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Quantum Walks

1 Classical Random Walks
Random walks on graphs are used in designing algorithms for many sampling and counting problems. For
example, assume that we are given a graphG as input, and we want to compute the (approximate) number of
spanning trees ofG. It can be shown that this problem is essentially equivalent to the problem of generating
a uniformly random spanning tree. We can uniformly sample spanning trees by a random walk on another
graphH. The vertex set ofH consists of all spanning trees ofH. Two spanning treesT andT ′ are adjacent
in H if and only if T ′ is obtained fromT by removing one edge and adding a new one.

In order to ensure that random walks on a graphH converge to a unique stationary distribution, the underly-
ing graphH should satisfy the following two properties:

• H should be connected.

• H should not be bipartite, so that the random walk is aperiodic.

It is easy to check that the stationary distribution of a random walk on a simple graph is uniform on edges,
i.e. the probability of traversing each edge is the same.

Sometimes we consider random walks on weighted undirected graphs, where each edge(x,y) has some
weight wxy. For each vertexx, let wx = ∑ywxy denote the sum of weights of all edges incident tox. If
P = (pxy) denotes the transition probability matrix of the Markov chain associated to the random walk, i.e.
pxy be the probability of moving to vertexy when we are atx, thenpxy = wxy/wx. The stationary distribution
over vertices is given byπx = wx/∑ywy. For the most part of this lecture, we assume that we walk on regular
graphs, i.e.w(x) = w(y) for everyx andy. For regular graphs, the matrixP is symmetric, and the uniform
distributionπx = 1/N is stationary. (N is the number of vertices.)

Consider a random walk on a regular graph. If the vector
∣∣v〉 is a distribution over vertices, thenP

∣∣v〉
is the distribution of the vertices after one step of the random walk. SinceP is symmetric, it hasN real
eigenvectors

∣∣v1
〉
, . . . ,

∣∣vN
〉

that form an orthogonal basis forRN. Let λ1 ≥ . . . ≥ λN be the corresponding
eigenvalues in ascending order. Moreover,P is stochastic, i.e. it has nonnegative entries and its columns
sum to 1. (In factP is doubly stochastic; both its rows and columns sum to 1.) Thus, the eigenvectors ofP
are between 1 and−1. For the stationary distribution

∣∣π〉
, we haveP

∣∣π〉
=

∣∣π〉
. Hence,λ1 = 1.

Remark. We can assume that all eigenvectors ofP are nonnegative. IfP has negative eigenvectors, we can
modify the random walk by adding self-loops with probability 1/2. The eigenvalues of the new transition
matrix (P+ I)/2 are then(λ1 +1)/2, . . . ,(λN +1)/2.

It turns out that the rate of convergence of the random walk is governed by the gap 1− λ2 between the
first and the second largest eigenvalues. To see why, let

∣∣v〉 be a distribution over vertices.
∣∣v〉 is a linear

combination∑i αi
∣∣vi

〉
of eigenvectors, where

∣∣v1
〉

is the stationary distribution. The distribution aftert steps
of the random walk would be∑i αiλ

t
i

∣∣vi
〉

. Therefore, 1−λ2 determines how fast non-stationary eigenvectors
diminish.
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Let M be a subset of vertices of the graph that are marked. The hitting timeT of the random walk is
the number of steps needed to encounter a marked vertex. LetPM denote the matrix obtained fromP by
removing rows and columns corresponding to vertices inM. Since the sum of elements of each column of
P is at most 1, the eigenvalues ofPM are at most 1.

Fact 1. The expected hitting timeE[T] is≤ 1
1−λ

, whereλ is the largest eigenvalue ofPM.

Fact 2. If |M|= εN and the eigenvalues ofP are 1,λ2, . . ., then 1−λ ≥ ε(1−λ2)
2 .

We will see that quantum walks achieve a quadratic speed-up in terms of hitting time.

