Ankur Mehta, mehtank@eecs.berkeley.edu

1 1-D Random Walk

1.1 Classical

Each time step, go one step in a random direction.
If you call the distance travelled in time step i by x_{i}, then

$$
x_{i}= \begin{cases}+1 & \text { w.p. } 1 / 2 \\ -1 & \text { w.p. } 1 / 2\end{cases}
$$

and the total distance travelled in n steps is $X=x_{1}+\ldots+x_{n}$. Now, $E(X)=n E\left(x_{i}\right)=0$ so it is expected that you end up where you started from. However, $\operatorname{var}(X)=n\left(\operatorname{var}\left(x_{i}\right)\right)=n E\left[\left(x_{i}-E\left(x_{i}\right)\right)^{2}\right]=n E\left(x_{i}^{2}\right)=n$, and so in n time steps you have covered a distance of $O(\sqrt{n})$. Alternately, it takes $O\left(k^{2}\right)$ time to go a distance k.

1.2 Probabilistic

We have $X \in \mathbb{Z}$ representing the total distance travelled, and a coin $b \in\{0,1\}$. Every step of the walk we update our position depending on the coin, then flip the coin in preparation for the next step. That is, WALK : $X \leftarrow X+(-1)^{b}$; pick new b randomly; repeat.
The (binomial) probability distribution for X is maximum at $X=0$ and trails off farther away.

1.3 Quantum

Similar to the probabilistic random walk, we have $X \in \mathbb{Z}$ representing the total distance travelled, but now our coin $|b\rangle \in \mathbb{C}^{2}$ is a quantum bit. The coin flip is implemented as some unitary operator U (e.g. the Hadamard transform H). That is, WALK : $|X, b\rangle \leftarrow\left|X+(-1)^{b}, b\right\rangle ;|b\rangle \leftarrow U|b\rangle$; repeat.
The quantum walk takes $O(k)$ time to go a distance k. There are naturally many different ways to reach 0 after k time steps, but each of those ways is likely to carry a different phase, so they interfere destructively. Correspondingly, there are fewer ways to get outside some distance away from the start, so there is more constructive interference. The probability distribution for X after k time steps is small at $X=0$ with two peaks centered at $\pm c k$ for some constant c.

2 Schrodinger's Equation

This equation gives how a quantum state $|\psi\rangle$ evolves over time. In natural units where $\hbar=c=1$, Schrodinger's equation is

$$
i \frac{d|\psi\rangle}{d t}=H|\psi\rangle
$$

where H is the Hamiltonian operator. The Hamiltonian is a hermitian operator, and so corresponds to an observable, namely energy.

Because the Hamiltonian is hermitian, it has an orthonormal set of eigenstates $\left|v_{i}\right\rangle$ with eigenvalues (energies) λ_{i}. A state in one of these eigenstates evolves as follows:

$$
|\psi(t=0)\rangle=\left|v_{i}\right\rangle \Longrightarrow|\psi(t)\rangle=e^{-i \lambda_{i} t}\left|v_{i}\right\rangle .
$$

Thus in the energy eigenstate basis, the unitary time evolution operator $U(t):|\psi(t)\rangle=U(t)|\psi(0)\rangle$ is given by

$$
U(t)=e^{-i H t}=\left[\begin{array}{ccc}
e^{-i \lambda_{1} t} & & 0 \\
& \ddots & \\
0 & & e^{-i \lambda_{n} t}
\end{array}\right]
$$

3 1-D particle

In the case of a 1-D particle, the state $|\psi\rangle=\psi(x, t)$ is the amplitude of the particle at position x at time t. In this case, the Hamiltonian operator $H=\partial^{2} / \partial x^{2}$, so Schrodinger's equation reads

$$
i \frac{\partial \psi}{\partial t}=\frac{\partial^{2} \psi}{\partial x^{2}}
$$

A state with velocity $\sim k$ is given by $\psi(x)=e^{i k x}$, so the amplitude with which an arbitrary state ϕ has velosity k is given by

$$
\langle\psi \mid \phi\rangle=\left\langle e^{i k x} \mid \phi\right\rangle=\int_{-\infty}^{\infty} e^{i k x} \phi(x, t) d x
$$

This is similar to the Fourier transform of the wavefunction, that is, we can describe another wavefunction in velocity space as the F.T. of the position wave function:

$$
\hat{\phi}(k, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i k x} \phi(x, t) d x
$$

4 Uncertainty Relations

As we saw, the position and velocity of a 1-D particle are Fourier transforms of one another. Thus, localizing one comes at the expense of a wider spread in the other. The minimum standard deviation spread comes when both are of Gaussian form, then $\Delta x \Delta v=\Omega(1)$.

Similarly, consider a finite abelian group G. Starting with a distribution $D=\sum_{g} \alpha_{g}|g\rangle$, it's Fourier transform becomes a distribution $\hat{D}=\sum_{g} \hat{\alpha}_{g}|g\rangle$. We have the following uncertainty relations about these distributions:

$$
\sum_{g}\left|\alpha_{g}\right|+\sum_{g}\left|\hat{\alpha}_{g}\right| \geq \sqrt{|G|}
$$

$$
S(D)+S(\hat{D}) \geq \log |G|
$$

where $S(D)$ is the entropy of the distribution D.

5 Dirac Equation

Classically, the energy E of a 1-D particle is given by $E=p^{2} / 2 m$, where p is its momentum and m is its mass. The quantum analog of this relationship can be obtained by the translating the observables E and p into their respective operators (again in natural units) $E \rightarrow \hat{H}=i \partial / \partial t$ and $p \rightarrow \hat{p}=-i \partial / \partial x$, yielding Schrodinger's equation

$$
i \frac{\partial \psi}{\partial t}=\frac{1}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}
$$

Relativistically, the energy of a particle is given by $E^{2}=p^{2}+m^{2}$, so the quantum analog should satisfy $\hat{H}^{2}=\hat{p}^{2}+m^{2} \hat{I}$. Consider instead a tensor product of the particle state with an additional qubit state. Then, in matrix form we could have

$$
\hat{H}=\left[\begin{array}{c|c}
\hat{p} & m \hat{I} \\
\hline m \hat{I} & -\hat{p}
\end{array}\right]=\left[\begin{array}{c|c}
\hat{p} & 0 \\
\hline 0 & -\hat{p}
\end{array}\right]+m\left[\begin{array}{c|c}
\hat{0} & \hat{I} \\
\hline \hat{I} & \hat{0}
\end{array}\right]
$$

such that

$$
\hat{H}^{2}=\left[\begin{array}{c|c}
\hat{p}^{2}+m^{2} \hat{I} & 0 \\
\hline 0 & \hat{p}^{2}+m^{2} \hat{I}
\end{array}\right] .
$$

