CS 294-2 NP-complete Problems - lower bounds + Grover’s Algo-
rithm 10/7/04
Fall 2004 Lecture 10

0.0.1 NP—Completeness

Consider SAT, the prototypical example of an NP-completsbfam. An instance of this problem consists of a
Boolean functionf (X;,...,Xn) = C; A ... ACm; the SAT problem asks you to determine whether there existt-a
isfying assignment—that is, an inp(d,,...,a,) such thatf(a,,...,a,) = 1. UNIQUE-SAT is a variant of SAT that
poses the same problem with the restriction thatust have zero or one satisfying assignments, but no moré. As
turns out, there is a randomized reduction from SAT to UNIQEMT; thus, the two problems are equally hard.

We'll use the black box model when considering this problenthis model, we know that eithdr= 0 or there exists
exactly onea such thatf (a) = 1, wherea is chosen uniformly at random. That isjs treated as a black box; we can
make queries td, but we have no access to the Boolean formula itself. EgeiiBl we can represeritby a table

of N = 2" entries where either none or exactly one entry is 1. Idea#lywant a quantum algorithm that solves this
problem in timeO(poly(n)) = O(poly — log(n)).

Can a quantum computer solve this problem by going into arpagéion of all exponentially many possible truth
assignments? To answer this question precisely, let usedisiinblack box query model:

002 The quantum]olack l)OX model

Here's the problem: You are given a boolean functian{1,...,N} — {0,1}, and are promised that for exactly one
ae{1,...,N}, f(a) =1. Think of this as a table of si2¢, where exactly one element has value 1, and all the others
are 0. Since we assunfecan be computed classically in polynomial time, we can atsopute it in superposition:

Z ax[x)[0) — Z ax X[f(x))

Another way we can implemeritis put the answer register in superposition:

Zax|x><|0>\;§|1>) - 3o <|x>|f(>> |x>|f<>>>

- o (0)
R i (ﬁ

Now, we might as well assumé is a black box or oracle. All we need to do is design an algorithat finds
a:f(a)=1.

CS 294-2, Fall 2004, Lecture 10 0-1

0.0.3 The Hy]orid Argument

For the purposes of this discussion, we want to separataudrgtgm algorithm itself from the functioh We assume
that the quantum algorithm is infinitely powerful (i.e., &tdo any computation in one step) and focus instead on the
number of queries it must make fo All queries tof occur in superposition; that is, a single query ooy |x)|0)
yields the outpuf, ax|X)| f (X)).

Theorem 10.1: In the black box model, any quantum algorithm for determining whether there exist x;,..., %, such
that f(X,,...,X:) = 1 must make Q(+/N) queriesto f.

Pr oof:

Consider any quantum algorithfnfor solving this search problem. First do a test ruafn the functionf = 0. Let

T be the number of queries thaimakes tof, and letay; be the amplitude with whicA queriesc at timet (thatis, the
query at time is 3, ay;|x)). Now, define the query magnitudexfo bey . |ay; 2. The expectation value of the query
magnitude of is Ex (3 |0x¢[?) = T/N. Thus min (3¢ |ay|*) < T/N. Letz be the input at which this minimum
occurs; then by the Cauchy-Schwarz inequalipja;| < T/\/N.E]

Let |@) be the states o, after thet-th step. Now run the algorithi on the functiorg such thaig(z) = 1 and for
ally# z,g(y) = 0. Suppose the final state & is |(+). By the claim that follows|@;) — |¢) = |[Eg) + ...+ |Er_;)
where|||E)|| < v2|ay|. Using the triangle inequality and the inequality proved\ah we have||@) — |)|| <
StllE) I < V23 |ag| < T/2/N. This implies that the two states can be distinguished witibability at most

O(T /+/N) by any measurement. Thus any quantum algorithm that disshgsf from g with constant probability of
success must make(y/N) queries.