1.1 Example: Hypercubes.
Let us now look at random walks on hypercubes as an example. Then-dimensional hypercube is a graph
with vertex set{0,1}n. Two vertices are connected if they differ in exactly one position.

Since the hypercube is bipartite, we modify the random walk on the hypercube by adding self-loops of
probability 1/2 to it. That is, at each vertexx, we go to a neighbor vertex with probability 1/2 and we stay
atx with probability 1/2. But this is equivalent to choosing a random position 1≤ i ≤ n and then settingxi ,
the ith position ofx, to a random value. We see that the distribution of the random walk is uniform aftert
steps if each of then positions has been chosen at least once after thet steps. Therefore, the mixing time of
the random walk is determined by the coupon collector’s problem, which isO(nlogn).

We can also get the same result by looking at the eigenvaluesλ1, . . . ,λ2n of the transition matrix. (We
consider the original transition matrix, the one without self-loops; note that eigenvalues of the modified
transition matrix are{(λi +1)/2)}). For everys∈ {0,1}n, the 2n-dimensional vectorχs(x) = (−1)s.x is an
eigenvector with eigenvalue 1−2|s|/n, where|s| is the number of nonzero components ofs. Notice that the
gap between the first and second largest eigenvector is 2/n.

2 Quantization of Markov Chains
Let P = (pxy) be the transition matrix of a classical Markov chain with state spaceX consisting ofN states.
We define a quantum walk that corresponds toP.

The quantum walk operates on the Hilbert spaceCN⊗CN with basis states{
∣∣x〉∣∣y〉 : x,y∈ X}. Define∣∣φx

〉
= ∑

y∈Y

√
pxy

∣∣x〉∣∣y〉 , for x∈ X,∣∣ψy
〉

= ∑
x∈X

√
pyx

∣∣x〉∣∣y〉 , for y∈ X.

Let E1 and E2 be the subspaces spanned by{
∣∣φx

〉
} and {

∣∣ψy
〉
} respectively. If we had operatorsT1 :

CN⊗CN → E1 andT2 : CN⊗CN → E2 such that for arbitrary
∣∣r〉 , T1 mapped

∣∣x〉∣∣r〉 to
∣∣φx

〉
, andT2 mapped∣∣r〉∣∣y〉 to

∣∣ψy
〉

, then by applyingT1 andT2 alternately, we could get an analogue of the Markov chainP.
However,T1 andT2 are not realizable in quantum mechanics since they are not reversible.

Instead, we will define unitary operatorsR1 andR2 that serve as quantum analogues ofT1 andT2: Let π1 and
π2 denote orthogonal projections onE1 andE2. We defineR1 = 2π1−1 andR2 = 2π2−1 to be reflections
with respect toE1 andE2 respectively. Note thatRi keepsEi pointwise fixed (as doesTi), and tosses up the
rest of the space as much as possible.

Each step of the quantum walk is given byWP = R2R1. Running the quantum walk fort steps corresponds
to applyingWt

P.
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WhenP is symmetric, the state ∣∣Φ0
〉

=
1√
N

∑
x,y

√
px,y

∣∣x〉∣∣y〉
lies inE1

⋂
E2. ThusWP

∣∣Φ0
〉

=
∣∣Φ0

〉
.

3 Quantum Hitting Time
Assume that some subsetM of states of a Markov chainP are marked. The hitting time ofM is defined as
the number of iterations necessary to encounter an element ofM. For the purpose of analyzing the hitting
time, we can modify the random walk such that as soon as we reach some vertexx∈ M, we never leavex.
The transition matrix corresponding to the modified random walk equals

P̃ =
(

PM P′

0 I

)
,

wherePM is the submatrix ofP obtained by deleting rows and columns ofM.

