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1 Reversible Computation
Quantum computation is unitary. A quantum circuit corresponds to a unitary operatorU acting onn qubits.
Being unitary meansUU† =U†U = I . A quantum circuit which performs a unitary operationU has a mirror
image circuit which performs the corresponding operationU†.
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The circuits forU andU† are the same size and have mirror image gates. Examples:

H = H†

CNOT = CNOT†

Rθ = R†
−θ

2 P ⊆ BQP
We will show how any classical computation can be simulated by a quantum circuit and then show the
specific result that P is contained in BQP.

2.1 Simulating Classical Circuits
Quantum computation originally (in the late 70s and early 80s) tried to understand whether unitary constraint
on quantum evolution provided limits beyond those exploredin classical computation. A unitary transfor-
mation taking basis states to basis states must be a permutation. (Indeed, ifU
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.) Therefore quantum mechanics imposes the constraint thatclassically it must be
reversible computation.

How can a classical circuitC which takes ann bit input x and computesf (x) be made into a reversible
quantum circuit that computes the same function? We can never lose any information, so in general the
circuit must output both the inputx and the outputf (x). In addition, the quantum circuit may need some
additional scratch qubits during the computation since individual gates can’t lose any information either.
The consequence of these constraints is illustrated below.
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How is this done? Recall that any classical AND and OR gates can be simulated with a C-SWAP gate and
some scratch
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qubits.
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C-SWAP

a

swapb andc iff a = 1

If we construct the corresponding reversible circuit RC, wehave a small problem. The CSWAP gates end
up converting input scratch bits to garbage. How do we restore the scratch bits to 0 on output? We use the
fact that RC is a reversible circuit. The sequence of steps for the overall circuit is

(x,0k,0m,0k,1)
C′
−→ (x,y,garbagex,0

k,1)
copyy−→ (x,y,garbagex,y,1)

(C′)−1

−→ (x,0k,0m,y,1) .

Overall, this gives us a clean reversible circuitĈ corresponding toC.

REV

f (x)

x

f (x) f (x)

f (x)

xx

junk

0
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0

COPY

2.2 Proof: P ⊆ BQP
Define asimple circuitas a reversible circuit which takes as inputx and outputsf (x) and does not generate a
copy ofx on the output as previously described. Also, roughly define an efficient circuit as one with a small
number of total gates.

Theorem 5.1: There exists a simple circuit for f if and only if f is a bijection and there are efficient circuits
for f and f−1.
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Proof:If there is a simple circuit forf , then running that circuit in reverse will computef−1(x) without
knowledge ofx. Eachy has a unique pre-image underf , thus f is a bijection.

To prove the converse, assume thatf is a bijection. An efficient circuit forf implies the existence of an
efficient reversible circuit RC1 which computesf (x). An efficient circuit for f−1 implies the existence of
an efficient reversible circuit RC2 which computesf−1(x).

f (x)

x

f (x)
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x
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x

RC

The concatenation RC1 followed by RCREV
2 is the desired simple circuit.

A direct consequence of this theorem is that any polynomial time circuit can be simulated quantumly.

3 BPP ⊆ BQP
We will show that any circuit in BPP can be simulated in BQP by first generating random qubits and then
simulating the corresponding polynomial circuit.

3.1 Review: BPP
BPP stands for bounded error probabilistic polynomial time. As an example, consider the language PRIMES
consisting of prime numbers. There exists a polynomial sizecircuit C which takes as inputx and some
random bitsr and outputs 1 for ACCEPT and 0 for REJECT.

0/1

A/R

r

(poly size)
Cx

We say PRIMES∈BPP if

x∈ PRIMES ⇒ Pr{C(x, r) = 1} ≥ 2/3,

x 6∈ PRIMES ⇒ Pr{C(x, r) = 0} ≥ 2/3.

