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I 1-D Random Walk
1.1 Classical

Each time step, go one step in a random direction.

If you call the distance travelled in time stepy x;, then
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and the total distance travelledrirsteps isX = x3 + ... +X,. Now, E(X) = nE(x) = 0 so it is expected that
you end up where you started from. Howewer,(X) = n(var(x)) = nE[(x — E(x))?] = nE(x?) = n, and
so inn time steps you have covered a distanc®6§/n). Alternately, it take€D(k?) time to go a distanck.

1.2 Probabilistic

We haveX € Z representing the total distance travelled, and a bain{0,1}. Every step of the walk we
update our position depending on the coin, then flip the copreparation for the next step. That is,
WALK : X — X 4 (—1)P; pick newb randomly; repeat.

The (binomial) probability distribution foX is maximum atX = 0 and trails off farther away.

1.3 Quantum

Similar to the probabilistic random walk, we ha}ec Z representing the total distance travelled, but now
our coin [b) € C? is a quantum bit. The coin flip is implemented as some unitgratorU (e.g. the
Hadamard transforril). That is,

WALK : |X,b) « [X+(—=1)°,b); |b) « U |b); repeat.

The quantum walk take®(k) time to go a distanck. There are naturally many different ways to reach 0
afterk time steps, but each of those ways is likely to carry a difiephase, so they interfere destructively.
Correspondingly, there are fewer ways to get outside sostardie away from the start, so there is more

constructive interference. The probability distributifam X afterk time steps is small aX = 0 with two
peaks centered atck for some constant.

2 Schrodinger’s Equation

This equation gives how a quantum sthu:} evolves over time. In natural units whdre- c=1, Schrodinger’s
equation is
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whereH is the Hamiltonian operator. The Hamiltonian is a hermitigrerator, and so corresponds to an
observable, namely energy.

Because the Hamiltonian is hermitian, it has an orthonoseabf eigenstateba} with eigenvalues (ener-
gies)A;. A state in one of these eigenstates evolves as follows:

W(t=0) =|v) = [¢(1) =e"|v).

Thus in the energy eigenstate basis, the unitary time évaloperatot) (t) : |((t)) =U(t)|@(0)) is given
by

e—i)\lt 0
Ut)=e = _
0 e*i)\nt

3 1.D particle

In the case of a 1-D particle, the ste#t,e> = Y(x,t) is the amplitude of the particle at positicrat timet.
In this case, the Hamiltonian operatdr= 92 /dx?, so Schrodinger’s equation reads

oy 9%y
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A state with velocity~ k is given by (x) = €X, so the amplitude with which an arbitrary stapehas
velosityk is given by

(W@ = (%) = [ d*pix

This is similar to the Fourier transform of the wavefunctitimat is, we can describe another wavefunction
in velocity space as the F.T. of the position wave function:

(k1) = % [ oo

4 Uncertainty Relations

As we saw, the position and velocity of a 1-D patrticle are kuransforms of one another. Thus, localizing
one comes at the expense of a wider spread in the other. Theamnstandard deviation spread comes
when both are of Gaussian form, tharAv = Q(1).

Similarly, consider a finite abelian group G. Starting wittlistributionD = 3 4 ag|g> , it's Fourier transform
becomes a distributiob = ¥, éig|g) . We have the following uncertainty relations about thesgritiutions:

Y lagl+ 5 ag > V/IGI S(D) + (D) > log|G|
g g

whereS(D) is the entropy of the distributioB.
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5 Dirac Equation

Classically, the energi of a 1-D particle is given bf = p?/2m, wherep is its momentum andh is its
mass. The quantum analog of this relationship can be olotdgehe translating the observablEsand
p into their respective operators (again in natural urfitsy> H = id/dt andp — p= —id/dx, yielding
Schrodinger’s equation

w10
ot 2mox2’
Relativistically, the energy of a particle is given Bf = p? +n?, so the quantum analog should satisfy

H2 = p?+ m?i. Consider instead a tensor product of the particle state avitadditional qubit state. Then,
in matrix form we could have

~ [ p|m 1 [p]oO 0|l
=[] = ol

such that

K2 — |62+mzﬂ 0
a 0 [P+l |’
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