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1 Introduction
Now that we have talked about Quantum Fourier Transforms anddiscussed some of their properties, let us see an
application area for these ideas. We will talk about Shor’s algorithm for finding prime factors of large integers.

The statement of the problem of factoring integer is as follows: Given an integerN, find prime numberspi and integers
ei such that

N = pe1
1 × pe2

2 × . . .× pek
k

Let us make two simplifications of the problem without loosing generality: Firstly, givenN, it is enough to split it into
integersN1 andN2 such thatN = N1×N2. It is easy to see that after a linear number (in size of the input, i.e. logN) of
such steps, we are guaranteed to reach prime factors. Secondly, assume thatN is a product of two primes,N = p×q,
wherep,q∈ P.

Classically, naive algorithm for the factoring problem works in timeO(
√

N). The fastest known algorithm for this
problem is Field Sieve algorithm that works in time 2O( 3√logN).

In fact, Shor showed that we can do better with quantum computer.

Theorem 9.1: There exists quantum algorithm that solves the factoring problem with bounded error probability in
polynomial time.

The rest of the paper is a proof of this theorem. Specifically,the factoring problem turns out to be equivalent to the
order-finding problem (defined below), because from a fast algorithm for order-finding problem we can get a fast
algorithm for factoring problem. The section 2 shows the reduction of factoring to order-finding and the section 3
shows a fast quantum algorithm for order-finding.

2 The reduction of factoring to order-finding
Recall that the numbers{x mod N : gcd(x,N) = 1 } forms a group under multiplication moduloN. Givenx andN such
that gcd(x,N) = 1 let ord(x) denote the minimum positiver such thatxr ≡ 1(mod N). Theorder finding problem is
to find ord(x).

The reduction of factoring to order-finding follows from Lemma 9.1 and Lemma 9.3.

Lemma 9.1: Given a composite number N and x, s.t. x is a nontrivial squareroot of1 over N (that is, x2 ≡ 1(mod N),
and neither x≡ 1(mod N) nor x≡−1(mod N)), we can efficiently compute a nontrivial factor of N.

Proof:From x2 ≡ 1(mod N) follows thatx2 − 1 ≡ (x− 1)× (x+ 1) ≡ 0(mod N). Since neitherx ≡ 1(mod N) nor
x ≡ −1(mod N) we know that 1< x < N−1, so one ofgcd(x−1,N) andgcd(x+ 1,N) is a nontrivial factor ofN.
Since there exist a fast algorithm for computinggcd (Euclid’s algorithm), the efficiency easy follows.2

Example: Let N = 15. Then 42 ≡ 1(mod N) and 46= ±1(mod N). Both gcd(4−1,15) = 3 andgcd(4+ 1,15) = 5
are nontrivial factors of 15.

Lemma 9.2: Let p be an odd prime and let x be uniformly random element s.t.0≤ x < p. Then ord(x) is even with
probability at least one-half.

Proof:By Fermat’s little theorem we know that for everyx : xp−1 ≡ 1(mod p). It is well known that multiplicative
group modulo prime number is a cyclic group, that means, there is an elementg which generates all elements of group
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in the sense that any element can be writtenx≡ gk(mod p) for somek. Sincex is chosen uniformly at random,k is
odd with probability one-half. Further assume thatk is odd. Sincex≡ gk(mod p) it turns out that

xord(x) ≡ gk ord(x) ≡ 1(mod p).

Now we can deduce thatp−1|k ord(x). Sincep is odd,p−1 is even, andk is odd,ord(x) has to be even.2

Lemma 9.3: Let N= p×q, p,q∈ P is composite odd number and x is taken uniformly at random from 0..N−1. If
gcd(x,N) = 1 then with probability at least38 ord(x) = r is even and x

r
2 6= ±1(modN).

Proof:

By the Chinese remainder theorem, choosingx uniformly at random from 0..N−1 is the same as choosingx1 uniformly
at random from 0..p−1 and independentlyx2 uniformly at random from 0..q−1. Order for those numbers also are
related. Letr1 = ord(x1) andr2 = ord(x2). It is easy to see that bothr1|r andr2|r.
Firstly, let us prove that the probability thatr is even is at least 3/4. SinceN is odd,p andq are odd primes. Thusr1 is
even whenx1 is odd andr2 is even whenx2 is odd. Sincer is even when eitherr1 is even orr2 is even, andx1 andx2

are chosen uniformly at random, the probability thatr is even is at least 3/4 from Lemma 2.

