)−∑

xt

µ(n,τ)st (xs,xt)

)
(28a)

µ(n,τ+1)
s (xs) = µ(n,τ)s (xs)+

(
1

m+1

)(
−µ(n,τ)s (xs)+∑

xt

µ(n,τ)st (xs,xt)

)
(28b)

Cst(xs,xt) = min{Zst(xs,xt),µ
(n,τ+1)
st (xs,xt)}

Zst(xs,xt) = Zst(xs,xt)−Cst(xs,xt)

µ(n,τ+1)
st (xs,xt) = µ(n,τ+1)

st (xs,xt)−Cst(xs,xt)

end for
for each nodes∈V do

µ(n,τ+1)
s (xs) = µ(n,τ)s (xs)+

1
m

(
1−∑

xs

µ(n,τ)s (xs)

)
. (29)

Cs(xs) = min{Zs(xs),µ
(n,τ+1)
s (xs)}

Zs(xs) = Zs(xs)−Cs(xs)

µ(n,τ+1)
s (xs) = µ(n,τ+1)

s (xs)−Cs(xs)

end for
until convergence

Recall the proximal sequence optimization problem (6) written as

µn+1 = arg min
ν∈L(G)

{
−〈θ, ν〉+ 1

ωnD f (ν‖µn)

}

= arg min
ν∈L(G)

{
−〈θ, ν〉+ 1

ωn( f (ν)− f (µn)−〈∇ f (µn), ν−µn〉)
}
. (34)

Let us denoteθn := ωnθ+∇ f (µn), and set the Bregman functionf to the tree-reweighted entropy
ftrw defined in (12) (or equivalently the oriented tree-reweighted entropyfotw (15) since both are

12
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Algorithm 3 Entropic Messages forµn+1

Initialization:

µ(n,0)st (xs,xt) = µ(n)st (xs,xt)exp(ωnθst(xs,xt)/αst), and (30a)

µ(n,0)s (xs) = µ(n)s (xs)exp(ωn θs(xs)/αs). (30b)

repeat
for each edge(s, t) ∈ E do

µ(n,τ+1)
st (xs,xt) = µ(n,τ)st (xs,xt)

(
µ(n,τ)s (xs)

∑xt
µ(n,τ)st (xs,xt)

) αs
αs+αst

, and (31)

µ(n,τ+1)
s (xs) = µ(n,τ)s (xs)

αs
αs+αst

(
∑
xt

µ(n,τ)st (xs,xt)

) αst
αs+αst

(32)

end for
for each nodes∈V do

µ(n,τ+1)
s (xs) =

µ(n,τ)s (xs)

∑xs
µ(n,τ)s (xs)

(33)

end for
until convergence

equivalent over the constraint setL(G)). The proximal optimization problem as stated above (34)
reduces to,

µn+1 = arg min
ν∈L(G)

{〈θn, ν〉+ ftrw(ν)} . (35)

But this is precisely the optimization problem solved by the tree-reweighted sum-product (Wain-
wright and Jordan, 2003), as well as other related methods (Globersonand Jaakkola, 2007b; Hazan
and Shashua, 2008), for a graphical model with parametersθn.

Computing the gradient of the functionftrw, and performing some algebra yields the algorithmic
template of Algorithm 4.

3.6 Convergence

We now turn to the convergence of the message-passing algorithms that we have proposed. At a
high-level, for any Bregman proximal function, convergence follows from two sets of known results:
(a) convergence of proximal algorithms; and (b) convergence of cyclic Bregman projections.

For completeness, we re-state the consequences of these results here.For any positive sequence
ωn > 0, we say that it satisfies theinfinite travel conditionif ∑∞

n=1(1/ωn) = +∞. We letµ∗ ∈ L(G)
denote an optimal solution (not necessarily unique) of the LP, and usef ∗ = f (µ∗) = 〈θ, µ∗〉 to denote

13
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Algorithm 4 TRW proximal solver

• For outer iterationsn= 0,1,2, . . .,

(a) Update the parameters:

θn
s(xs) = ωnθs(xs)+ log(µn(xs))+1 (36)

θn
st(xs,xt) = ωnθst(xs,xt)+ρst

(
log

µn
st(xs,xt)

∑x′s µn
st(x′s,xt)∑x′t µn

st(xs,x′t)
−1

)
(37)

(b) Run a convergent TRW-solver on a graphical model with parametersθn, so as to com-
pute

µn+1 = arg min
ν∈L(G)

{
−〈θn, ν〉+ ftrw(ν)

}
. (38)

the LP optimal value. We say that the convergence rate issuperlinearif

lim
n→+∞

| f (µn+1)− f ∗|
| f (µn)− f ∗| = 0, (39)

andlinear if

lim
n→+∞

| f (µn+1)− f ∗|
| f (µn)− f ∗| ≤ γ, (40)

for someγ ∈ (0,1). We say the convergence isgeometricif there exists some constantC > 0 and
γ ∈ (0,1) such that for alln,

| f (µn)− f ∗| ≤ Cγn. (41)

Proposition 1 (Rate of outer loop convergence)Consider the sequence of iterates produced by a
proximal algorithm(6) for LP-solving.

(a) Using the quadratic proximal function and positive weight sequenceωn → +∞ satisfying
infinite travel, the proximal sequence{µn} converges superlinearly.

(b) Using the entropic proximal function and positive weight sequenceωn satisfying infinite
travel, the proximal sequence{µn} converges:

(i) superlinearly ifωn → 0, and

(ii) at least linearly if1/ωn ≥ c for some constant c> 0.

The quadratic case is covered in Bertsekas and Tsitsiklis (1997), whereas the entropic case was
analyzed by Tseng and Bertsekas (1993), and Iusem and Teboulle (1995).

Our inner loop message updates use cyclic Bregman projections, for whichthere is also a sub-
stantial literature on convergence. Censor and Zenios (1997) show that with dual feasibility cor-
rection, cyclic projections onto general convex sets are convergent. For Euclidean projections with

14
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linear constraints, Deutsch et al. (2006) establish a linear rate of convergence, with the rate de-
pendent on angles between the half-spaces defining the constraints. The intuition is that the more
orthogonal the half-spaces, the faster the convergence; for instance, a single iteration suffices for
completely orthogonal constraints. Our inner updates thus converge linearly to the solution within
each outer proximal step.

We note that the rate-of-convergence results for the outer proximal loops assume that the prox-
imal update (computed within each inner loop) has been performed exactly. In practice, the inner
loop iterations do not converge finitely (though they have a linear rate of convergence), so that
an early stopping entails that the solution to each proximal update would be computed only ap-
proximately, up to some accuracyε. That is, if the proximal optimization function at outer itera-
tion n is hn(µ) with minimumµn+1, then the computed proximal updateµn+1 is sub-optimal, with
hn(µn+1)−hn(µn+1) ≤ ε. Some recent theory has addressed whether superlinear convergence can
still be obtained in such a setting; for instance, Solodov (2001) shows thatthat under mild conditions
superlinear rates still hold for proximal iterates with inner-loop solutions thatareε-suboptimal. In
practice, we cannot directly useε-suboptimality as the stopping criterion for the inner loop iterations
since we do not have the optimal solutionµn+1. However, since we are trying to solve a feasibility
problem, it is quite natural to check for violation in the constraints definingL(G). We terminate
our inner iterations when the violation in all the constraints below a toleranceε. As we show in
Section 5, our experiments show that setting this termination threshold toε = 10−4 is small enough
for sub-optimality to be practically irrelevant and that superlinear convergence still occurs.