[Wr) = @) +|Ep) + [Ey) +...+|Eq_q), where|||E)[| < v/2|ay].
Proof:

Consider two runs of the algorithiy, which differ only on the-th step. The first run queries the functiéron the
firstt steps and querigg for the remainingl’ —t steps; the second run querieéon the firstt — 1 steps and for
the remainindl’ —t + 1 steps. After the first— 1 steps, both runs are in statg). On thet-th step, one run queries
f and the other queriez The outputs of these queries differ only on the amplitudéheftwo basis vectoriz)|0)
and|z)|1), so overall the output vectors differ by at masg|a,,|. Thus, at the end of thieth step, the state of the
first run is|@), whereas the state of the second rufyi$ + |R), where|||R)|| < v2|az|. Now if U is the unitary
transform describing the remainidg—t steps (of both runs), then the final state affesteps for the two runs are
U|g)andU(|@)+|R)), respectively. The latter state can be writtelVag) + |E;), where|E;) = U|R). Since unitary
transformations preserve length, we know thi) || < v/2|a,|. Thus, the effect of switching the queried function

only on thet-th step can be described by an “err¢i) in the final state of the algorithm, wheliéE,)|| < v/2|a|.
We can transform the rufi; to Aq by a succession of changes of the kind described above. Overall, the diffexenc
between the final states 8% andAq is |[Ey) + [E;) +...+ [Er_4), where||[E) || < v2|ayy|.

[|

Finally, it is useful to consider where this factor ¢fN comes from. In the worst case, we querwith amplitude
1/+/N at each time step. The vectors that indicate the differeateach step could all be orthogonal, in which case
the total distance is the sum of the squares of each vecerggh, which is aboull. However, if all vectors are in
the same direction, the total distance is the sum of the feafjeach vector, which is approximatejyN. Grover's

1The Cauchy-Schwarz inequality says that for two vectoandb of length T, (zta{b[)2 < (zt 312) (ztth)_ If we letb, = 1 for allt, then we
have(3; &) < T3, Thus, if 3 a2 < T/N, then (3 |az[)* < T?/N.

CS 294-2, Fall 2004, Lecture 10 0-2

V)
26
@

?]
o
~Joro //
a

Figure 0.1: To rotatév) by 26 to |V'), we reflect aroun¢e) and then reflect arourigy,).

|Wo) = \% S %)

algorithm, which we will describe next, demonstrates thi possible to align all of these vectors and achieve the
factor of/N.

0.04 Grover's algorithm

Grover’s algorithm findsa in O(v/N) steps. Consider the two dimensional subspace that con$isi® states:|a)
and|y,) = S« ﬁ|x}. Let 8 be the angle betweggy,) and|e), where|e) is the vector that is orthogonal ta) in the

direction of|y,) in this subspace. See Figu?e for an illustration of these vectors.
|a) is the target, so we want to increa@eBut how?

One way to rotate a vector is to make two reflections. In palgicwe can rotate a vectpr) by 26 by reflecting about
le) and then reflecting abolty,). This transformation is also illustrated in Figu?@

Each step of our algorithm is a rotation b§ 2we discuss the implementation below). This means that ved %@
iterations for the algorithm to complete. Now, wha'3

1
ay =coqmn/2—0)=sin0) = —
(ola) = cos/2— 6) =sin(6) = —
Since sirf ~ 0, we know thatd ~ % Thus, we nee®(v/N) iterations for the algorithm to complete. In the end,
we get very close t¢n), and then with high probability, a measurement of the stitielya.

How do you implement the two reflections?

1. Reflection aboufe) is easy. All we need to do is flip the phase of the componentendifection of|a); to
accomplish this, we just use the second implementatidntb&t we showed earlier.

CS 294-2, Fall 2004, Lecture 10 0-3

2. For the reflection abouiy,), we use the Diffusion operat@ (assumeN = 2"), which works as follows. First,
apply H,n, which maps|yy,) — [00...0). Then reflect aroun¢DO...0). Finally, applyH,, to return to the
original basis. (Note that this is simply a reflection arotimelzero vector in the Hadamard basis.)

CS 294-2, Fall 2004, Lecture 10 0-4