Secondly, let us prove that the probability thatx
r
2 ≡ ±1(modN) is at most one-half whenr is even. Note thatxr ≡

1(mod p) andxr ≡ 1(mod p) and there are only two square roots of 1 modulo prime number, namely±1. By Chinese
reminder theorem it follows that there are only four roots of1 moduloN. Only two of them makesx

r
2 6= ±1(modN).

2

It is easy to see from Lemma 9.1 and Lemma 9.3 that if someone computsord() function for us, we can find prime
factors ofN classicaly. By checking answer (easy can be done efficiently) and repeating several times we can increase
the probability of success.

3 Shor’s order-finding algorithm
How do we efficiently find ord(x) = r? Here is how Shor’s quantum algorithm does it. The next subsection will
describe algorithm and will analyze it in a simplified case.

3.1 The simplified case
Let Q be sufficiently large, s.t.Q � N2. Let us assume now thatr|Q. Case wherer - Q algorithm is similar, just
analysis is somewhat more complicate.

The algorithm uses two registers:

• register 1 stores a number modQ = 2q,

• register 2 stores a number modN,

and has several steps.

1. The registers are initially in the state|0〉⊗ |0〉.

2. On applying the Fourier Transform moduloQ to register 1 we get the state

1√
Q

Q−1

∑
a=0

|a〉⊗ |0〉

3. Considerf (a) = xa mod N, a function that is easy to compute classically (can be computed in loga multiplica-
tions using repeated squaring,x2 = x×x, x4 = x2×x2, x8 = x4×x4, ...), and hasr as its smallest period. Figure 1

CS 294-2, Fall 2004, Lecture 9 2



shows such a function graphically. Note thatf is distinct on[0, r −1] since otherwise it would have a smaller
period. Applying functionf to the contents of register 1 and storing the result in register 2, we get

1√
Q

Q−1

∑
a=0

|a〉| f (a)〉

4. Now we measure the second register. When we measure, we mustget some value; let it bef (l), wherel is
uniformly random over 0..r−1. Then all superposed states inconsistent with the measured value must disappear.

So, the state of the two registers must be given by

1
√

Q
r

Q
r −1

∑
j=0

| jr + l〉| f (l)〉

5. Thus we have set up a periodic superposition of periodr in register 1. Now we can drop the second register.
The first register has a periodic superposition whose periodis the value we wanted to compute in the first place.
How do we get that period ?

Can we get anywhere by measuring the first register ? It’s no good, because all we will get is a random point,
with no correlation across independent trials (becausel is random). Here’s what Shor’s algorithm does next.

0

1

r 2r

Figure 1: Function with smallest period r

Fourier sample moduloQ:
Since the next step is Fourier sampling, we can drop the shiftvalue l by the properties of Fourier Transforms
discussed in the previous lecture. This allows movel to phase. Applying the Fourier sample to state

1
√

Q
r

Q
r −1

∑
j=0

| jr + l〉

gives us

1√
r

r−1

∑
k=0

ωkl |kQ
r
〉

whereω is a primitiveqth root of unity,

ω = e
2π i
Q .

6. Let us measure register 1. The measurement gives uskQ
r , wherek is random variable uniformly from 0..r-1. It

is easy to see that with big probabilitygcd(k, Q
r ) = 1. If so, then by computinggcd(kQ

r ,Q) we getQ
r . Since we

know Q, from Q
r it is straightforward to computer.
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3.2 The general case
In the previous lecture we made assumption thatr|Q. It is very strong assumption because we do not know any
algorithm for computing suchQ givenx. Now we will show that the algorithm works correctly with constant
probability even ifr - Q.

Now, in the 4th step, after applying the first measurement, weget state

1
√

bQ
r c

bQ
r c−1

∑
j=0

| jr + l〉

This is no longer a coset of a subgroup, so earlier reasoning does not apply. Nevertheless, we will take a
Fourier transform anyway, and we will show that we get constructive interference primarily at the points close
to multiples of Q

r . In fact, we will be close enough to essentially ”round” to the nearest multiple, and this will
allow us to calculater with some reasonable probability.

Applying a Fourier transform to the expression above, we get

Q−1

∑
l=0

αl |l〉,

where

αl =
1√
Q
× 1

√

bQ
r c

bQ
r c−1

∑
j=0

(ω rl ) j .

Notice that ifrl mod Qis small, then terms in the sum cover only a small angle in the complex plane, and hence,
the magnitude of the sum is almost the sum of the magnitudes. Next lemmas makes it precise.

Lemma 9.4: If − r
2 ≤ lr modQ≤ r

2 for some lr then|αl | ≥ 1
22/3 × 1√

r .

Proof:

Let

β = e
2π irl

Q j = ω rl .

This stands for a vector on the complex plane. The sum

bQ
r c−1

∑
j=0

β j

is a geometric series with common ratioβ .