Given a symmetric matrixP and subsetM of marked states, we will describe how to check whetherM is
empty or not by running the quantum walkWP̃. We start by setting the initial state of the walk to

∣∣Φ0
〉

, the
stationary state forWP. Next, we run the quantum walk fort steps to get

∣∣Φt
〉

= Wt
P̃

∣∣Φ0
〉

. If M is empty,
thenP = P̃ and

∣∣Φt
〉

=
∣∣Φ0

〉
. If M is not empty, then we will show that for large enoughT, if the number

of stepst is chosen at random from{1, . . . ,T}, thenEt [〈Φt
∣∣Φ0

〉
2] = 1−Ω(1). So if we measure

∣∣Φt
〉

along
∣∣Φ0

〉
, with probabilityΩ(1), the result of the measurement is not

∣∣Φ0
〉

. Therefore we can distinguish
between the case whereM is empty and the case where it is not. Notice that the above algorithm is not a
search algorithm, that is, we only check the existence of a marked state, and cannot necessarily find one.

The minimumT that can be used in the above algorithm is called the quantum hitting time ofM.

Theorem (Szegedy).The quantum hitting time ofM is O( 1√
1−‖PM‖|

) where‖PM‖ is the operator norm of

PM. (‖PM‖ is the largest eigenvector ofPM too).

Proof. Let n = N−|M|. Let
∣∣v1

〉
, . . . ,

∣∣vn
〉
∈ Rn be an orthonormal basis of real eigenvectors forPM with

eigenvaluesλ1, . . . ,λn.

Let 1≤ i ≤ n. Suppose
∣∣vi

〉
= ∑x αxi

∣∣x〉 , where we assumeαxi = 0 for all x∈M. Define∣∣e1i
〉

= ∑
x

αxi
∣∣φx

〉
= ∑

x,y
αxi

√
p̃xy

∣∣x〉∣∣y〉 ∈ E1,∣∣e2i
〉

= ∑
y

αyi
∣∣ψy

〉
= ∑

x,y
αyi

√
p̃yx

∣∣x〉∣∣y〉 ∈ E2.

We have〈e1i
∣∣e2i

〉
= 〈vi |PM

∣∣vi
〉

= λi . Moreover, we haveπ2
∣∣e1i

〉
= λi

∣∣e2i
〉

since
∣∣e1i

〉
−λi

∣∣e2i
〉

is orthogonal
to every

∣∣ψy
〉

. Similarly, π1
∣∣e2i

〉
= λi

∣∣e1i
〉

.

Let Vi denote the subspace generated by
∣∣e1i

〉
and

∣∣e2i
〉

. It is easy to see thatV1, . . . , Vn are invariant
subspaces ofR1 andR2. In fact,Rj reflects every vector inVi with respect to

∣∣eji
〉

. Thus, underWP̃ = R2R1,
every vector in subspaceVi is rotated by angle 2θi , whereθi = cos−1 λi is the angle between

∣∣e1i
〉

and
∣∣e2i

〉
.

It is not hard to see thatV1, . . . , Vn are orthogonal. Indeed, fori 6= j, the orthogonality of
∣∣vi

〉
and

∣∣v j
〉

implies〈e1i
∣∣e1 j

〉
= 〈e2i

∣∣e2 j
〉

= 0, andπ2
∣∣e1i

〉
= λi

∣∣e2i
〉

implies〈e1i
∣∣e2 j

〉
= 0.

Let V⊥ denote the orthogonal complement of the subspaceV = V1 + · · ·+Vn in the Hilbert space of the
quantum walk. We will show thatV⊥ is another invariant subspace ofR1 andR2. Let

∣∣φ〉
and

∣∣φ⊥〉
be
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two arbitrary vectors inV andV⊥ respectively. We will show that
∣∣φ〉

andπ1
∣∣φ⊥〉

are orthogonal. Since
〈φ |π1

∣∣φ⊥〉
= 〈φ |π1π1

∣∣φ⊥〉
, we can instead show thatπ1

∣∣φ〉
andπ1

∣∣φ⊥〉
are orthogonal. But this is true

becauseπ1
∣∣φ〉

is a linear combination of{
∣∣e1i

〉
}, and

∣∣φ⊥〉
, being inV⊥, is orthongonal to all

∣∣e1i
〉

. Thus,
V⊥ is invariant underπ1, and hence underR1, and similarly underR2.

