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1 Introduction

Now that we have talked about Quantum Fourier Transformsdiszlissed some of their properties, let us see an
application area for these ideas. We will talk about Shdgstithm for finding prime factors of large integers.

The statement of the problem of factoring integer is as fmtoGiven an integeN, find prime numberg; and integers
g such that

N = pi'xpgx...xp

Let us make two simplifications of the problem without logggenerality: Firstly, givem, it is enough to split it into
integersN; andN; such thatN = N; x Ny. It is easy to see that after a linear number (in size of thatinge. logN) of
such steps, we are guaranteed to reach prime factors. Sgcasglime thal is a product of two primed\l = p x q,
wherep,q € P.

Classically, naive algorithm for the factoring problem w®in time O(v/N). The fastest known algorithm for this
problem is Field Sieve algorithm that works in tim@($7aN

In fact, Shor showed that we can do better with quantum coenput

Theorem 9.2 There exists quantum algorithm that solves the factorirablem with bounded error probability in
polynomial time.

The rest of the paper is a proof of this theorem. Specifictlly,factoring problem turns out to be equivalent to the
order-finding problem (defined below), because from a fagbrichm for order-finding problem we can get a fast
algorithm for factoring problem. The sectibn 2 shows theuntion of factoring to order-finding and the section 3
shows a fast quantum algorithm for order-finding.

2 The reduction of factoring to order—ﬁnding

Recall that the numbetscmod N : gcd(x,N) = 1 } forms a group under multiplication modut GivenxandN such
that gcdx,N) = 1 let ordx) denote the minimum positivesuch thai’ = 1(mod N). Theorder finding problem is
to find ordx).

The reduction of factoring to order-finding follows from Lema 9.1 and Lemma 9.3.

Lemma 9.1 Given a composite number N and x, s.t. x is a nontrivial squaseof 1 over N (that is, = 1(mod N),
and neither x= 1(mod N) nor x= —1(mod N)), we can efficiently compute a nontrivial factor of N.

Proof:From x? = 1(mod N) follows thatx? — 1 = (x— 1) x (x+1) = 0(mod N). Since neithex = 1(mod N) nor
x= —1(mod N) we know that 1< x < N — 1, so one ofycd(x — 1,N) andgcd(x+ 1,N) is a nontrivial factor ofN.
Since there exist a fast algorithm for computingd (Euclid’s algorithm), the efficiency easy followsl.

Example: Let N = 15. Then 4 = 1(mod N) and 4# +1(mod N). Bothged(4 — 1,15) = 3 andgcd(4+1,15) =5
are nontrivial factors of 15.

Lemma 9.2 Let p be an odd prime and let x be uniformly random elemen0six < p. Then ordx) is even with
probability at least one-half.

Proof:By Fermat's little theorem we know that for evexy xP~1 = 1(mod p. It is well known that multiplicative
group modulo prime number is a cyclic group, that meansettsesn elemerg which generates all elements of group

=

CS 294-2, Fall 2004, Lecture 9



in the sense that any element can be writtengX(mod p for somek. Sincex is chosen uniformly at randork,is
odd with probability one-half. Further assume thé odd. Sincex= g*(mod p it turns out that

xord(x) — gk ord(x) — 1(mod p.

Now we can deduce that— 1|k ord(x). Sincepis odd,p—1 is even, and is odd,ord(x) has to be everil

Lemma 9.3 Let N= pxq, p.q € P is composite odd number and x is taken uniformly at random fioN — 1. If
gcdx, N) = 1 then with probability at Ieasg ord(x) = ris even and X # +1(modN).

Proof:

By the Chinese remainder theorem, choosingiformly at random from ON — 1 is the same as choosirguniformly
at random from Op — 1 and independently, uniformly at random from 0q— 1. Order for those numbers also are
related. Letr; = ord(x1) andrz = ord(x2). It is easy to see that both|r andr;]r.

Firstly, let us prove that the probability thiats even is at least 3/4. Sindeéis odd, p andq are odd primes. Thug is
even wherx; is odd and is even when is odd. Since is even when either is even orrs is even, and; andx,
are chosen uniformly at random, the probability tha even is at least/3 from Lemma 2.

