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Quantum Walks

1 Classical Random Walks

Random walks on graphs are used in designing algorithms for many sampling and counting problems. For
example, assume that we are given a gr@@s input, and we want to compute the (approximate) number of
spanning trees db. It can be shown that this problem is essentially equivalent to the problem of generating

a uniformly random spanning tree. We can uniformly sample spanning trees by a random walk on another
graphH. The vertex set ofl consists of all spanning trees idf Two spanning tree§ andT’ are adjacent

in H if and only if T’ is obtained fronil' by removing one edge and adding a new one.

In order to ensure that random walks on a gripbtonverge to a unique stationary distribution, the underly-
ing graphH should satisfy the following two properties:

* H should be connected.

» H should not be bipartite, so that the random walk is aperiodic.

It is easy to check that the stationary distribution of a random walk on a simple graph is uniform on edges,
i.e. the probability of traversing each edge is the same.

Sometimes we consider random walks on weighted undirected graphs, where ead¢k, gdbas some
weight wyy. For each vertex, let wy = ¥y Way denote the sum of weights of all edges incidenktolf

P = (pxy) denotes the transition probability matrix of the Markov chain associated to the random walk, i.e.
pxy be the probability of moving to vertexwhen we are at, thenp,y = Wyy/Wx. The stationary distribution

over vertices is given by, = wy/ 3, Wy. For the most part of this lecture, we assume that we walk on regular
graphs, i.ew(x) = w(y) for everyx andy. For regular graphs, the matrXis symmetric, and the uniform
distributionmy, = 1/N is stationary. l is the number of vertices.)

Consider a random walk on a regular graph. If the ve¢v(>)ris a distribution over vertices, theﬁﬁ]v}

is the distribution of the vertices after one step of the random walk. Srisesymmetric, it had\ real
eigenvector$v1> yeees vN> that form an orthogonal basis f&". Let A; > ... > Ay be the corresponding
eigenvalues in ascending order. MoreoWis stochastic, i.e. it has nonnegative entries and its columns
sum to 1. (In facP is doubly stochastic; both its rows and columns sum to 1.) Thus, the eigenveckrs of
are between 1 and 1. For the stationary distributidar) , we haveP|7) = |7). Hence Ay = 1.

Remark. We can assume that all eigenvector$are nonnegative. PP has negative eigenvectors, we can
modify the random walk by adding self-loops with probability 1/2. The eigenvalues of the new transition
matrix (P+1)/2 are thenA1+1)/2,..., (AN +1)/2.

It turns out that the rate of convergence of the random walk is governed by the-gdp hetween the
first and the second largest eigenvalues. To see Why&/)leh)e a distribution over verticeé,v> is a linear
combinationy; o; \vi> of eigenvectors, Wher1®'1> is the stationary distribution. The distribution afteteps

of the random walk would bg; o )Lit \vi> . Therefore, - A, determines how fast non-stationary eigenvectors
diminish.
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Let M be a subset of vertices of the graph that are marked. The hittingTirmethe random walk is
the number of steps needed to encounter a marked vertexayLdénote the matrix obtained frof by
removing rows and columns corresponding to verticeld inSince the sum of elements of each column of
P is at most 1, the eigenvalues @y are at most 1.

Fact 1. The expected hitting timE[T] is < ﬁ wherel is the largest eigenvalue 8.

Fact 2.1f M| = eN and the eigenvalues &are 1 1,,..., then 1- 1 > 8(1;212)

We will see that quantum walks achieve a quadratic speed-up in terms of hitting time.

1.1 Example: Hyperculoes.

Let us now look at random walks on hypercubes as an examplen-timaensional hypercube is a graph
with vertex set{0,1}". Two vertices are connected if they differ in exactly one position.

Since the hypercube is bipartite, we modify the random walk on the hypercube by adding self-loops of
probability 1/2 to it. That is, at each vertex we go to a neighbor vertex with probability2 and we stay

atx with probability 1/2. But this is equivalent to choosing a random positiof i1< n and then setting;,

theith position ofx, to a random value. We see that the distribution of the random walk is uniformt after
steps if each of tha positions has been chosen at least once aftersteps. Therefore, the mixing time of

the random walk is determined by the coupon collector’s problem, whiClrigogn).