Therefore, the operation of the quantum walk,WP̃, can be decomposed through the direct sum decomposition
V1 + · · ·+Vn +V⊥. Consider the initial state∣∣Φ0

〉
=

1√
N

∑
x,y

√
pxy

∣∣x〉∣∣y〉 =
1√
N

∑
x6∈M

∣∣φx
〉

+
1√
N

∑
x∈M

∑
y

√
pxy

∣∣x〉∣∣y〉 .

For x 6∈M, the vector
∣∣φx

〉
is a linear combination of{

∣∣e1i
〉
}. Forx∈M, the vector

∣∣x〉∣∣y〉 is orthogonal to
{
∣∣e1i

〉
} and{

∣∣e2i
〉
}. Thus, if

∣∣ui
〉

denotes the projection of
∣∣Φ0

〉
ontoVi , then∑i〈ui

∣∣ui
〉

= n/N.

We may assumen/N ≥ 1/2, since otherwise at least half of the vertices are marked and we can solve
the problem by random sampling. Since the quantum walkWP̃ rotates vectors in subspaceVi by an-
gle 2θi , if we run the quantum walk fort steps, wheret is chosen at random from{1, . . . ,Ω(1/|θi |)},
thenEt [|〈ui |Wt

P̃

∣∣ui
〉
|] = 1−Ω(1). Therefore, for someT = O(1/θ) whereθ = mini |θi |, whent is cho-

sen from{1, . . . ,T}, we haveEt [|〈Φt
∣∣Φ0

〉
|] ≤ 1−Ω(1)∑i〈ui

∣∣ui
〉

= 1−Ω(1). This implies that there
exists positive constantc such that Pr[|〈Φt

∣∣Φ0
〉
| < 1− c] > c. HenceEt [〈Φt

∣∣Φ0
〉

2] = 1−Ω(1). Since
θ ≥ sinθ ≥

√
1−cosθ =

√
1−||PM||, we have proved that the hitting time isO( 1√

1−‖PM‖|
).

4 Element Distinctness
In this section, as an application of quantum random walks and their hitting time, we solve the element
distinctness problem.

Definition. In the element distinctness problem, we are given a functionf : {1, . . . ,n}→ {1, . . . ,m}, where
n≤m, and we want to check whetherf is one-to-one.

Classically, any algorithm for this problem requiresθ(n) queries off . Quantumly, Ambainis has shown that
θ(n2/3) queries is necessary and sufficient.

Here is an algorithm for the problem:

1. Start with some subsetS⊆ {1, . . . ,n} of sizer.
2. Check if there are two elementsx,y∈ Ssuch thatf (x) = f (y).
3. Remove a random element ofS, add a random new element toS, and repeat step 2.

The algorithm is essentially a random walk on a graph whose vertices are subsets of sizer of {1, . . . ,n}.
There is an edge between two subsets if and only if they differ in exactly two elements. The marked vertices
M are those subsetsS that contain elementsx,y∈ Ssuch thatf (x) = f (y). The total number of vertices is
N =

(n
r

)
. If the function is not one-to-one, then the number of marked states is at least

(n−2
r−2

)
. Thus,

|M|
N

≥
(n−2

r−2

)(n
r

) =
r(r−1)

(n− r +2)(n− r +1)
≈ r2

n2 .

It is known that the second eigenvalue of the above graph is approximately 1−1/r. Therefore, 1−‖PM‖=
Ω(r/n2).

The number of queries that the algorithm makes isr (for the first step) plus the hitting time ofM (for the
second step). Classically, this isO(r + n2/r), which is at bestO(n). Quantumly, the number of queries is
O(r +n/

√
r), which isO(n2/3) whenr = n2/3.
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