Secondly, let us prove that the probability that= +1(modN) is at most one-half whenis even. Note that’ =
1(mod p andx’ = 1(mod p and there are only two square roots of 1 modulo prime numhenen(il. By Chinese
reminder theorem it follows that there are only four root4d @fioduloN. Only two of them makes2z # +1(modN).

a

It is easy to see from Lemma 9.1 and Lemma 9.3 that if someom@utsord() function for us, we can find prime
factors ofN classicaly. By checking answer (easy can be done efficlestlgt repeating several times we can increase
the probability of success.

3 Shor’s order-ﬁncling algorithm

How do we efficiently find or¢x) = r? Here is how Shor’s quantum algorithm does it. The next suiosewill
describe algorithm and will analyze it in a simplified case.

3.1 The simphﬁed case

Let Q be sufficiently large, s.tQ > N?. Let us assume now thalQ. Case where { Q algorithm is similar, just
analysis is somewhat more complicate.

The algorithm uses two registers:

* register 1 stores a number m@d= 29,

* register 2 stores a number mbi

and has several steps.

1. The registers are initially in the std® ® |0).
2. On applying the Fourier Transform moduloto register 1 we get the state
1 ¢!
/0 Z) &) ®[0)
a=

3. Considerf(a) = x* mod N, a function that is easy to compute classically (can be cdetpbin loga multiplica-
tions using repeated squaring,= x x x, xX* =x% x x2, X = x* x x#, ...), and has as its smallest period. Figure 1
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shows such a function graphically. Note tHais distinct on[O,r — 1] since otherwise it would have a smaller
period. Applying functionf to the contents of register 1 and storing the result in regBtwe get

1 1
70 ;Ia>|f(a)>

4. Now we measure the second register. When we measure, wegetusime value; let it bé(l), wherel is
uniformly random over Or — 1. Then all superposed states inconsistent with the medhsahae must disappear.

So, the state of the two registers must be given by
1

\ﬁ

;

5. Thus we have set up a periodic superposition of periodregister 1. Now we can drop the second register.

The first register has a periodic superposition whose pésitite value we wanted to compute in the first place.
How do we get that period ?

Q1
Z) lir +0[£(1))
=

Can we get anywhere by measuring the first register ? It's ol goecause all we will get is a random point,
with no correlation across independent trials (becduseandom). Here’s what Shor’s algorithm does next.

le ) )

Figure 1: Function with smallest period r

Fourier sample modul@:
Since the next step is Fourier sampling, we can drop the &iifie| by the properties of Fourier Transforms
discussed in the previous lecture. This allows mioieephase. Applying the Fourier sample to state

=lo

-1

1
— [ir +1)
-2

gives us
1 r—1
5 o |k9>
V& r
wherew is a primitiveqth root of unity,
2m

6. Let us measure register 1. The measurement givkg uaherek is random variable uniformly from 0..r-1. It
is easy to see that with big probabiliggd(k, ?) =1. If so, then by computingcd(k%Q) we get% Since we
know Q, from % it is straightforward to compute
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32 The general case

In the previous lecture we made assumption th@t It is very strong assumption because we do not know any
algorithm for computing suck givenx. Now we will show that the algorithm works correctly with ciant
probability even ifr { Q.

Now, in the 4th step, after applying the first measuremenigetestate

Q
1 [¥]-1

\/T@ ]; ljr +1)

This is no longer a coset of a subgroup, so earlier reasonieg dot apply. Nevertheless, we will take a
Fourier transform anyway, and we will show that we get cartive interference primarily at the points close
to multiples of% In fact, we will be close enough to essentially "round” te tearest multiple, and this will
allow us to calculate with some reasonable probability.

Applying a Fourier transform to the expression above, we get

Q-1
I; al),

where

1 1

-1
:%X\/@ ;Zo ()l

aj

Notice that ifrfl mod Qis small, then terms in the sum cover only a small angle in timedex plane, and hence,
the magnitude of the sum is almost the sum of the magnitudest Illmmas makes it precise.