Remarks: The quadratic proximal updates turn out to be equivalent to solving the primal form of the
LP by the projected subgradient method (Bertsekas, 1995) for constrained optimization. (This use
of the subgradient method should be contrasted with other work Feldman et al. (2002b); Komodakis
et al. (2007) which performed subgradient descent to the dual of the LP.) For any constrained opti-
mization problem:

min
µ

f0(µ)

s.t. f j(µ)≤ 0, j = 1, . . . ,m, (42)

the projected subgradient method performs subgradient descent iteratively on (i) the objective func-
tion f0, as well as on (ii) the constraint functions{ f j}m

j=1 till the constraints are satisfied. Casting it
in the notation of Algorithm 1; over outer loop iterationsn= 1, . . ., it sets

µn,0 = µn−αn∇ f0(µ
n),

and computes, over inner loop iterationst = 1, . . . ,

j(t) = t modm

µn,t+1 = µn,t −αn,t∇ f j(t)(µ
n,t),

and setsµn+1 = µn,∞, the converged estimate of the inner loops of outer iterationn. The constants
{αn,αn,t} are step-sizes for the corresponding subgradient descent steps.

The constraint set in our LP problem,L(G), has equality constraints so that it is not directly in
the form of Equation (42). However any equality constrainth(µ) = 0 can be rewritten equivalently
as two inequality constraintsh(µ) ≤ 0, and−h(µ) ≤ 0; so that one could cast our constrained LP
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in the form of (42) and solve it using the constrained subgradient descent method. As regards the
step-sizes, suppose we setαn = ωn, andαn,t according to Polyak’s step-size (Bertsekas, 1995) so

thatαn,t =
f j(t)(µ

n,t)− f j(t)(µ
∗)

‖∇ f j(t)(µn,t)‖2
2

, whereµ∗ is the constrained optimum. Sinceµ∗ is feasible by definition,

f j(µ∗) = 0. Further, for the normalization constraintsCss(µ) S 1 whereCss(µ) := ∑xs∈X µs(xs)−1,

we have‖∇Css(µ)‖2 = m, while for the marginalization constraintsCst(µ) S 0, whereCst(µ) :=

∑xt∈X µst(xs,xt) = µs(xs), we have‖∇Cst(µ)‖2 = (m+1). It can then be seen that the subgradient
method for constrained optimization applied to our constrained LP with the abovestep-sizes yields
the same updates as our quadratic proximal scheme.

4. Rounding Schemes with Optimality Guarantees

The graph-structured LP in (4) was a relaxation of the MAP integer program (1), so that there
are two possible outcomes to solving the LP: either an integral vertex is obtained, which is then
guaranteed to be a MAP configuration, or a fractional vertex is obtained, inwhich case the relax-
ation is loose. In the latter case, a natural strategy is to “round” the fractional solution, so as to
obtain an integral solution (Raghavan and Thompson, 1987). Such rounding schemes may either be
randomized or deterministic. A natural measure of the quality of the rounded solution is in terms of
its value relative to the optimal (MAP) value. There is now a substantial literature on performance
guarantees of various rounding schemes, when applied to particular sub-classes of MAP problems
(e.g., (Raghavan and Thompson, 1987; Kleinberg and Tardos, 1999;Chekuri et al., 2005)).

In this section, we show that rounding schemes can be useful even whenthe LP optimum is
integral, since they may permit an LP-solving algorithm to befinitely terminated—i.e., before it has
actually solved the LP—while retaining the same optimality guarantees about the final output. An
attractive feature of our proximal Bregman procedures is the existence of precisely such rounding
schemes–namely, that under certain conditions, rounding pseudomarginals at intermediate iterations
yields the integral LP optimum. We describe these rounding schemes in the following sections, and
provide two kinds of results. We provide certificates under which the rounded solution is guaranteed
to be MAP optimal; moreover, we provide upper bounds on the number of outer iterations required
for the rounding scheme to obtain the LP optimum.

In the next Section 4.1, we describe and analyze deterministic rounding schemes that are specif-
ically tailored to the proximal Bregman procedures that we have described.Then in the following
Section 4.2, we propose and analyze a graph-structured randomized rounding scheme, which applies
not only to our proximal Bregman procedures, but more broadly to any algorithm that generates a
sequence of iterates contained within the local polytopeL(G).

4.1 Deterministic Rounding Schemes

We begin by describing three deterministic rounding schemes that exploit the particular structure of
the Bregman proximal updates.

Node-based rounding: This method is the simplest of the deterministic rounding procedures, and
applies to the quadratic and entropic updates. It operates as follows: given the vectorµn of pseudo-
marginals at iterationn, obtain an integral configurationxn(µn) ∈ X N by choosing

xn
s ∈ argmax

x′s∈X
µn(x′s), for eachs∈V. (43)
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We say that the node-rounded solutionxn is edgewise-consistentif

(xn
s,x

n
t ) ∈ arg max

(x′s,x
′
t)∈X ×X

µn
st(x

′
s,x

′
t) for all edges(s, t) ∈ E. (44)

Neighborhood-based rounding:This rounding scheme applies to all three proximal schemes. For
each nodes∈V, denote its star-shaped neighborhood graph byNs = {(s, t)|t ∈ N(s)}, consisting of
edges between nodes and its neighbors. Let{QUA,ENT,TRW} refer to the quadratic, entropic,
and tree-reweighted schemes respectively.

(a) Define the neighborhood-based energy function

Fs(x;µn) :=





2µn(xs)+ ∑
t∈N(s)

µn(xs,xt) for QUA

2αs logµn
s(xs)+ ∑

t∈N(s)
αst logµn

st(xs,xt) for ENT

2logµn(xs)+ ∑
t∈N(s)

ρst log µn
st(xs,xt)

µn
s(xs)µn

t (xt)
for TRW

(45)

(b) Compute a configurationxn(Ns) maximizing the functionFs(x;µn) by running two rounds of
ordinary max-product on the star graph.

Say that such a rounding isneighborhood-consistentif the neighborhood MAP solutions{xn(Ns),s∈
V} agree on their overlaps.

Tree-based rounding: This method applies to all three proximal schemes, but most naturally to the
TRW proximal method. LetT1, . . . ,TK be a set of spanning trees that cover the graph (meaning that
each edge appears in at least one tree), and let{ρ(Ti), i = 1, . . . ,K} be a probability distribution over
the trees. For each edge(s, t), define theedge appearance probabilityρst = ∑K

i=1 ρ(Ti) I[(s, t) ∈ Ti ].
Then for each treei = 1, . . . ,K:

(a) Define the tree-structured energy function

Fi(x;µn) :=





∑
s∈V

logµn(xs)+ ∑
(s,t)∈E(Ti)

1
ρst

logµn
st(xs,xt) for QUA

∑
s∈V

αs logµn(xs)+ ∑
(s,t)∈E(Ti)

αst
ρst

logµn
st(xs,xt) for ENT

∑
s∈V

logµn(xs)+ ∑
(s,t)∈E(Ti)

log µn
st(xs,xt)

µn
s(xs)µn

t (xt)
for TRW.

(46)

(b) Run the ordinary max-product problem on energyFi(x;µn) to find a MAP-optimal configura-
tion xn(Ti).

Say that such a rounding istree-consistentif the tree MAP solutions{xn(Ti), i = 1, . . . ,M} are all
equal. This notion of tree-consistency is similar to the underlying motivation of the tree-reweighted
max-product algorithm (Wainwright et al., 2005).
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4.1.1 OPTIMALITY CERTIFICATES FOR DETERMINISTIC ROUNDING

The following result characterizes the optimality guarantees associated with these rounding schemes,
when they are consistent respectively in theedge-consistency, neighborhood-consistencyandtree-
consistencysenses defined earlier.

Theorem 2 (Deterministic rounding with MAP certificate) Consider a sequence of iterates{µn}
generated by the quadratic or entropic proximal schemes. For any n= 1,2,3, . . ., any consistent
rounded solution xn obtained from µn via any of the node, neighborhood or tree-rounding schemes
(when applicable) is guaranteed to be a MAP-optimal solution. For the iterates of TRW proximal
scheme, the guarantee holds for both neighborhood and tree-roundingmethods.