Since− r
2 ≤ lr modQ≤ r

2, the terms of the series fan out less than or equal to an angleπ on the complex plane.
This happens whenβ makes a small angle with the real line. Then as shown in Figure2 half of the terms in the
above series make an angle less than or equal toπ

4 with the resultant of the vector addition of the terms in the
series. Then each such term contributes a fraction at least

cos
π
4

=
1√
2

of its length to the resultant vector. So the magnitude of theresultant is at least

1
2
× 1√

2
× Q

r
× 1√

Q
× 1

√

bQ
r c

=
1

23/2
× 1√

r
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resultant vector

Figure 2:β makes small angle with real line

2

Lemma 9.5: − r
2 ≤ lr modQ≤ r

2 with probabilityΘ(1).

Proof:

If gcd(r,Q) = 1 thenr−1 mod Q exists. Thus asl varies in the range[0,Q−1], lr must take values forming
a permutation of{0,1,2, . . .Q−1}. Thus, as Figure 3 shows, at leastr values oflr lie in the range[Q− r/2, r/2].

0

r/2

Q−1

Q−r/2

r

Figure 3: At leastr values oflr satisfy the constraint

If gcd(r,Q) 6= 1, thenlr mod Q is distributed as shown in Figure 4. In this case, at leastr/2 values oflr lie in a
range[Q− r/2, r/2] of sizer.

0 r

gcd(r,Q)

r/2

Q−r/2

2gcd(r,Q)

3gcd(r,Q)

. . .

Figure 4: At leastr/2 values oflr satisfy the constraint in the worst case

Thus, in any case, at leastr/2 values ofl satisfy the condition

− r
2

≤ lr modQ≤ r
2

From Lemma 9.4 each of them has amplitude at least

1

23/2
× 1

r1/2
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Thus the probability of sampling such anl is at least

r
2
× (

1

23/2
× 1

r1/2
)2 ≥ 1

16

So with probability more than1
16 we will sample anl such that

− r
2
≤ lr modQ ≤ r

2
.

2

So with probability more than1
16 we will sample anl such that

− r
2
≤ lr modQ ≤ r

2

i.e.

|lr −kQ| ≤ r
2

for some integerk; equivalently,

| l
Q
− k

r
| ≤ 1

2Q

Thus, l
Q is an 1

2Q-approximation of the rationalkr . We can measurel , and we knowQ. The ratio l
Q, when

reduced to lowest terms, leads to a rationala
b, say, which is a1

2Q-good approximation tokr .

Sincek is randomly chosen from the range[0, r −1], with probability at least 1
logk , k andr are co-prime. Thus

by computingk
r we can computer as well.

This suggests a way to make a good approximation, by simply choosingQ to be much larger thanN. How much
larger thanN doesQ need to be, for us to evaluater accurately?

The answer is given by Lemma 9.7 using continued fractions inthe next subsection. We just compute continued
fractions until precision is at least12Q. Assume, that the approximation is some rational numberk′

r ′ . If r = r ′ then
we succeed otherwise

∣

∣

∣

∣

k
r
− k′

r ′

∣

∣

∣

∣

≥ 1
rr ′

≥ 1
N2 .

It is contradiction because bothkr and k′
r ′ is 1

2Q ≤ 1
2N2 close toa

b. Thereforer = r ′.

3.3 Continued Fractions
The idea of continued fractions is to approximate real numbers using finite number of integers.

Definition 9.1 (Continued Fractions): A real numberα can be approximated by a set of positive integersa0,
a1, . . . , an asCFn(α) = a0 + 1

a1+
1

a2+ 1
···+ 1

an

= Pn
Qn

, wherePn andQn are integers.

CS 294-2, Fall 2004, Lecture 9 6



Example: Let us try to approximateπ to the first two decimal places with a rational number. We knowthat

π = 3.14. . .

= 3+
14
100

= 3+
1

100
14

= 3+
1

7+ 2
14

≈ 3+
1
7

=
22
7

If we decided to approximateπ to four decimal places, we would have

π = 3.1415. . .

= 3+
1415
10000

= 3+
1

10000
1415

= 3+
1

7+ 95
1415

= 3+
1

7+ 1
1415
95

= 3+
1

7+ 1
14+ 85

95

≈ 3+
1

7+ 1
14

=
311
99

The following two lemmas are well known facts about continued fractions that we will leave without a proof.

Lemma 9.6: CFn(α) is the best rational approximation ofα with denominator≤ Qn.

Lemma 9.7: If α is rational then it occurs as one of the approximations CFn(α).

Moreover, it is easy to see that continued fractions are easyto compute for any rational number.
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