Abelian Hidden Subgroup Problem + Discrete Log

1 Fourier transforms over finite abelian groups

Let *G* be a finite abelian group. The characters of *G* are homomorphisms $\chi_j : G \to \mathbb{C}$. There are exactly |G| characters, and they form a group, called the dual group, and denoted by \hat{G} . The Fourier transform over the group *G* is given by:

$$ig|g
angle\mapstorac{1}{\sqrt{|G|}}\sum_{j}\chi_{j}(g)ig|j
angle$$

Consider, for example $G = Z_N$. The characters are defined by $\chi_j(1) = \omega^j$ and $\chi_j(k) = \omega^{jk}$. And the Fourier transform is given by the familiar matrix F, with $F_{j,k} = \frac{1}{\sqrt{N}} \omega^{jk}$.

In general, let $G \cong \mathbb{Z}_{N_1} \times \mathbb{Z}_{N_2} \times \cdots \times \mathbb{Z}_{N_l}$, so that any $g \in G$ can be written equivalently as (a_1, a_2, \dots, a_l) , where $a_i \in \mathbb{Z}_{N_i}$. Now, for each choice of k_1, \dots, k_l we have a character given by the mapping:

$$\chi_{k_1,\dots,k_l}(a_1,a_2,\dots,a_l) = \omega_{N_1}^{k_1a_1} \cdot \omega_{N_2}^{k_2a_2} \cdot \dots \cdot \omega_{N_l}^{k_la_l}$$

Finally, the Fourier transform of (a_1, a_2, \dots, a_l) can be defined as

$$(a_1, a_2, \dots, a_l) \mapsto \frac{1}{\sqrt{|G|}} \sum_{(k_1, \dots, k_l)} \omega_{N_1}^{k_1 a_1} \omega_{N_2}^{k_2 a_2} \cdots \omega_{N_l}^{k_l a_l} \big| k_1 \cdots k_l \big\rangle$$

2 Subgroups and Cosets

Corresponding to each subgroup $H \subseteq G$, there is a subgroup $H^{\perp} \subseteq \hat{G}$, defined as $H^{\perp} = \{k \in \hat{G} \mid k(h) = 1 \forall h \in H\}$, where \hat{G} is the dual group of G. $|H^{\perp}| = \frac{|G|}{|H|}$. The Fourier transform over G maps an equal superposition on H to an equal superposition over H^{\perp} :

Claim

$$rac{1}{\sqrt{|H|}} \sum \left|h
ight
angle \stackrel{FT_G}{\mapsto} \sqrt{rac{|H|}{|G|}} \sum_{k\in H^\perp} \left|k
ight
angle$$

Proof The amplitude of each element $k \in H^{\perp}$ is $\frac{1}{\sqrt{|G|}\sqrt{|H|}}\sum_{h\in H}k(h) = \frac{\sqrt{|H|}}{\sqrt{|G|}}$. But since $|H^{\perp}| = \frac{|G|}{|H|}$, the sum of squares of these amplitudes is 1, and therefore the amplitudes of elements not in H^{\perp} is 0. The Fourier transform over *G* treats equal superpositions over cosets of *H* almost as well:

Claim

$$\frac{1}{\sqrt{|H|}} \sum_{h \in H} \left| hg \right\rangle \stackrel{FT_G}{\mapsto} \sqrt{\frac{|H|}{|G|}} \sum_{k \in H^{\perp}} \chi_g(k) \left| k \right\rangle$$

Proof This follows from the convolution-multiplication property of Fourier transforms. An equal superposition on the coset Hg can be obtained by convolving the equal superposition over the subgroup H with a delta function at g. So after a Fourier transform, we get the pointwise multiplication of the two Fourier transforms: namely, an equal superposition over H^{\perp} , and χ_g .

Since the phase $\chi_g(k)$ has no effect on the probability of measuring $|k\rangle$, Fourier sampling on an equal superposition on a coset of *H* will yield a uniformly random element $k \in H^{\perp}$. This is a fundamental primitive in the quantum algorithm for the hidden subgroup problem.

Claim Fourier sampling performed on $|\Phi\rangle = \frac{1}{\sqrt{|H|}} \sum_{h \in H} |hg\rangle$ gives a uniformly random element $k \in H^{\perp}$.

3 The hidden subgroup problem

Let G again be a finite abelian group, and $H \subseteq G$ be a subgroup of G. Given a function $f: G \to S$ which is constant on cosets of H and distinct on distinct cosets (i.e. f(g) = f(g') iff there is an $h \in H$ such that g = hg'), the challenge is to find H.