We prove this claim in Section 4.1.3. It is important to note that such deterministic rounding
guarantees donot apply to an arbitrary algorithm for solving the linear program. At a high-level,
there are two key properties required to ensure guarantees in the rounding. First, the algorithm must
maintain some representation of the cost function that (up to possible constant offsets) is equal to
the cost function of the original problem, so that the set of maximizers of the invariance would
be equivalent to the set of maximizers of the original cost function, and hence the MAP problem.
Second, given a rounding scheme that maximizes tractable sub-parts of thereparameterized cost
function, the rounding is said to be admissible if these partial solutions agree with one another. Our
deterministic rounding schemes and optimality guarantees follow this approach,as we detail in the
proof of Theorem 2.

We note that the invariances maintained by the proximal updates in this paper are closely related
to the reparameterization condition satisfied by the sum-product and max-product algorithms (Wain-
wright et al., 2003). Indeed, each sum-product (or max-product) update can be shown to compute
a new set of parameters for the Markov random field that preserves theprobability distribution.
A similar but slightly different notion of reparameterization underlies the tree-reweighted sum-
product and max-product algorithms (Wainwright et al., 2005); for these algorithms, the invariance
is preserved in terms of convex combinations over tree-structured graphs. The tree-reweighted
max-product algorithm attempts to produce MAP optimality certificates that are based on verifying
consistency of MAP solutions on certain tree-structured components whose convex combination
is equal to the LP cost. The sequential TRW-S max-product algorithm of Kolmogorov (2006) is
a version of tree-reweighted max-product using a clever scheduling ofthe messages to guarantee
monotonic changes in a dual LP cost function. Finally, the elegant work ofWeiss et al. (2007)
exploits similar reparameterization arguments to derive conditions under whichtheir convex free-
energy based sum-product algorithms yield the optimal MAP solution.

An attractive feature of all the rounding schemes that we consider is their relatively low compu-
tational cost. The node-rounding scheme is trivial to implement. The neighborhood-based scheme
requires running two iterations of max-product for each neighborhoodof the graph. Finally, the
tree-rounding scheme requiresO (KN) iterations of max-product, whereK is the number of trees
that cover the graph, andN is the number of nodes. Many graphs with cycles can be covered with
a small numberK of trees; for instance, the lattice graph in 2-dimensions can be covered withtwo
spanning trees, in which case the rounding cost is linear in the number of nodes.
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4.1.2 BOUNDS ON ITERATIONS FOR DETERMINISTIC ROUNDING

Of course, the natural question is how many iterations are sufficient for aa given rounding scheme
to succeed. The following result provides a way of deriving such upper bounds:

Corollary 3 Suppose that the LP optimum is uniquely attained at an integral vertex µ∗, and con-
sider algorithms generating sequence{µn} converging to µ∗. Then we have the following guaran-
tees:

(a) for quadratic and entropic schemes, all three types of rounding recover the MAP solution
once‖µn−µ‖∞ ≤ 1/2.

(b) for the TRW-based proximal method, tree-based rounding recovers the MAP solution once
‖µn−µ‖∞ ≤ 1

4N .

Proof We first claim that if theℓ∞-bound‖µn−µ∗‖∞ < 1
2 is satisfied, then the node-based rounding

returns the (unique) MAP configuration, and moreover this MAP configurationx∗ is edge-consistent
with respect toµn. To see these facts, note that theℓ∞ bound implies, in particular, that at every node
s∈V, we have

|µn
s(x

∗
s)−µ∗s(x

∗
s)| = |µn

s(x
∗
s)−1| < 1

2
,

which implies thatµn
s(x

∗
s)> 1/2 asµ∗s(x

∗
s) = 1. Due to the non-negativity constraints and marginal-

ization constraint∑xs∈X µn(xs) = 1, at most one configuration can have mass above 1/2. Thus,
node-based rounding returnsx∗s at each nodes, and hence overall, it returns the MAP configuration
x∗. The same argument also shows that the inequalityµn

st(x
∗
s,x

∗
t ) > 1

2 holds, which implies that
(x∗s,x

∗
t ) = argmaxxs,xt µn(xs,xt) for all (s, t) ∈ E. Thus, we have shownx∗ is edge-consistent forµn

st,
according to the definition (44).

Next we turn to the performance of neighborhood and tree-rounding for the quadratic and en-
tropic updates. Forn≥ n∗, we know thatx∗ achieves the unique maximum ofµn

s(xs) at each node,
and µn

st(xs,xt) on each edge. From the form of the neighborhood and tree energies (45),(46),
this node- and edge-wise optimality implies thatx∗(N(s)) := {x∗t , t ∈ s∪ N(s)} maximizes the
neighborhood-based and tree-based cost functions as well, which implies success of neighborhood
and tree-rounding. (Note that the positivity of the weightsαs andαst is required to make this asser-
tion.)

For the TRW algorithm in part (b), we note that when‖µn−µ‖∞ ≤ 1/(4N), then we must have
µn

s(x
∗
s)≥ 1−1/(4N) for every node. We conclude that these inequalities imply thatx∗ = (x∗1, . . . ,x

∗
N)

must be the unique MAP on every tree. Indeed, consider the setS= {x∈ X N | x 6= x∗}. By union
bound, we have

P(S) = P[∃s∈V | xs 6= x∗s]

≤
N

∑
s=1

P(xs 6= x∗s)

=
N

∑
s=1

(1−µs(x
∗
s))≤

1
4
,

showing that we haveP(x∗)≥ 3/4, so thatx∗ must be the MAP configuration.
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To conclude the proof, note that the tree-rounding scheme computes the MAP configuration on
each treeTi , under a distribution with marginalsµs andµst. Consequently, under the stated condi-
tions, the configurationx∗ must be the unique MAP configuration on each tree, so that tree rounding
is guaranteed to find it.

Using this result, it is possible to bound the number of iterations required to achieve theℓ∞-
bounds. In particular, suppose that the algorithm has a linear rate of convergence—say that| f (µn)−
f (µ∗)| ≤ | f (µ0)− f (µ∗)|γn for someγ ∈ (0,1). For the quadratic or entropic methods, it suffices to
show that‖µn−µ∗‖2 < 1/2. For the entropic method, there exists some constantC > 0 such that
‖µn−µ∗‖2 ≤ 1

2C | f (µn)− f (µ∗)| (cf. Prop. 8, Iusem and Teboulle (1995)). Consequently, we have

‖µn−µ∗‖2 ≤ | f (µ0)− f (µ∗)|
2C

γn.

Consequently, aftern∗ := logC| f (µ0)− f (µ∗)|
log(1/γ) iterations, the rounding scheme would be guaranteed to

configuration for the entropic proximal method. Similar finite iteration bounds can also be obtained
for the other proximal methods, showing finite convergence through use of our rounding schemes.

Note that we proved correctness of the neighborhood and tree-basedrounding schemes by lever-
aging the correctness of the node-based rounding scheme. In practice, it is possible for neighborhood-
or tree-based rounding to succeed even if node-based rounding fails; however, we currently do not
have any sharper sufficient conditions for these rounding schemes.

4.1.3 PROOF OFTHEOREM 2

We now turn to the proof of Theorem 2. At a high level, the proof consists of two main steps.
First, we show that each proximal algorithm maintains a certain invariant of theoriginal MAP
cost functionF(x;θ); in particular, the iterateµn induces a reparameterizationF(x;µn) of the cost
function such that the set of maximizers is preserved—viz.:

arg max
x∈X N

F(x;θ) := arg max
x∈X N

∑
s∈V,xs∈X

θs(xs)+ ∑
(s,t)∈E,xs,xt∈X

θst(xs,xt) = arg max
x∈X N

F(x;µn). (47)

Second, we show that the consistency conditions (edge, neighborhoodor tree, respectively) guaran-
tee that the rounded solution belongs to argmaxx∈X N F(x;µn)

We begin with a lemma on the invariance property:

Lemma 4 (Invariance of maximizers) Define the function

F(x;µ) :=





∑
s∈V

µs(xs)+ ∑
(s,t)∈E

µst(xs,xt) for QUA

∑
s∈V

αs logµs(xs)+ ∑
(s,t)∈E

αst logµst(xs,xt) for ENT

∑
s∈V

logµs(xs)+ ∑
(s,t)∈E

ρst log µst(xs,xt)
µs(xs)µt(xt)

for TRW

(48)

At each iteration n= 1,2,3, . . . for which µn > 0, the function F(x;µn) preserves the set of maximiz-
ers(47).
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The proof of this claim, provided in Appendix C, is based on exploiting the necessary (Lagrangian)
conditions defined by the optimization problems characterizing the sequence of iterations{µn}.

