
CS 294-2 Simon’s Algorithm 9/28/04
Fall 2004 Lecture 7

0.1 Overviews
Recall that our basic primitive for designing quantum algorithms is fourier sampling: prepare some quantum
state

∣

∣ψ
〉

= ∑x αx
∣

∣x
〉

on n qubits; perform a Hadamard transform, resulting in the superposition∑x βx
∣

∣x
〉

;
now measure to samplex with probability |βx|2. The point is that classically it is difficult to simulate the
effects of the quantum interference, and therefore to determine for which stringsx there is constructive
interference and are therefore output with high probability.

How do we set up the initial superposition
∣

∣ψ
〉

= ∑x αx

∣

∣x
〉

? So far we have done so classically: for classi-
cally computable functions f and g, we can set up the superposition ∑x(−1) f (x)g(x ·0m). A major innovation
in Simon’s algorithm is the use of quantum techniques to set up the initial superposition.

Suppose we’re given a functionf : {0,1}n → {0,1}n, specified by a black box. (Note that the outputs of
f aren-bit strings, rather than single bits.) We’re promised the following about f : there exists a nonzero
secret stringa ∈ {0,1}n such that

• For all inputsx ∈ {0,1}n, f (x) = f (x⊕a).

• For all inputsx,y ∈ {0,1}n, if x 6= y⊕a, then f (x) 6= f (y).

What these conditions mean is thatf is a 2-to-1 function, and that any two inputs mapping to the same
output differ in exactly those positionsi for which ai = 1, wherei is thei-th position in ann-bit string. For
example,f (x) = 2∗bx/2c. For anyk, f (2k) = f (2k +1). But for anyi, j, if i and j are not like (2k,2k +1)
pair, thenf (i) 6= f (j). In this example,a is 1.

0.2 Simon’s Algorithm
Let x ⊕ y denote the bitwise mod 2 addition ofx and y, and x · y denote the inner product ofx and y,
∑n

i=1xiyi mod 2. We now present Simon’s quantum algorithm for findinga. The algorithm uses two regis-
ters, both withn qubits. The registers are initialized to the basis state|0· · ·0〉 |0· · ·0〉. We then perform the

|0n〉

|0n〉

H2n

C f

| f (x)〉

H2n |y〉

Figure 1: Simon’s algorithm

CS 294-2, Fall 2004, Lecture 7 1

Hadamard transformH2n on the first register, producing the superposition

1

2n/2 ∑
x∈{0,1}n

|x〉 |0· · ·0〉 .

Then, we computef (x) through the oracleC f and store the result in the second register, obtaining the state

1

2n/2 ∑
x∈{0,1}n

|x〉 | f (x)〉 .

The second register is not modified after this step. Thus we may invoke the principle of safe storage and
assume that the second register is measured at this point.

Let f (z) be the result of measuring of the second register. There are exactly two x such that f(x)=f(z),
according to the definition off . one isz and the other isz⊕a. The quantum state after measuring is

(

1√
2
|z〉+ 1√

2
|z⊕a〉

)

| f (z)〉

We’re now done with the second register, so in the discussionto follow, we’ll omit it from our notation. The
state in then-qubit first register

1√
2
|z〉+ 1√

2
|z⊕a〉

clearly contains some information abouta—the question is how to extract it. If we observed at this point,
we will get z or z⊕a. It is a state chosen uniformly at random from{0,1}n, containing no information at all.
Therefore some more computation is required. The key, once again, is to apply the Hadamard transform
H2n to the register. Doing so, we obtain a superposition

∑
y∈{0,1}n

αy |y〉

where

αy =
1√
2

1

2n/2
(−1)y·z +

1√
2

1

2n/2
(−1)y·(z⊕a) =

1

2(n+1)/2
(−1)y·z [1+(−1)y·a] .

There are now two cases. For eachy, if y ·a = 1, thenαy = 0, whereas ify ·a = 0, then

αy =
±1

2(n−1)/2
.

So when we observe the first register, with certainty we’ll see ay such thaty · a = 0. Hence, the output
of the measurement is a randomy such thaty · a = 0. Furthermore, eachy such thaty · a = 0 has an equal
probability of occurring. Therefore what we’ve managed to learn is an equation

y1a1⊕·· ·⊕ ynan = 0 (1)

wherey = (y1, . . . ,yn) is chosen uniformly at random from{0,1}n. Now, that isn’t enough information to
determinea, but assuming thaty 6= 0, it reduces the number of possibilities fora by half.