3.2 Simulating BPP
The main difference between a P circuit and a BPP circuit is the additional input ofr random bits. We
have already shown that any circuit in P can be simulated in BQP. We want to show that it is possible to
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inputs. A simple solution is to apply the Hadamard gate to each
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∣

∣0
〉

to 1√
2

∣

∣0
〉

+ 1√
2

∣

∣1
〉

. Measuring will result is either
∣

∣0
〉

or
∣

∣1
〉

with equal probability.

µ
0 w.p. 1

2

1 w.p. 1
2

H 1√
2

∣

∣0
〉

+ 1√
2

∣

∣1
〉

If we generate random bits like this and then run the corresponding quantum circuit to C, we get the straight-
forward circuit below.
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Measurement can be tricky in the intermediate stages of a quantum circuit. Why not skip the measurement
and get a superposition of states? Well, if a Hadamard gate occurs in the circuit, we have a problem. The
desired outcome is one of these two possibilities with probability 1/2:

∣

∣0
〉

−→ H −→ 1√
2

∣

∣0
〉

+
1√
2

∣

∣1
〉

∣

∣1
〉

−→ H −→ 1√
2

∣

∣0
〉

− 1√
2

∣

∣1
〉

No interference occurs here. Unfortunately, interferencecan lead to the following undesirable situation in
which the randomness disappears:
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Measurement prevents quantum interference. But, by the principle of deferred measurement, we can post-
pone the measurement and get the same result. In fact, we can post the measurement indefinitely and not
perform it at all.

much later
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We now need twice as many qubits as before. Half of them are passed through Hadamard gates and con-
nected by CNOT gates to the other half. This fixes the first halfof the qubits to either

∣

∣0
〉

or
∣

∣1
〉

, even
though no measurement was made. It is important to note, however, that since the second half of the qubits
are now entangled with the first half, we must be certain not tomake any measurements on them either.
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4 Is Quantum Computation Digital?
There is an issue as to whether or not quantum computing is digital. We need only look at simple gates such
as the Hadamard gate or a rotation gate to find real values.

H =

(

1√
2

1√
2

1√
2

− 1√
2

)

Rθ =

(

cosθ −sinθ
sinθ cosθ

)

When we implement a gate, how accurate does it need to be? Do weneed infinite precision to build this
gate properly? A paper by Shamir, “How To Factor On Your Calculator,” shows that if we assume infinite
precision arithmetic, then some NP complete problems can besolved in polynomial time. However, we
obviously cannot have infinite precision, so we must digitize quantum computation in order to approximate
values such as 1/

√
2. It turns out that logn bits of precision are necessary.

Suppose we want to build a gate that rotates the input byθ , but the best accuracy we can actually build is
rotation byθ ±∆θ (finite precision). LetU1, . . . ,Um be a set of ideal gates that implement an exact rotation
by θ . LetV1, . . . ,Vm be a set of actual (constructible) gates that implement rotation by θ ±∆θ . Let

∣
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〉

be
the initial state. Let

∣
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〉

be the ideal output
∣
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〉

= U1U2 · · ·Um
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,

and let
∣

∣ψ ′〉 be the actual output
∣

∣ψ ′〉 = V1V2 · · ·Vm
∣

∣φ
〉

.

The closer
∣

∣ψ
〉

and
∣

∣ψ ′〉 are to each other, the better the approximation. If we can approximate each gate
to within ε = O(1/m), then we can approximate the entire circuit with small constant error.

Theorem 5.2: If ‖Ui −Vi‖ ≤ ε
4m for 1≤ i ≤ m, then‖

∣

∣ψ
〉

−
∣

∣ψ ′〉‖ ≤ ε
4.

Proof:Consider the two hybrid states
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〉
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.
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Subtractφk+1 from φk to get
∣
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〉
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= U1 · · ·Uk−1(Vk−Uk)Vk+1 · · ·Vm
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Since the unitary transformations don’t change the norm of the vector, the only term we need to consider is
Uk+1−Vk+1. But we have an upper bound on this, so we can conclude that

‖
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.

Another way to see this is the following picture. Applying unitary transformations toUm
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andVm
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preserves the angle between them, which is defined to be the norm.
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We use the triangle inequality to finish to proof.
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.
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