For the second part of the proof, we show how a solutionx∗, obtained by a rounding procedure,
is guaranteed to maximize the functionF(x;µn), and hence (by Lemma 4) the original cost function
F(x;θ). In particular, we state the following simple lemma:

Lemma 5 The rounding procedures have the following guarantees:

(a) Any edge-consistent configuration from node rounding maximizes F(x;µn) for the quadratic
and entropic schemes.

(b) Any neighborhood-consistent configuration from neighborhood rounding maximizes
F(x;µn) for the quadratic and entropic schemes.

(c) Any tree-consistent configuration from tree rounding maximizes F(x;µn) for all three schemes.

Proof We begin by proving statement (a). Consider an edge-consistent integral configurationx∗

obtained from node rounding. By definition, it maximizesµn(xs) for all s∈V, andµn
st(xs,xt) for all

(s, t) ∈ E, and so by inspection, also maximizesF(x;µn) for the quadratic and proximal cases.
We next prove statement (b) on neighborhood rounding. Suppose thatneighborhood round-

ing outputs a single neighborhood-consistent integral configurationx∗. Sincex∗N(s) maximizes the
neighborhood energy (45) at each nodes∈V, it must also maximize the sum∑s∈V Fs(x;µn). A little
calculation shows that this sum is equal to 2F(x;µn), the factor of two arising since the term on edge
(s, t) arises twice, one for neighborhood rooted ats, and once fort.

Turning to claim (c), letx∗ be a tree-consistent configuration obtained from tree rounding. Then
for eachi = 1, . . . ,K, the configurationx∗ maximizes the tree-structured functionFi(x;µn), and hence
also maximizes the convex combination∑K

i=1 ρ(Ti)Fi(x;µn). By definition of the edge appearance
probabilitiesρst, this convex combination is equal to the functionF(x;µn).

4.2 Randomized Rounding Schemes

The schemes considered in the previous section were all deterministic, since(disregarding any pos-
sible ties), the output of the rounding procedure was a deterministic functionof the given pseu-
domarginals{µn

s,µ
n
st}. In this section, we consider randomized rounding procedures, in whichthe

output is a random variable.
Perhaps the most naive randomized rounding scheme is the following: for each noder ∈ V,

assign it valuexr ∈ X with probability µn
v(xr). We propose a graph-structured generalization of

this naive randomized rounding scheme, in which we perform the roundingin a dependent way
across sub-groups of nodes, and establish guarantees for its success. In particular, we show that
when the LP relaxation has a unique integral optimum that is well-separated from the second best
configuration, then the rounding scheme succeeds with high probability after a pre-specified number
of iterations.

4.2.1 THE RANDOMIZED ROUNDING SCHEME

Our randomized rounding scheme is based on any given subsetE′ of the edge setE. Consider the
subgraphG(E\E′), with vertex setV, and edge setE\E′. We assume thatE′ is chosen such that
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the subgraphG(E\E′) is a forest. That is, we can decomposeG(E\E′) into a union of disjoint
trees,{T1, . . . ,TK}, whereTi = (Vi ,Ei), such that the vertex subsetsVi are all disjoint andV =
V1∪V2∪ . . .∪VK . We refer to the edge subset asforest-inducingwhen it has this property. Note that
such a subset always exists, sinceE′ = E is trivially forest-inducing. In this case, the “trees” simply
correspond to individual nodes, without any edges;Vi = {i}, Ei = /0, i = 1, . . . ,N.

For any forest-inducing subsetE′ ⊆ E, Algorithm 5 defines our randomized rounding scheme.

Algorithm 5 RANDOMIZED ROUNDING SCHEME

for subtree indicesi = 1, . . . ,K do
Sample a sub-configurationXVi from the probability distribution

p(xVi ;µ(Ti)) = ∏
s∈Vi

µn(xs) ∏
(s,t)∈Ei

µn(xs,xt)

µn(xs)µn(xt)
. (49)

end for
Form the global configurationX ∈ X N by concatenating all the local random samples:

X :=

(
XV1, . . . ,XVK

)
.

To be clear, the randomized solutionX is a function of both the pseudomarginalsµn, and the
choice of forest-inducing subsetE′, so that we occasionally use the notationX(µn;E′) to reflect
explicitly this dependence. Note that the simplest rounding scheme of this type isobtained by
settingE′ = E. Then the “trees” simply correspond to individual nodes without any edges, and the
rounding scheme is the trivial node-based scheme.

The randomized rounding scheme can be “derandomized” so that we obtaina deterministic
solution xd(µn;E′) that does at least well as the randomized scheme does in expectation. This
derandomization scheme is shown in Algorithm 6, and its correctness is guaranteed in the following
theorem, proved in Appendix D.

Theorem 6 Let (G = (V,E), θ) be the given MAP problem instance, and let µn ∈ L(G) be any
set of pseudomarginals in the local polytopeL(G). Then, for any subset E′ ⊆ E of the graph G,
the (E′,µn)-randomized rounding scheme in Algorithm5, when derandomized as in Algorithm6
satisfies,

F(xd(µn;E′);θ)≥ E

(
F(X(µn;E′);θ)

)
,

where X(µn;E′) and xd(µn;E′) denote the outputs of the randomized and derandomized schemes
respectively.

4.2.2 OSCILLATION AND GAPS

In order to state some theoretical guarantees on our randomized roundingschemes, we require some
notation. For any edge(s, t) ∈ E, we define theedge-based oscillation

δst(θ) := max
xs,xt

[θst(xs,xt)]−min
xs,xt

[θst(xs,xt)] (50)
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Algorithm 6 DERANDOMIZED ROUNDING SCHEME

Initialize: µ̄= µn.

for subtree indicesi = 1, . . . ,K do
Solve

xd
Vi
= argmax

xVi
∑
s∈Vi

{
θs(xs)+ ∑

t:(s,t)∈E′
∑
xt

µ̄t(xt)θst(xs,xt)

}
+ ∑

(s,t)∈Ei

θst(xs,xt).

Updateµ̄:

µ̄s(xs) =

{ µ̄s(xs) if s /∈Vi

0 if s∈Vi ,xd
s 6= xs

1 if s∈Vi ,xd
s = xs

µ̄st(xs,xt) =

{
µ̄st(xs,xt) if (s, t) /∈ Ei

µ̄s(xs)µ̄t(xt) if (s, t) ∈ Ei

end for
Form the global configurationxd ∈ X N by concatenating all the subtree configurations:

xd :=

(
xd

V1
, . . . ,xd

VK

)
.

We define thenode-based oscillationδs(θ) in the analogous manner. The quantitiesδs(θ) andδst(θ)
are measures of the strength of the potential functions.

We extend these measures of interaction strength to the full graph in the natural way

δG(θ) := max

{
max
(s,t)∈E

δst(θ), max
s∈V

δs(θ)
}
. (51)

Using this oscillation function, we now define a measure of the quality of a unique MAP optimum,
based on its separation from the second most probable configuration. Inparticular, lettingx∗ ∈ X N

denote a MAP configuration, and recalling the notationF(x;θ) for the LP objective, we define the
graph-based gap

∆(θ;G) :=
min
x6=x∗

[
F(x∗;θ)−F(x;θ)

]

δG(θ)
. (52)

This gap function is a measure of how well-separated the MAP optimumx∗ is from the remaining
integral configurations. By definition, the gap∆(θ;G) is always non-negative, and it is strictly
positive whenever the MAP configurationx∗ is unique. Finally, note that the gap is invariant to
the translations (θ 7→ θ′ = θ+C) and rescalings (θ 7→ θ′ = cθ) of the parameter vectorθ. These
invariances are appropriate for the MAP problem since the optima of the energy functionF(x;θ) are
not affected by either transformation (i.e., argmaxxF(x;θ) = argmaxxF(x;θ′) for bothθ′ = θ+C
andθ′ = cθ).
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Finally, for any forest-inducing subset, we letd(E′) be the maximum degree of any node with
respect to edges inE′—namely,

d(E′) := max
s∈V

|t ∈V | (s, t) ∈ E′|.