We can also get the same result by looking at the eigenvalues., An of the transition matrix. (We
consider the original transition matrix, the one without self-loops; note that eigenvalues of the modified
transition matrix arg (Ai +1)/2)}). For everys € {0,1}", the 2'-dimensional vectogs(x) = (—1)%*is an
eigenvector with eigenvalue-12|s|/n, where|s| is the number of nonzero componentsoNotice that the

gap between the first and second largest eigenvectgnis 2

2 Quantization of Markov Chains

Let P = (pxy) be the transition matrix of a classical Markov chain with state spacensisting oiN states.
We define a quantum walk that correspondPto

The quantum walk operates on the Hilbert spatiex CN with basis state§|x) |y) : x,y € X}. Define
6x) = Z\/DTyM ly), forxe X,
ye
lw) = Z(W\X} ly), fory e X.
Xe

Let E; and E; be the subspaces spanned ﬁ;bx}} and{\wy>} respectively. If we had operatofs :
CN®CN — E1 andT, : CN®@CN — E; such that for arbitraryr) , T: mappedx) |r) to |¢y), andT, mapped
Ir) ly) to |wy), then by applyindl; and T alternately, we could get an analogue of the Markov clifain
However,T; andT, are not realizable in quantum mechanics since they are not reversible.

Instead, we will define unitary operatd®s andR; that serve as quantum analogue3candT,: Let 7; and
mp denote orthogonal projections & andE,. We defineR; = 2m; — 1 andR, = 27, — 1 to be reflections
with respect tde; andE; respectively. Note tha® keepsE; pointwise fixed (as do€g), and tosses up the
rest of the space as much as possible.

Each step of the quantum walk is given W = R;R;. Running the quantum walk farsteps corresponds
to applyingW\Wg.

CS 294-2, Fall 2004, Lecture 13 2



WhenP is symmetric, the state

90) = g 3 VPO )

lies in E1 N Ez. ThusWe|®g) = |®o).

3 Quantum Hitting Time

Assume that some subddtof states of a Markov chaiR are marked. The hitting time &l is defined as
the number of iterations necessary to encounter an elemént &or the purpose of analyzing the hitting
time, we can modify the random walk such that as soon as we reach somexerkéxwe never leave.
The transition matrix corresponding to the modified random walk equals

= (Pu P
(T 7))
whereBy is the submatrix oP obtained by deleting rows and columnshéf

Given a symmetric matri® and subseM of marked states, we will describe how to check whettleis
empty or not by running the quantum waMs. We start by setting the initial state of the Walk|tbo> , the
stationary state fowp. Next, we run the quantum walk forsteps to getcbt} :VVFE,\CDO>. If M is empty,
thenP = P and \th} = \<Do>. If M is not empty, then we will show that for large enoughif the number

of stepst is chosen at random frorfil,..., T}, thenE [(®|®o)?] = 1—Q(1). So if we measured;)
anng\CDo> , with probabilityQ(1), the result of the measurement is ﬂ'ﬂb@ . Therefore we can distinguish
between the case whekt is empty and the case where it is not. Notice that the above algorithm is not a
search algorithm, that is, we only check the existence of a marked state, and cannot necessarily find one.

The minimumT that can be used in the above algorithm is called the quantum hitting tilde of

Theorem (Szegedy).The quantum hitting time df/ is O( 1—1HPM\H) where||Ry|| is the operator norm of
Pv. (||Rv| is the largest eigenvector & too).

Proof. Letn=N—|M|. Let|v), ...,|va) € R" be an orthonormal basis of real eigenvectorsfgmwith
eigenvalued., ..., An.

Let 1<i < n. Supposevi) = 3, 0xi|X), where we assume,; = O for all x € M. Define
es) = 3 ul0) =3 /Bl 1Y) € Eu
X Xy
&) =5 ayilyy) = ayi/Bxlx) |y) € Ez.
y Ky

We have(ey|ex) = (vi|Pu|vi) = Ai. Moreover, we haver|ey) = Ai|ex) since|ey) — Ai|ex) is orthogonal
to every|yy) . Similarly, m1|ex ) = Aifey).

