
In this lecture, we will discuss the basics of quantum information theory. In particular, we will discuss mixed
quantum states, density matrices, von Neumann entropy and the trace distance between mixed quantum
states.

1 Mixed Quantum State

So far we have dealt withpure quantum states

|ψ〉 = ∑
x

αx|x〉.

This is not the most general state we can think of. We can consider a probability distribution of pure states,
such as|0〉 with probability 1/2 and|1〉 with probability 1/2. Another possibility is the state

{

|+〉 = 1√
2
(|0〉+ |1〉) with probability 1/2

|−〉 = 1√
2
(|0〉− |1〉) with probability 1/2

In general, we can think ofmixed state as a collection of pure states|ψi〉, each with associated probability
pi, with the conditions 0≤ pi ≤ 1 and∑i pi = 1. One reason we consider such mixed states is because the
quantum states are hard to isolate, and hence often entangled to the environment.

2 Density Matrix

Now we consider the result of measuring a mixed quantum state. Suppose we have a mixture of quantum
states|ψi〉 with probability pi. Each|ψi〉 can be represented by a vector inC 2n

, and thus we can associate
the outer product|ψi〉〈ψi| = ψiψ∗

i , which is an 2n ×2n matrix










a1
a2
...

aN











(

ā1 ā2 · · · āN

)

=











a1ā1 a1ā2 · · · a1āN
a2ā2 a1ā2 · · · a2āN

...
...

aN ā1 aN ā2 · · · aN āN











.

We can now take the average of these matrices, and obtain thedensity matrix of the mixture{pi, |ψi〉}:

ρ = ∑
i

pi|ψi〉〈ψi|.

We give some examples. Consider the mixed state|0〉 with probability of 1/2 and|1〉 with probablity 1/2.
Then

|0〉〈0| =
(

1
0

)

(

1 0
)

=

(

1 0
0 0

)

,

and

|1〉〈1| =
(

0
1

)

(

0 1
)

=

(

0 0
0 1

)

.

Thus in this case

ρ =
1
2
|0〉〈0|+ 1

2
|1〉〈1| =

(

1/2 0
0 1/2

)

.
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Now consider another mixed state, this time consisting of|+〉 with probability 1/2 and|−〉 with probability
1/2. This time we have

|+〉〈+| = (1/2)

(

1
1

)

(

1 1
)

=
1
2

(

1 1
1 1

)

,

and

|−〉〈−| = (1/2)

(

1
−1

)

(

1 −1
)

=
1
2

(

1 −1
−1 1

)

.

Thus in this case the offdiagonals cancel, and we get

ρ =
1
2
|+〉〈+|+ 1

2
|−〉〈−| =

(

1/2 0
0 1/2

)

.

Note that the two density matrices we computed are identical, even though the mixed state we started out
was different. Hence we see that it is possible for two different mixed states to have the same density matrix.

We now show that two mixed states can be distinguished if and only if the density matrixρ are different:

Theorem 16.1: Suppose we measure a mixed state {p j, |ψ j〉} in an orthonormal bases |βk〉. Then the
outcome is |βk〉 with probability 〈βk|ρ |βk〉.
Proof: We denote the probability of measuring|βk〉 by Pr[k]. Then

Pr[k] = ∑
j

p j|〈ψ j|βk〉|2

= ∑
j

p j〈βk|ψ j〉〈ψ j|βk〉

=

〈

βk

∣

∣

∣

∣

∣

∑
j

p j|ψ j〉〈ψ j|
∣

∣

∣

∣

∣

βk

〉

= 〈βk|ρ |βk〉.

2

corollary If we measure the mixed state{p j, |ψ j〉} in the standard basis, we have Pr[k] = ρk,k, the diagonal
entry of the density matrixρ .

We list several more properties of the density matrix:

1. trρ = 1. This follows immediately from Corollary 2, since the probabilities Pr[k] must add up to 1.

2. ρ is Hermitian. This follows from the fact thatρ is a sum of Hermitian outer products ((ψψ∗)∗ =
ψψ∗).

3. Eigenvalues ofρ are non-negative. First of all, eigenvalues of a Hermitian matrix is real. Suppose
that λ and|e〉 are corresponding eigenvalue and eigenvector. Then if we measure in the eigenbasis,
we have

Pr[e] = 〈e|ρ |e〉 = λ 〈e|e〉 = λ .