4.2.3 OPTIMALITY GUARANTEES FORRANDOMIZED ROUNDING

We show, in this section, that when the pseudomarginalsµn are within a specifiedℓ1 norm ball
around the unique MAP optimumµ∗, the randomized rounding scheme outputs the MAP configu-
ration with high probability.

Theorem 7 Consider a problem instance(G,θ) for which the MAP optimum x∗ is unique, and let
µ∗ be the associated vertex of the polytopeL(G). For anyε ∈ (0,1), if at some iteration n, we have
µn ∈ L(G), and

‖µn−µ∗‖1 ≤ ε ∆(θ;G)

1+d(E′)
, (53)

then(E′,µn)-randomized rounding succeeds with probability greater than1− ε,

P[X(µn;E′) = x∗] ≥ 1− ε

We provide the proof of this claim in Appendix E. It is worthwhile observing that the theorem
applies to any algorithm that generates a sequence{µn} of iterates contained within the local poly-
topeL(G). In addition to the proximal Bregman updates discussed in this paper, it also applies to
interior-point methods (Boyd and Vandenberghe, 2004) for solving LPs. For the naive rounding
based onE′ = E, the sequence{µn} need not belong toL(G), but instead need only satisfy the
milder conditionsµn

s(xs)≥ 0 for all s∈V andxs ∈ X , and∑xs
µn

s(xs) = 1 for all s∈V.
The derandomized rounding scheme enjoys a similar guarantee, as shown inthe following the-

orem, proved in Appendix F.

Theorem 8 Consider a problem instance(G,θ) for which the MAP optimum x∗ is unique, and let
µ∗ be the associated vertex of the polytopeL(G). If at some iteration n, we have µn ∈ L(G), and

‖µn−µ∗‖1 ≤ ∆(θ;G)

1+d(E′)
,

then the(E′,µn)-derandomized rounding scheme in Algorithm6 outputs the MAP solution,

xd(µn;E′) = x∗.

4.2.4 BOUNDS ON ITERATIONS FORRANDOMIZED ROUNDING

Although Theorems 7 and 8 apply even for sequences{µn} that need not converge toµ∗, it is most
interesting when the LP relaxation is tight, so that the sequence{µn} generated by any LP-solver
satisfies the conditionµn → µ∗. In this case, we are guaranteed that for any fixedε ∈ (0,1), the
bound (53) will hold for an iteration numbern that is “large enough”. Of course, making this
intuition precise requires control of convergence rates. Recall thatN is the number of nodes in
the graph, andm is cardinality of the setX from which all variables takes their values. With this
notation, we have the following.
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Corollary 9 Under the conditions of Theorem 7, suppose that the sequence of iterates {µn} con-
verge to the LP (and MAP) optimum at a linear rate:‖µn−µ∗‖2 ≤ γn‖µ0−µ∗‖2. Then:

(a) The randomized rounding in Algorithm5 succeeds with probability at least1− ε for all iter-
ations greater than

n∗ :=
1
2 log

(
Nm+N2m2

)
+ log

(
‖µ0−µ∗‖2

)
+ log

(1+d(E′)
∆(θ;G)

)
+ log(1/ε)

log(1/γ)
.

(b) The derandomized rounding in Algorithm6 yields the MAP solution for all iterations greater
than

n∗ :=
1
2 log

(
Nm+N2m2

)
+ log

(
‖µ0−µ∗‖2

)
+ log

(1+d(E′)
∆(θ;G)

)

log(1/γ)
.

This corollary follows by observing that the vector(µn − µ∗) has less thanNm+N2m2 ele-
ments, so that‖µn − µ∗‖1 ≤

√
Nm+N2m2‖µn − µ∗‖2. Moreover, Theorems 7 and 8 provide an

ℓ1-ball radius such that the rounding schemes succeed (either with probability greater than 1− ε, or
deterministically) for all pseudomarginal vectors within these balls.

5. Experiments

In this section, we provide the results of several experiments to illustrate the behavior of our methods
on different problems. We performed experiments on 4-nearest neighbor grid graphs with sizes
varying fromN = 100 toN = 900, using models with eitherm= 3 or m= 5 labels. The edge
potentials were set to Potts functions, of the form

θst(xs,xt) =

{
βst if xs = xt

0 otherwise

for a parameterβst ∈ R. These potential functions penalize disagreement of labels ifβst > 0,
and penalize agreement ifβst < 0. The Potts weights on edgesβst were chosen randomly as
Uniform(−1,+1). We set the node potentials asθs(xs)∼ Uniform(−SNR,SNR), for some signal-
to-noise parameter SNR≥ 0 that controls the ratio of node to edge strengths. In applying all of the
proximal procedures, we set the proximal weights asωn = n.

5.1 Rates of Convergence

We begin by reporting some results on the convergence rates of proximal updates. Figure 2(a)
plots the logarithmic distance log‖µn − µ∗‖2 versus the number of iterations for grids of differ-
ent sizes (node numbersN ∈ {100,400,900}). Hereµn is the iterate at stepn entropic proximal
method andµ∗ is the LP optimum. In all cases, note how the curves have an inverted quadratic
shape, corresponding to a superlinear rate of convergence, which isconsistent with Proposition 1.
On other hand, Figure 2(b) provides plots of the logarithmic distance versus iteration number for
problem sizesN = 900, and over a range of signal-to-noise ratios SNR (in particular, SNR∈
{0.05,0.25,0.50,1.0,2.0}). Notice how the plots still show the same inverted quadratic shape, but
that the rate of convergence slows down as the SNR decreases, as is to be expected.
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Figure 2. (a) Plot of distance log10‖µn − µ∗‖2 between the current entropic proximal iterateµn

and the LP optimumµ∗ versus iteration number for Potts models on grids withN ∈ {100,400,900}
vertices,m= 5 labels and SNR= 1. Note the superlinear rate of convergence, consistent with Propo-
sition 1. (b) Plot of distance log10‖µn−µ∗‖2 between the current entropic proximal iterateµn and the
LP optimumµ∗ versus iteration number for Potts models on grids withm= 5 labels,N = 900 ver-
tices, and a range of signal-to-noise ratios SNR∈ {0.05,0.25,0.50,1.0,2.0}. The rate of convergence
remains superlinear but slows down as the SNR is decreased.
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Figure 3. (a) Plots of the function value (for fractional iteratesµn) versus number of iterations for
a Potts model withN = 400 vertices,m= 3 labels and SNR= 2. Three methods are compared: a
subgradient method (Feldman et al., 2002b; Komodakis et al., 2007), the entropic proximal method
(Ent. Prox.), and the TRW-based proximal method (TRW Prox.). (b) Traces of different algorithm
runs showing the number of inner iterations (vertical axis)versus the outer iteration number (hori-
zontal axis). Typically around 20 inner iterations are required.