The quantum algorithm to solve this problem is a distillation of the algorithms of Simon and Shor. It works in two stages:

Stage I Setting up a random coset state:

Start with two quantum registers, each large enough to store an element of the group *G*. Initialize each of the two registers to $|0\rangle$. Now compute the Fourier transform of the first register, and then store in the second register the result of applying *f* to the first register. Finally, measure the contents of the second register. The state of the first register is now a uniform superposition over a random coset of the hidden subgroup *H*:

$$\left| 0 \right\rangle \left| 0 \right\rangle \xrightarrow{FT_G \otimes I} \frac{1}{\sqrt{|G|}} \sum_{a \in G} \left| a \right\rangle \left| 0 \right\rangle \qquad \xrightarrow{f} \frac{1}{\sqrt{|G|}} \sum_{a \in G} \left| a \right\rangle \left| f(a) \right\rangle \qquad \xrightarrow{\text{measure 2nd reg}} \frac{1}{\sqrt{|H|}} \sum_{h \in H} \left| hg \right\rangle$$

Stage II Fourier sampling:

Compute the Fourier transform of the first register and measure. By the last claim of the previous section, this results in a random element of H^{\perp} . i.e. random $k : k(h) = 0 \forall h \in H$. By repeating this process, we can get a number of such random constraints on H, which can then be solved to obtain H.

Example Simon's Algorithm: In this case $G = Z_2^n$, and $H = \{0, s\}$. Stage I sets up a random coset state $1/\sqrt{2}|x\rangle + 1/\sqrt{2}|x+s\rangle$. Fourier sampling in stage II gives a random $k \in Z_2^n$ such that $k \cdot s = 0$. Repeating this n-1 times gives n-1 random linear constraints on s. With probability at least 1/e these linear constraints have full rank, and therefore s is the unique non-zero solution to these simultaneous linear constraints.

4 Factoring and discrete log

Recall that factoring is closely related to the problem of order finding. To define this problem, recall that:

The set of integers that are relatively prime to *N* form a group under the operation of multiplication modulo N: $Z_N^* = \{x \in Z_N : gcd(x, N) = 1\}.$

Let $x \in Z_N^*$. The order of x (denoted by $ord_N(x)$) is $min_{r>1}x^r \equiv 1 \mod N$.

The task of factoring N can be reduced to the task of computing the order of a given $x \in Z_N^*$. Recall that $|Z_N^*| = \Phi(N)$, where $\Phi(N)$ is the Euler Phi function. If $N = p_1^{e_1} \cdots p_k^{e_k}$ then $\phi(N) = (p_1 - 1)p_1^{e_1 - 1} \cdots (p_k - 1)p_k^{e_k - 1}$. Clearly, $ord_N(x)|\Phi(N)$.

Consider the function $f: Z_{\Phi(N)} \to Z_N$, where $f(a) = x^a \mod N$. Then f(a) = 1 if $a \in \langle r \rangle$, where $r = ord_N(x)$, and $\langle r \rangle$ denotes the subgroup of Z_N^* generated by r. Similarly if $a \in \langle r \rangle + k$, a coset of $\langle r \rangle$, then $f(a) = x^k \mod N$. Thus f is constant on cosets of $H = \langle r \rangle$.

The quantum algorithm for finding the order *r* or *x* first uses *f* to set up a random coset state, and then does Fourier sampling to obtain a random element from H^{\perp} . Notice that the random element will have the form

$$k = s \cdot \frac{\phi(N)}{r}$$

where *s* is picked randomly from $\{0, ..., r-1\}$. If gcd(s, r) = 1 (which holds for random *s* with reasonably high probability), $gcd(k, \phi(N)) = \phi(N)/r$. From this it is easy to recover *r*. There is no problem discarding bad runs of the algorithm, since the correct value of *r* can be used to split *N* into non-trivial factors.

Here we assumed that we know $\phi(N)$ or at least a multiple of it. However, given N computing $\phi(N)$ is as hard as factoring N. Shor's factoring algorithm relies on the fact that the result of doing a fourier transform over Z_N may be closely approximated by carrying out the fourier transform over Z_M for M >> N and reinterpreting results.

Discrete Log Problem:

Computing discrete logarithms is another fundamental problem in modern cryptography. Its assumed hardness underlies the Diffie-Helman cryptosystem.

In the Discrete Log problem is the following: given a prime p, a generator g of Z_p^* (Z_p^* is cyclic if p is a prime), and an element $x \in Z_p^*$; find r such that $g^r \equiv x \mod p$.

Define $f: Z_{p-1} \times Z_{p-1} \rightarrow Z_p^*$ as follows: $f(a,b) = g^a x^{-b} \mod p$.

Notice that f(a,b) = 1 exactly when a = br. Equivalently, when $(a,b) \in \langle (r,1) \rangle$, where $\langle (r,1) \rangle$ denotes the subgroup of $Z_{p-1} \times Z_{p-1}$ generated by (r,1).

Similarly, $f(a,b) = g^k$ for $(a,b) \in \langle (r,1) \rangle + (k,0)$. Therefore, f is constant on cosets of $H = \langle (r,1) \rangle$.

Again the quantum algorithm first uses f to set up a random coset state, and then does Fourier sampling to obtain a random element from H^{\perp} . i.e. (c,d) such that $rc + d = 0 \mod p - 1$. For a random such choice of (c,d), with reasonably high probability gcd(c, p-1) = 1, and therefore $r = -dc^{-1} \mod p - 1$. Once again, it is easy to check whether we have a good run, by simply computing $g^r \mod p$ and checking to see whether it is equal to x.