Lemma 9.4 If —5 <Ir modQ < } for some Ir therjay| > 5 x %

Proof:
Let
2mirl
B = eQl=0w"
This stands for a vector on the complex plane. The sum

1®)-1

&

Since—5 <Ir modQ < %, the terms of the series fan out less than or equal to an angtethe complex plane.
This happens whefi makes a small angle with the real line. Then as shown in Figir&f of the terms in the
above series make an angle less than or equglwdth the resultant of the vector addition of the terms in the
series. Then each such term contributes a fraction at least

is a geometric series with common rago

cos7T _ 4
4 V2
of its length to the resultant vector. So the magnitude oféiseltant is at least

1 1

tor Q01 111
272 r T JQ /L$J*23/2 NG

CS 294-2, Fall 2004, Lecture 9 4



A resultant vector

Figure 2: 3 makes small angle with real line

O
Lemma 9.5 —% <Ir modQ < 5 with probability©(1).
Proof:

If gcd(r,Q) = 1 thenr—! mod Q exists. Thus as varies in the rangé0,Q — 1], Ir must take values forming
a permutation 0f0,1,2,...Q—1}. Thus, as Figure|3 shows, at leastlues ofr lie in the rangdQ—r/2,r/2].

/2

0
Q-1 |"

Q-1/2
AN

Figure 3: At least values ofir satisfy the constraint

If gcd(r, Q) # 1, thenlr mod Q is distributed as shown in Figure 4. In this case, at leg@walues ofr lie in a
range(Q—r/2,r /2] of sizer.
2ged(r,

3ged(r,Q

Figure 4: At least /2 values ofr satisfy the constraint in the worst case

Thus, in any case, at least2 values of satisfy the condition

r r
— <IlrmodQ< =
2 — Q= 2

From Lemma 9.4 each of them has amplitude at least

1 1
232 " 12
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Thus the probability of sampling such his at least

r 1 1,
o —— >
> (mr*ar)” =2 1

So with probability more '[haq*%3 we will sample arl such that

r r
——< <=
5= IrmodQ < 5
O
So with probability more thaq%3 we will sample arl such that
r r
< < —
5 = IrmodQ < 5
i.e.
Ir—kQ < =
- 2
for some integek; equivalently,
Ik 1
55—+ < 55
Q r 2Q

Thus,'6 is an %—approximation of the rationdf . We can measurg and we knowQ. The ratiog;, when
reduced to lowest terms, leads to a ratiopiasay, which is az%-good approximation té.

Sincek is randomly chosen from the ranffér — 1], with probability at Ieas%, k andr are co-prime. Thus
by computing‘f we can compute as well.

This suggests a way to make a good approximation, by simglgsihgQ to be much larger thaN. How much
larger tharN doesQ need to be, for us to evaluateccurately?

The answer is given by Lemma 9.7 using continued fractiotisémext subsection. We just compute continued

fractions until precision is at Ieag%. Assume, that the approximation is some rational nun%'bdf r =r’ then
we succeed otherwise

It is contradiction because bo{fhand'ri; is L < % close tog. Therefore =r’.

3.3 Continued Fractions

The idea of continued fractions is to approximate real nusbsing finite number of integers.

Definition 9.1 (Continued Fractions} A real number can be approximated by a set of positive integgrs
a, ..., a,asCk(a) =ap+ ﬁ = %, whereP, andQ, are integers.

ag+
2 +%
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Example: Let us try to approximater to the first two decimal places with a rational number. We ktiost

n = 314...
14
= 3 —_—
100
1
= 3t
14
1
7+ 4
1
3 _
*7
22
7

= 3+

Q

If we decided to approximata to four decimal places, we would have

m = 3.1415..
_ g, 1415
~ 710000

1

= 3+ 10000
1415
1

T

1415
1

1
7 + 1415
95

= 3

= 3+

Q

3+ 7T %4
311

99

The following two lemmas are well known facts about contihéractions that we will leave without a proof.
Lemma 9.6 CR,(a) is the best rational approximation of with denominato Qp.

Lemma 9.7 If a is rational then it occurs as one of the approximations@F.

Moreover, it is easy to see that continued fractions are asgmpute for any rational number.
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