In Figure 3, we compare two of our proximal schemes—the entropic and the quadratic schemes—
with a subgradient descent method, as previously proposed (Feldman etal., 2002a; Komodakis et al.,

26



MESSAGE-PASSING FOR GRAPH-STRUCTURED LINEAR PROGRAMS

2007). For the comparison, we used a Potts model on a grid of 400 nodes,with each node taking
three labels. The Potts weights were set as earlier, with SNR= 2. Plotted in Figure 3(a) are the log
probabilities of the solutions from the TRW-proximal and entropic proximal methods, compared to
the dual upper bound that is provided by the sub-gradient method. Eachstep on the horizontal axis
is a single outer iteration for the proximal methods, and five steps of the subgradient method. (We
note that it is slower to perform five subgradient steps than a single proximal outer iteration.) Both
the primal proximal methods and the dual subgradient method converge to thesame point. The
TRW-based proximal scheme converges the fastest, essentially within fourouter iterations, whereas
the entropic scheme requires a few more iterations. The convergence rateof the subgradient ascent
method is slower than both of these proximal schemes, even though we allowedit to take more steps
per “iteration”. In Figure 3(b), we plot a number of traces showing the number of inner iterations
(vertical axis) required as a function of outer iteration (horizontal axis). The average number of
inner iterations is around 20, and only rarely does the algorithm require substantially more.

5.2 Comparison of Rounding Schemes

In Figure 4, we compare five of our rounding schemes on a Potts model on grid graphs withN= 400,
m= 3 labels and SNR= 2. For the graph-structured randomized rounding schemes, we used the
node-based rounding scheme (so thatE\E′ = /0), and the chain-based rounding scheme (so that
E\E′ is the set of horizontal chains in the grid). For the deterministic rounding schemes, we used
the node-based, neighborhood-based and the tree-based roundingschemes. Panel (a) of Figure 4
shows rounding schemes as applied to the entropic proximal algorithm, whereas panel (b) shows
rounding schemes applied to the TRW proximal scheme. In both plots, the tree-based and star-based
deterministic schemes are the first to return an optimal solution, whereas the node-based randomized
scheme is the slowest in both plots. Of course, this type of ordering is to be expected, since the tree
and star-based schemes look over larger neighborhoods of the graph, but incur larger computational
cost.

6. Discussion

In this paper, we have developed distributed algorithms, based on the notionof proximal sequences,
for solving graph-structured linear programming (LP) relaxations. Our methods respect the graph
structure, and so can be scaled to large problems, and they exhibit a superlinear rate of convergence.
We have also developed a series of graph-structured rounding schemes that can be used to gener-
ate integral solutions along with a certificate of optimality. These optimality certificates allow the
algorithm to be terminated in a finite number of iterations.

The structure of our algorithms naturally lends itself to incorporating additional constraints,
both linear and other types of conic constraints. It would be interesting to develop an adaptive ver-
sion of our algorithm, which selectively incorporated new constraints as necessary, and then used
the same proximal schemes to minimize the new conic program. Our algorithms for solving the
LP are primal-based, so that the updates are in terms of the pseudo-marginals µ that are the primal
parameters of the LP. This is contrast to typical message-passing algorithmssuch as tree-reweighted
max-product, which are dual-based and where the updates are entirely interms ofmessageparam-
eters that are the dual parameters of the LP. However, the dual of the LPis non-differentiable, so
that these dual-based updates could either get trapped in local minima (dualco-ordinate ascent) or
have sub-linear convergence rates (dual sub-gradient ascent). On the one hand, our primal-based
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Figure 4. Plots of the log probability of rounded solutions versus thenumber of iterations for the
entropic proximal scheme (panel (a)), and the TRW proximal scheme (panel (b)). In both cases, five
different rounding schemes are compared: node-based randomized rounding (Node Rand.), chain-
based randomized rounding (Chain Rand.), node-based deterministic rounding (Node. Det.), star-
based deterministic rounding (Star Det.), and tree-based deterministic rounding (Tree Det.).

algorithm converges to the LP minimum, and has at least linear convergence rates. On the other, it
is more memory-intensive because of the need to maintainO (|E|) edge pseudo-marginal parame-
ters. It would be interesting to modify our algorithms so that maintaining these explicitly could be
avoided; note that our derandomized rounding scheme (Algorithm 4.2.1) does not make use of the
edge pseudo-marginal parameters.
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Appendix A. Corrections to Bregman Projections

We briefly outline the corrections needed to cyclic Bregman projections for the case where the
constraints are linear inequalities. It is useful, in order to characterize these needed corrections,
to first note that these cyclic projections are equivalent to co-ordinate ascent steps on the dual of
the Bregman projection problem (18). Let the linear constraint set for theBregman projection
problem (18) beC≡ ∩i{〈ai , µ〉 ≤ bi}. Its Lagrangian can be written as

L (µ,z) = D f (µ‖ν)+∑
i

zi(〈ai , µ〉−bi),

wherez≥ 0 are the Lagrangian or dual parameters. The dual function is given asg(z)=minµL (µ,z),
so that the dual problem can be written as

min
z≥0

g(z).
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If the constraints were linearequalities, the dual variables{z} would be unconstrained, and itera-
tive co-ordinate ascent—which can be verified to be equivalent to cyclic projections of the primal
variables onto individual constraints—would suffice to solve the dual problem. However, when the
constraints have inequalities, the dual problem is no longer unconstrained: the dual variables are
constrained to be positive. We would thus need to constrain the co-ordinateascent steps. This can
also be understood as the following primal-dual algorithmic scheme. Note that anecessary KKT
condition for optimality of a primal-dual pair(µ,z) for (18) is

∇ f (µ) = ∇ f (ν)−∑
i

ziai . (54)

The primal-dual algorithmic scheme then consists of maintaining primal-dual iterates (µt ,zt) which
satisfy the equality (54), are dual feasible withzt ≥ 0, and which entail co-ordinate ascent on the
dual problem, so thatg(zt+1) ≥ g(zt) with at most one co-ordinate ofµt updated inµt+1. We can
now write down the corrected-projection update ofµt given the single constraintCi ≡ {〈ai , µ〉 ≤ bi}.
According to the primal-dual algorithmic scheme this corresponds to co-ordinate ascent on thei-th
co-ordinate ofzt so that (54) is maintained, whereby

∇ f (µt+1) = ∇ f (µt)+Cai , (55)

zt+1 = zt −Cei ,

C := min{zt
i , β},

whereei is the co-ordinate vector with one in thei-th co-ordinate and zero elsewhere, andβ is the
i-th dual parameter setting corresponding to an unconstrained co-ordinate ascent update,

∇ f (µ) = ∇ f (µn)+βai , (56)

〈µ, ai〉 = bi .

One could derive such corrections corresponding to constrained dual ascent for general convex
constraints (Dykstra, 1985; Han, 1988).

Appendix B. Detailed Derivation of Message-passing Updates

In this appendix, we provided detailed derivation of the message-passingupdates for the inner loops
of the algorithms.

B.1 Derivation of Algorithm 2

Consider the edge marginalization constraint for edge(s, t), Li(G) ≡ ∑xt
µst(xs,xt) = µs(xs). De-

noting the dual (Lagrange) parameter corresponding to the constraint by λst(xs), the Karush-Kuhn-
Tucker conditions for the quadratic update (26) are given by

∇q(µn,τ+1
st (xs,xt)) = ∇q(µn,τ

st (xs,xt))+λst(xs)

∇q(µn,τ+1
s (xs)) = ∇q(µn,τ

s (xs))−λst(xs)

µn,τ+1
st (xs,xt) = µn,τ

st (xs,xt)+λst(xs)

µn,τ+1
s (xs) = µn,τ

s (xs)−λst(xs),
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while the constraint itself gives

∑
xt

µn,τ+1
st (xs,xt) = µn,τ

s (xs). (58)

Solving forλst(xs) yields equation (28a). The node marginalization follows similarly.
The only inequalities are the positivity constraints, requiring that the node and edge pseudo-

marginals be non-negative. Following the correction procedure for Bregman projections in (55), we
maintain Lagrange dual variables corresponding to these constraints. WeuseZs(xs) as the Lagrange
variables for the node positivity constraintsµs(xs) ≥ 0, andZst(xs,xt) for the edge-positivity con-
straintsµst(xs,xt)≥ 0.

