In this lecture, we will discuss the basics of quantum infation theory. In particular, we will discuss mixed
guantum states, density matrices, von Neumann entropytenttdce distance between mixed quantum
states.

1 Mixed Quantum State
So far we have dealt witpure quantum states
W) =3 alx).
X

This is not the most general state we can think of. We can densi probability distribution of pure states,
such ag0) with probability 1/2 and|1) with probability 1/2. Another possibility is the state

{ l+) = L (]0)+|1))  with probability 1/2

2
=) =5 (10)—[1)) with probability 1/2

=

In general, we can think afixed state as a collection of pure statgs), each with associated probability
p;, with the conditions G6< p; <1 andy; p, = 1. One reason we consider such mixed states is because the
quantum states are hard to isolate, and hence often erdaioglee environment.

2 Density Matrix

Now we consider the result of measuring a mixed quantum.sgippose we have a mixture of quantum
states ;) with probability p;. Each|y;) can be represented by a vectordft', and thus we can associate
the outer producty) (Y| = gy*, which is an 2 x 2" matrix

) aa ad, - ady
& - _ Da Q3 - By
: (al a2 ’ aN ): . :
ay g andy o Ay

We can now take the average of these matrices, and obtagetkiéy matrix of the mixture{p,, |¢) }:

p =7 pilw) (Uil

We give some examples. Consider the mixed gt@tevith probability of 1/2 and|1) with probablity /2.
Then

oo =(g)(10)=(g o).
ma=( 7)o 1)=(g 7).

Thus in this case

p=3l00+zma-( Y2 ).

and
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Now consider another mixed state, this time consisting+ofwith probability 1/2 and|—) with probability
1/2. This time we have

=2 (1)1 0=3(1 1)

S ) - =5( 1 ).

Thus in this case the offdiagonals cancel, and we get

1 1 (12 o0
p=3tne+30-1=( V2 7).

and

Note that the two density matrices we computed are identizan though the mixed state we started out
was different. Hence we see that it is possible for two diifémixed states to have the same density matrix.

We now show that two mixed states can be distinguished if ahgdibthe density matrixp are different:

Theorem 16.1  Suppose we measure a mixed state {p;,|y;)} in an orthonormal bases |3,). Then the
outcome is | B,) with probability (B, |p|B)-

Proof: We denote the probability of measuriffg) by Prik]. Then
Pk =3 py(WlB I
]
= z P; <Bk’L»Uj><LIJj 1B
]

<Bk Z pj|¢’j><‘l’j|
J
= (BpIBy)-

y
g

corollary If we measure the mixed sta{@;, ;) } in the standard basis, we havegkP p, ,, the diagonal
entry of the density matrip. '

We list several more properties of the density matrix:
1. trp = 1. This follows immediately from Corollaiyl 2, since the pahldities Pfk] must add up to 1.

2. p is Hermitian. This follows from the fact that is a sum of Hermitian outer product§y(y*)* =
Yyr).

3. Eigenvalues op are non-negative. First of all, eigenvalues of a Hermitiaatrin is real. Suppose
thatA and|e) are corresponding eigenvalue and eigenvector. Then if wasuare in the eigenbasis,
we have

Prie] = (elple) = Alele) = A.

Since the probability must be non-negative, we seeihatO.
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Now suppose we have two mixed states, with density mat#casd B such thatA £ B. We can ask,
what is a good measurement to distinguish the two states? aWealiagonalize the differencé — B to
getA— B = EAE*, whereE is the matrix of orthogonal eigenvectors. Thergifis an eigenvector with
eigenvaluej;, thenA, is the difference in the probability of measurigg

Prali] = Prgli] = A;.

We can define the distance between two probability disinbst(with respect to a basis) as
|Za— Zgle = 3 (Prali] = Prgli]).

If E is the eigenbasis, then

| D~ Dale = > Al =tr|A—B|=[|A—Bl|y,
|

which is called the trace distance betweeandB.

claim Measuring with respect to the eigenbakigof the matrix A — B) is optimal in the sense that it
maximizes the distandeZ, — Zg|e between the two probability distributions.

Before we prove this claim, we introduce the following ddfomn and lemma without prootiefinition Let
{a N, and{b;}\; be two non-increasing sequences such $hat = 3, b;. Then the sequendg, } is said
to majorize{b, } if for all k,

l—ﬁlaI - iibi‘

lemma[Schur] Eigenvalues of any Hermitian matrix majorizes thagdnal entries (if both are sorted in
nonincreasing order).

Now we can prove clairil 2.

proof Since we can reorder the eigenvectors, we can asayreeA, > --- > A,. Note that tt(A—B) =0,
so we must havg; A; = 0. We can split the\;’s into two groups: positive ones and negative ones, we must
have

1 1
> =5lA-Bly ¥ =—3IA-By

A >0 A, <0

Thus
K 1
A = —||A—Bl.
maxy A = 51A=Bl

Now consider measuring in another basis. Then the matriB is represented &d4 = F(A— B)F*, and let
My > M, > -+ > Uy be the diagonal entries &f. Similar argument shows that

maxzul_zi‘ |’_|9 9|3|F

But by Schur’s lemma thg;’s majorizesy;’s, so we must have

"@A_ ‘@B’F < "@A_ ‘@B‘E = ”A— B”tr-
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3 Von Neumann Entropy

Consider the following two mixtures and their density ns:

: ch c20 cOsh
cosf|0) +sinB|1) w.p. 12 = %( <0 > (cH s8) = %( 08 26 ) < 020
cosf|0) —sinB|1) w.p. 1/2 = %( —(s:g > (c6 —s8) = %( _ngsg _Cesfg > 0 sir’6

o wwoss ()01 w(39)] o
1) w.p. sirf 0 :sin29<2>(0 1) :sin2<8 g) 0 sirfo

Thus, since the mixtures have identical density matrides; are indistinguishable.
Let H(X) be theShannon Entropy of a random variable X which can take on stapgs. . py.

H({p) = T log - ~1

In the quantum world, we define an analogous quan8{g), the Von Neumann entropy of a quantum
ensemble with density matrix.

_ NP 1 . 1
S(p) = H{co< 6,sir* 6} = cos 925 +sir? Gp—sin26

For the set of quantum statgs . .. Y, with probabilitiesp, ..., and density matriy, we can diagonalize,
letting 7% be theit" element along the diagonal. This yields

P (W) = Ale)

We can also express the Von Neumann entropy in terms of tigewkd elements, as

Sp) =H({m})
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