Since the probability must be non-negative, we see thatλ ≥ 0.
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Now suppose we have two mixed states, with density matricesA and B such thatA 6= B. We can ask,
what is a good measurement to distinguish the two states? We can diagonalize the differenceA− B to
get A−B = EΛE∗, whereE is the matrix of orthogonal eigenvectors. Then ifei is an eigenvector with
eigenvalueλi, thenλi is the difference in the probability of measuringei:

PrA[i]−PrB[i] = λi.

We can define the distance between two probability distributions (with respect to a basisE) as
∣

∣DA −DB

∣

∣

E = ∑(PrA[i]−PrB[i]) .

If E is the eigenbasis, then
∣

∣DA −DB

∣

∣

E = ∑
i

|λi| = tr|A−B|= ‖A−B‖tr,

which is called the trace distance betweenA andB.

claim Measuring with respect to the eigenbasisE (of the matrixA − B) is optimal in the sense that it
maximizes the distance|DA −DB|E between the two probability distributions.

Before we prove this claim, we introduce the following definition and lemma without proof.definition Let
{ai}N

i=1 and{bi}N
i=1 be two non-increasing sequences such that∑i ai = ∑i bi. Then the sequence{ai} is said

to majorize{bi} if for all k,

k

∑
i=1

ai ≥
k

∑
i=1

bi.

lemma[Schur] Eigenvalues of any Hermitian matrix majorizes the diagonal entries (if both are sorted in
nonincreasing order).

Now we can prove claim 2.

proof Since we can reorder the eigenvectors, we can assumeλ1 ≥ λ2 ≥ ·· · ≥ λn. Note that tr(A−B) = 0,
so we must have∑i λi = 0. We can split theλi’s into two groups: positive ones and negative ones, we must
have

∑
λi>0

=
1
2
‖A−B‖tr ∑

λi<0

= −1
2
‖A−B‖tr.

Thus

max
k

k

∑
i=1

λi =
1
2
‖A−B‖tr.

Now consider measuring in another basis. Then the matrixA−B is represented asH = F(A−B)F∗, and let
µ1 ≥ µ2 ≥ ·· · ≥ µn be the diagonal entries ofH. Similar argument shows that

max
k

k

∑
i=1

µi =
1
2

n

∑
i=1

|µi| =
|DA −DB|F

2
.

But by Schur’s lemma theλi’s majorizesµi’s, so we must have

|DA −DB|F ≤ |DA −DB|E = ‖A−B‖tr.
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3 Von Neumann Entropy

Consider the following two mixtures and their density matrices:

cosθ |0〉+sinθ |1〉 w.p. 1/2 = 1
2

(

cθ
sθ

)

(

cθ sθ
)

= 1
2

(

c2θ cθsθ
cθsθ s2θ

)

cosθ |0〉−sinθ |1〉 w.p. 1/2 = 1
2

(

cθ
−sθ

)

(

cθ −sθ
)

= 1
2

(

c2θ −cθsθ
−cθsθ s2θ

)















=

(

cos2θ 0
0 sin2 θ

)

|0〉 w.p.cos2θ = cos2
(

1
0

)

(

1 0
)

= cos2
(

1 0
0 0

)

|1〉 w.p. sin2θ = sin2θ
(

0
1

)

(

0 1
)

= sin2
(

0 0
0 1

)















=

(

cos2θ 0
0 sin2 θ

)

Thus, since the mixtures have identical density matrices, they are indistinguishable.

Let H(X) be theShannon Entropy of a random variable X which can take on statesp1 . . . pn.

H({pi}) = −∑
i

log
1
pi

= 1

In the quantum world, we define an analogous quantity,S(ρ), the Von Neumann entropy of a quantum
ensemble with density matrixρ .

S(ρ) = H{cos2 θ ,sin2θ} = cos2θρ
1

cos2θ
+sin2θρ

1

sin2θ

For the set of quantum statesψ1 . . .ψn with probabilitiesp1 . . .n and density matrixρ , we can diagonalizeρ ,
letting πi be theith element along the diagonal. This yields

pi, |ψi〉 ≡ λi|ei〉

We can also express the Von Neumann entropy in terms of the diagonal elements, as

S(ρ) = H({πi})
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