Consider the projection of{µn,τ+1} onto the constraintµs(xs)≥ 0. Following (56), we first solve
for βs(xs) that satisfies

µs(xs) = µn,τ+1
s (xs)−βs(xs)

µs(xs) = 0,

so thatβs(xs) = µn,τ+1
s (xs). Substituting in (55), we obtain the update

Cs(xs) = min{Zs(xs),µ
(n,τ+1)
s (xs)}

Zs(xs) = Zs(xs)−Cs(xs)

µ(n,τ+1)
s (xs) = µ(n,τ+1)

s (xs)−Cs(xs).

The edge positivity constraint updates follow similarly.

Thus overall, we obtain message-passing Algorithm 2 for the inner loop.

B.2 Derivation of Algorithm 3

Note that we do not need to explicitly impose positivity constraints in this case. Because the domain
of the entropic Bregman function is the positive orthant, if we start from a positive point, any further
Bregman projections would also result in a point in the positive orthant.

The projectionµn,τ+1 = Πh(µn,τ,Li(G)) onto the individual constraintLi(G) is defined by the
optimization problem:

µn,τ+1 = min
Li(G)

{h(µ)−µ⊤∇h(µn,τ)}.

Consider the subsetLi(G) defined by the marginalization constraint along edge(s, t), namely
∑x′t∈X µst(xs,x′t) = µs(xs) for eachxs ∈ X . Denoting the dual (Lagrange) parameters correspond-
ing to these constraint byλst(xs), the KKT conditions are given by

∇h(µn,τ+1
st (xs,xt)) = ∇h(µn,τ

st (xs,xt))+λst(xs), and (59a)

∇h(µn,τ+1
s (xs)) = ∇h(µn,τ

s (xs))−λst(xs). (59b)

Computing the gradient∇h and performing some algebra yields the relations

µ(n,τ+1)
st (xs,xt) = µ(n,τ)st (xs,xt)exp(λ(n,τ+1)

st (xs)), (60a)

µ(n,τ+1)
s (xs) = µ(n,τ)s (xs)exp(−λ(n,τ+1)

st (xs)), and (60b)

exp(2λ(n,τ+1)
st (xs)) =

µ(n,τ)s (xs)

∑xt
µ(n,τ)st (xs,xt)

, (60c)
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from which the updates (31) follow.
Similarly, for the constraint set defined by the node marginalization constraint

∑xs∈X µs(xs) = 1, we have∇h(µ(n,τ+1)
s (xs)) = ∇h(µ(n,τ)s (xs))+λ(n,τ+1)

s , from which

µ(n,τ+1)
s (xs) = µ(n,τ)s (xs)exp(λ(n,τ+1)

s ), and (61a)

exp(λ(n,τ+1)
s ) = 1/ ∑

xs∈X
µ(n,τ)s (xs). (61b)

The updates in equation (33) follow.

Appendix C. Proof of Lemma 4

We provide a detailed proof for the entropic scheme; the arguments for other proximal algorithms
are analogous. The key point is the following: regardless of how the proximal updates are com-
puted, they must satisfy the necessary Lagrangian conditions for optimal points over the setL(G).
Accordingly, we define the following sets of Lagrange multipliers:

λss for the normalization constraintCss(µs) = ∑x′s µs(x′s)−1= 0

λst(xs) for the marginalization constraintCts(xs) = ∑x′t µst(xs,x′t)−µs(xs) = 0

γst(xs,xt) for the non-negativity constraintµst(xs,xt)≥ 0.

(There is no need to enforce the non-negativity constraintµs(xs)≥ 0 directly, since it is implied by
the non-negativity of the joint pseudo-marginals and the marginalization constraints.)

With this notation, consider the Lagrangian associated with the entropic proximal update at step
n:

L(x;λ,γ) =C(µ;θ,µn)+ 〈γ, µ〉+ ∑
s∈V

λssCss(xs)+ ∑
(s,t)∈E

[
λts(xs)Cts(xs)+λst(xt)Cst(xt)

]
,

whereC(µ;θ,µn) is shorthand for the cost component−〈θ, µ〉+ 1
ωn Dα(µ‖µn). UsingC,C′ to denote

constants (whose value can change from line to line), we now take derivatives to find the necessary
Lagrangian conditions:

∂L
∂µs(xs)

= −θs(xs)+
2αs

ωn log
µs(xs)

µn
s(xs)

+C+λss+ ∑
t∈N(s)

λts(xs), and

∂L
∂µst(xs,xt)

= −θst(xs,xt)+
2αst

ωn log
µst(xs,xt)

µn
st(xs,xt)

+C′+ γst(xs,xt)−λts(xs)−λst(xt).

Solving for the optimumµ= µn+1 yields

2αs

ωn logµn+1
s (xs) = θs(xs)+

2αs

ωn logµn
s(xs)− ∑

t∈N(s)

λts(xs)+C

2αst

ωn logµn+1
st (xs,xt) = θst(xs,xt)+

2αst

ωn logµn
st(xs,xt)− γst(xs,xt)

+λts(xs)+λst(xt)+C′.
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From these conditions, we can compute the energy invariant (48):

2
ωnF(x;µn+1) = ∑

s∈V

2αs

ωn logµn+1
s (xs)+ ∑

(s,t)∈E

2αst

ωn logµn+1
st (xs,xt)+C

= F(x;θ)+
2

ωn

{
∑
s∈V

αs logµn(xs)+ ∑
(s,t)∈E

αst logµn
st(xs,xt)

}

− ∑
(s,t)∈E

γst(xs,xt)+C

= F(x;θ)+
2

ωnF(x;µn)− ∑
(s,t)∈E

γst(xs,xt)+C.

Now sinceµn > 0, by complementary slackness, we must haveγst(xs,xt) = 0, which implies that

2
ωnF(x;µn+1) = F(x;θ)+

2
ωnF(x;µn)+C. (62)

From this equation, it is a simple induction to show for some constantsγn > 0 andCn ∈ R,
we haveF(x;µn) = γnF(x;θ)+Cn for all iterationsn = 1,2,3, . . ., which implies preservation of
the maximizers. If at iterationn = 0, we initializeµ0 = 0 to the all-uniform distribution, then we
have 2

ω1 F(x;µ1) = F(x;θ)+C′, so the statement follows forn= 1. Suppose that it holds at stepn;

then 2
ωn F(x;µn) = 2

ωn γnF(x;θ)+ 2Cn
ωn

, and hence from the induction step (62), we haveF(x;µn+1) =

γn+1F(x;θ)+Cn+1, whereγn+1 =
ωn

2 γn.

Appendix D. Proof of Theorem 6

Consider the expected cost of the configurationX(µn;E′) obtained from the randomized rounding
procedure of Algorithm 5. A simple computation shows that

E[F(X(µn;E′);θ)] = G(µ̄) :=
K

∑
i=1

H(µn;Ti)+H(µn;E′)

where

H(µn;Ti) := ∑
s∈Vi

∑
xs

µn
s(xs)θs(xs)+ ∑

(s,t)∈Ei

∑
xs,xt

µn
st(xs,xt)θst(xs,xt), (63a)

H(µn;E′) := ∑
(u,v)∈E′

∑
xs,xt

µn
u(xu)µ

n
v(xv)θst(xu,xv). (63b)

We now show by induction that the de-randomized rounding scheme achieves cost at least as
large as this expected value. Let ¯µ(i) denote the updated pseudomarginals at the end of thei-th
iteration. Since we initialize with ¯µ(0) = µn, we haveG(µ̄(0)) =E[F(X(µn;E′);θ)]. Consider thei-th
step of the algorithm; the algorithm computes the portion of the de-randomized solution xd

Vi
over the

i−th tree. It will be convenient to use the decompositionG= Gi +G\i , where

Gi(µ̄) := ∑
s∈Vi

∑
xs

µ̄s(xs)

{
θs(xs)+ ∑

{t | (s,t)∈E′}
∑
xt

µ̄t(xt)θst(xs,xt)

}
+

∑
(s,t)∈Ei

∑
xs,xt

µ̄st(xs,xt)θst(xs,xt),
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andG\i = G−Gi . If we define

Fi(xVi ) := ∑
s∈Vi

{
θs(xs)+ ∑

t:(s,t)∈E′
∑
xt

µ̄(i−1)
t (xt)θst(xs,xt)

}
+ ∑

(s,t)∈Ei

θst(xs,xt),

it can be seen thatGi(µ̄(i−1)) = E[Fi(xVi )] where the expectation is under the tree-structured distri-
bution overXVi given by

p(xVi ; µ̄
(i−1)(Ti)) = ∏

s∈Vi

µ̄(i−1)(xs) ∏
(s,t)∈Ei

µ̄(i−1)(xs,xt)

µ̄(i−1)(xs)µ̄(i−1)(xt)
.