It should now be clear how to proceed. We run the algorithm over and over, accumulating more and more
equations of the form in (1). Then, once we have enough of these equations, we solve them using Gaussian

CS 294-2, Fall 2004, Lecture 7 2

elimination to obtain a unique value ofa. But how many equations is enough? From linear algebra, we
know thata is uniquely determined once we haven− 1 linearly independent equations—in other words,
n−1 equations

y(1) ·a ≡ 0(mod2)
...

y(n−1) ·a ≡ 0(mod2)

such that the set
{

y(1), . . . ,y(n−1)
}

is linearly independent in the vector spaceZn
2. Thus, our strategy will be

to lower-bound the probability that anyn−1 equations returned by the algorithm are independent.

Suppose we already havek linearly independent equations, with associated vectorsy(1), . . . ,y(k). The vectors
then span a subspaceS ⊆ Zn

2 of size 2k, consisting of all vectors of the form

b1y(1) + · · ·+ bky(k)

with b1, . . . ,bk ∈ {0,1}. Now suppose we learn a new equation with associated vectory(k+1). This equation
will be independent of all the previous equations provided that y(k+1) lies outside of S, which in turn has
probability at least(2n − 2k)/2n = 1− 2k−n of occurring. So the probability that anyn equations are
independent is exactly the product of those probabilities.

(

1− 1
2n

)

×
(

1− 1
2n−1

)

×·· ·×
(

1− 1
4

)

×
(

1− 1
2

)

.

Can we lower-bound this expression? Trivially, it’s at least

∞

∏
k=1

(

1− 1
2k

)

≈ 0.28879;

the infinite product here is related to something in analysiscalled a q-series. Another way to look at the
constant 0.28879. . . is this: it is the limit, asn goes to infinity, of the probability that ann×n random matrix
overZ2 is invertible.

But we don’t need heavy-duty analysis to show that the product has a constant lower bound. We use the
inequality (1− a)(1− b) = 1− a− b + ab > 1− (a + b), if a,b ∈ (0,1). We just need to multiply the
product out, ignore monomials involving two or more1

2k terms multiplied together (which only increase the
product), and observe that the product is lower-bounded by

[

1−
(

1
2n +

1
2n−1 + · · ·+ 1

4

)]

· 1
2
≥ 1

4
.

We conclude that we can determinea with constant probability of error after repeating the algorithm O(n)
times. So the number of queries tof used by Simon’s algorithm isO(n). The number of computation
steps, though, is at least the number of steps needed to solvea system of linear equations, and the best
known upper bound for this isO

(

n2.376
)

, due to Coppersmith and Winograd.

0.3 Classical solution
We are going to prove that any probabilistic algorithm needsan exponential time to solve this problem.
Suppose thata is chosen uniformly at random from{0,1}n −{0n}. Now consider a classical probabilistic

CS 294-2, Fall 2004, Lecture 7 3

algorithm that’s already madek queries, to inputsx1, . . . ,xk. We want to know how much information the
algorithm could have obtained abouta, given those queried pairs(xi, f (xi)).

On the one hand, there might be a pair of inputsxi,x j (with 1≤ i, j ≤ k) such thatf (xi) = f
(

x j

)

. In this

case, the algorithm already has enough information to determinea: a = xi ⊕ x j.

On the other hand, suppose no such pairf (xi), f (x j) exists. Then the queriedf (xi)’s are distinct anda is

none of

(

k
2

)

valuesxi ⊕ x j.

The probability that the next query will succeed is at most

k

2n −1−
(

k
2

)

because there are at least 2n−1−
(

k
2

)

possible values of u for choosing at the(k+1)-th query. Andf (xk+1)

should be equal to one of the prior observedf (xi), i ∈ [1,k].

Taking the sum over allk ∈ {1, . . . ,m}. We get

m

∑
k=1

k

2n −1−
(

k
2

) ≤
m

∑
k=1

k
2n − k2 ≤ m2

2n −m2

In order to have an constant probability, we must choosem = Ω(2n/2). Hence, any deterministic algorithm
has to run in exponential time to get a correct answer with probability larger than a constant.

CS 294-2, Fall 2004, Lecture 7 4

	Overviews
	Simon's Algorithm
	Classical solution