Let V; denote the subspace generated|day> and \e2i>. It is easy to see thaty, ..., V, are invariant
subspaces d®; andR;. In fact, R; reflects every vector W with respect tq &ji > . Thus, undeWs = RoRy,
every vector in subspadg is rotated by angle, where6, = cos ! 4 is the angle betwee}meli> and}e2i> .

It is not hard to see thaty, ..., V, are orthogonal. Indeed, for£ j, the orthogonality oi[vi> and ]v,-}
implies (ey|e1j) = (ex|ezj) =0, andmz|ey) = Ai|ex) implies ey |ey;) =0.

Let V! denote the orthogonal complement of the subspaeeV; + --- +V, in the Hilbert space of the
quantum walk. We will show tha¢* is another invariant subspace Rf andR,. Let |¢) and|¢p+) be
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two arbitrary vectors iV andV* respectively. We will show thd) andm|¢) are orthogonal. Since
(¢|m|9t) = (¢|mm o), we can instead show that|¢) andm|¢-) are orthogonal. But this is true
becauser;|¢) is a linear combination of|ey ) }, and|¢+), being inV*, is orthongonal to alley;) . Thus,
V1 is invariant underr;, and hence undé;, and similarly undeR,.

Therefore, the operation of the quantum wallk, can be decomposed through the direct sum decomposition
Vi +---+V,+ VL. Consider the initial state

o) = & S VPRI = g 3 16+ 5 3 VAol )

Forx ¢ M, the vector|¢x) is a linear combination of|ey;) }. Forx € M, the vector{x) |y) is orthogonal to
{|ew)} and{|ez) }. Thus, if |u;) denotes the projection ¢fg) ontoVi, theny;(ui|ui) =n/N.

We may assum@/N > 1/2, since otherwise at least half of the vertices are marked and we can solve
the problem by random sampling. Since the quantum Wekrotates vectors in subspabe by an-

gle 26;, if we run the quantum walk fot steps, where is chosen at random frorfil,...,Q(1/|6])},

then E[|(ui |W,§~,}ui> ] =1—Q(1). Therefore, for som& = O(1/6) where6 = min; |6;|, whent is cho-

sen from{1,...,T}, we haveE[|(®|®o)|] < 1—-Q(1)F(ui|u) = 1—Q(1). This implies that there
exists positive constarnt such that Fif(®;|®g)| < 1—¢] > c. HenceE[(®|®o)? = 1—Q(1). Since

6 > sing > /I—cosf = /1— ||Av]], we have proved that the hitting time@ lleF’MIH)'

4 Element Distinctness

In this section, as an application of quantum random walks and their hitting time, we solve the element
distinctness problem.

Definition. In the element distinctness problem, we are given a fundtioft,...,n} — {1,...,m}, where
n < m, and we want to check whethérs one-to-one.

Classically, any algorithm for this problem requig@) queries off. Quantumly, Ambainis has shown that
6(n?/3) queries is necessary and sufficient.

Here is an algorithm for the problem:

1. Start with some subs&C {1,...,n} of sizer.
2. Check if there are two elements/ € Ssuch thatf (x) = f(y).
3. Remove a random element®fadd a random new element$pand repeat step 2.

The algorithm is essentially a random walk on a graph whose vertices are subsetsrobfsiZe. .., n}.

There is an edge between two subsets if and only if they differ in exactly two elements. The marked vertices
M are those subse8that contain elementsy € Ssuch thatf (x) = f(y). The total number of vertices is

N = (). If the function is not one-to-one, then the number of marked states is a{e4kt Thus,

L N £ et NS &

N~ (M (-r+2)(n—r+1) n?

r

It is known that the second eigenvalue of the above graph is approximatelyrl Therefore, - ||Ry || =
Q(r/r?).

The number of queries that the algorithm makes (or the first step) plus the hitting time & (for the
second step). Classically, this@r 4+ n?/r), which is at besO(n). Quantumly, the number of queries is
O(r 4 n/4/r), which isO(n?3) whenr = n?/3,
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