Thus when the algorithm makes the choicexd
Vi
= argmaxxVi

Fi(xVi ), it holds that

Gi(µ̄
(i−1)) = E[Fi(xVi )] ≤ Fi(x

d
Vi
).

The updated pseudomarginals ¯µ(i) at the end thei-th step of the algorithm are given by,

µ̄(i)s (xs) =

{ µ̄(i−1)
s (xs) if s /∈Vi

0 if s∈Vi ,Xd,s 6= xs

1 if s∈Vi ,Xd,s = xs

µ̄(i)st (xs,xt) =

{
µ̄(i−1)

st (xs,xt) if (s, t) /∈ Ei

µ̄(i)s (xs)µ̄
(i)
t (xt) if (s, t) ∈ Ei

In other words, ¯µ(i)(Ti) is the indicator vector of the maximum energy sub-configurationxd
Vi

. Con-
sequently, we have

Gi(µ̄
(i)) = Fi(x

d
Vi
) ≥ Gi(µ̄

(i−1)),

andG\i(µ̄
(i)) = G\i(µ̄

(i−1)), so that at the end of thei-th step,G(µ̄(i))≥ G(µ̄(i−1)). By induction, we
conclude thatG(µ̄(K))≥ G(µ̄(0)), whereK is the total number of trees in the rounding scheme.

At the end ofK steps, the quantity ¯µ(K) is the indicator vector forxd(µn;E′) so thatG(µ̄(K)) =
F(Xd(µn;E′);θ). We have also shown thatG(µ̄(0)) = E[F(X(µn;E′);θ)]. Combining these pieces,
we conclude thatF(xd(µn;E′);θ)≥ E[F(X(µn;E′);θ)], thereby completing the proof.

Appendix E. Proof of Theorem 7

Let psucc= P[X(µn;E′) = x∗], and letR(µn;E′) denote the (random) integral vertex ofL(G) that is
specified by the random integral solutionX(µn;E′). (SinceE′ is some fixed forest-inducing subset,
we frequently shorten this notation toR(µn).) We begin by computing the expected cost of the
random solution, where the expectation is taken over the rounding procedure. A simple computation
shows thatE[〈θ, R(µn)〉] := ∑K

i=1H(µn;Ti)+H(µn;E′), whereH(µn;Ti) andH(µn;E′) were defined
previously (63).

We now upper bound the difference〈θ, µ∗〉−E[〈θ, R(µn)〉]. For each subtreei = 1, . . . ,K, the
quantityDi := H(µ∗;Ti)−H(µn;Ti) is upper bounded as

Di = ∑
s∈Vi

∑
xs

[
µ∗s(xs)−µn

s(xs)

]
θs(xs)+ ∑

(s,t)∈Ei

∑
xs,xt

[
µ∗s(xs)µ

∗
t (xt)−µn

st(xs,xt)

]
θst(xs,xt)

≤ ∑
s∈Vi

δs(θ)∑
xs

|µ∗s(xs)−µn
s(xs)|+ ∑

(s,t)∈Ei

δst(θ) ∑
xs,xt

|µ∗st(xs,xt)−µn(xs,xt)|.
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In asserting this inequality, we have used the fact that that the matrix with entries given byµ∗s(xs)µ∗t (xt)−µn
st(xs,xt)

is a difference of probability distributions, meaning that all its entries are between−1 and 1, and
their sum is zero.

Similarly, we can upper bound the differenceD(E′) = H(µ∗;E′)−H(µn;E′) associated withE′:

D(E′) = ∑
(u,v)∈E′

∑
xu,xv

[
µ∗u(xu)µ

∗
v(xv)−µn

u(xu)µ
n
v(xv)

]
θuv(xu,xv)

≤ ∑
(u,v)∈E′

δuv(θ) ∑
xu,xv

∣∣∣∣µ
∗
u(xu)µ

∗
v(xv)−µn

u(xu)µ
n
v(xv)

∣∣∣∣

≤ ∑
(u,v)∈E′

δuv(θ) ∑
xu,xv

{∣∣∣∣µ
∗
u(xu)[µ

∗
v(xv)−µn

v(xv)]

∣∣∣∣+
∣∣∣∣µ

n
v(xv)[µ

∗
u(xu)−µn

u(xu)]

∣∣∣∣
}

≤ ∑
(u,v)∈E′

δuv(θ)
{

∑
xu

|µn
u(xu)−µ∗u(xu)|+∑

xu

|µn
v(xv)−µ∗v(xv)|

}
.

Combining the pieces, we obtain

〈θ, µ∗〉−E[〈θ, R(µn)〉] ≤ δG(θ)
{
‖µn−µ∗‖1+ ∑

s∈V

d(s;E′)∑
xs

|µn
s(xs)−µ∗s(xs)|

}

≤ (1+d(E′))δG(θ)‖µn−µ∗‖1. (64)

In the other direction, we note that when the rounding fails, then we have

〈θ, µ∗〉−〈θ, R(µn)〉 ≥ max
x6=x∗

[F(x∗;θ)−F(x;θ)].

Consequently, conditioning on whether the rounding succeeds or fails, we have

〈θ, µ∗〉−E[〈θ, R(µn)〉] ≥ psucc
[
〈θ, µ∗〉−〈θ, µ∗〉

]
+(1− psucc)max

x6=x∗
[F(x∗;θ)−F(x;θ)]

= (1− psucc)max
x6=x∗

[F(x∗;θ)−F(x;θ)].

Combining this lower bound with the upper bound (64), performing some algebra, and using the
definition of the gap∆(θ;G) yields that the probability of successful rounding is at least

psucc ≥ 1− (1+d(E′))
∆(θ;G)

‖µn−µ∗‖1.

If the condition (53) holds, then this probability is at least 1− ε, as claimed.

Appendix F. Proof of Theorem 8

The proof follows that of Theorem 7 until equation (64), which gives

〈θ, µ∗〉−E[〈θ, R(µn)〉] ≤ (1+d(E′))δG(θ)‖µn−µ∗‖1.

Let vd(µn;E′) denote the integral vertex ofL(G) that is specified by the de-randomized integral so-
lution xd(µn;E′). SinceE′ is some fixed forest-inducing subset, we frequently shorten this notation
to vd(µn). Theorem 6 shows that

E[〈θ, R(µn)〉]≤ 〈θ, vd(µn)〉.
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Suppose the de-randomized solution is not optimal so thatvd(µn) 6=µ∗. Then, from the definition
of the graph-based gap∆(θ;G), we obtain

〈θ, µ∗〉−〈θ, vd(µn)〉 ≥ δG(θ)∆(θ;G)

Combining the pieces, we obtain

δG(θ)∆(θ;G) ≤ 〈θ, µ∗〉−〈θ, vd(µn)〉
≤ 〈θ, µ∗〉−E[〈θ, R(µn)〉]
≤ (1+d(E′))δG(θ)‖µn−µ∗‖1,

which implies‖µn−µ∗‖1 ≥ ∆(θ;G)
1+d(E′) . However, this conclusion is a contradiction under the given

assumption on‖µn−µ∗‖1 in the theorem. It thus holds that the de-randomized solutionvd(µn) is
equal to the MAP optimumµ∗, thereby completing the proof.
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