
CS 294-2 NP-complete Problems - lower bounds + Grover’s Algo-
rithm 10/7/04
Fall 2004 Lecture 10

0.0.1 NP-Completeness

Consider SAT, the prototypical example of an NP-complete problem. An instance of this problem consists of a
Boolean functionf (x1, . . . ,xn) = c1 ∧ . . .∧ cm; the SAT problem asks you to determine whether there exists asat-
isfying assignment—that is, an input(a1, . . . ,an) such thatf (a1, . . . ,an) = 1. UNIQUE-SAT is a variant of SAT that
poses the same problem with the restriction thatf must have zero or one satisfying assignments, but no more. Asit
turns out, there is a randomized reduction from SAT to UNIQUE-SAT; thus, the two problems are equally hard.

We’ll use the black box model when considering this problem.In this model, we know that eitherf ≡ 0 or there exists
exactly onea such thatf (a) = 1, wherea is chosen uniformly at random. That is,f is treated as a black box; we can
make queries tof , but we have no access to the Boolean formula itself. Equivalently we can representf by a table
of N = 2n entries where either none or exactly one entry is 1. Ideally we want a quantum algorithm that solves this
problem in timeO(poly(n)) = O(poly− log(n)).

Can a quantum computer solve this problem by going into a superposition of all exponentially many possible truth
assignments? To answer this question precisely, let us define the black box query model:

0.0.2 The quantum black box model

Here’s the problem: You are given a boolean functionf : {1, . . . ,N} → {0,1}, and are promised that for exactly one
a ∈ {1, . . . ,N}, f (a) = 1. Think of this as a table of sizeN, where exactly one element has value 1, and all the others
are 0. Since we assumef can be computed classically in polynomial time, we can also compute it in superposition:

∑
x

αx|x〉|0〉 → ∑
x

αx|x〉| f (x)〉

Another way we can implementf is put the answer register in superposition:

∑
x

αx|x〉
(|0〉− |1〉√

2

)

7→ ∑
x

αx

(

|x〉| f (x)〉− |x〉| f (x)〉√
2

)

= ∑
x

αx|x〉
(

| f (x)〉− | f (x)〉√
2

)

= ∑
x

αx|x〉(−1) f (x)
(|0〉− |1〉√

2

)

Now, we might as well assumef is a black box or oracle. All we need to do is design an algorithm that finds
a : f (a) = 1.

CS 294-2, Fall 2004, Lecture 10 0-1

0.0.3 The Hybrid Argument

For the purposes of this discussion, we want to separate the quantum algorithm itself from the functionf . We assume
that the quantum algorithm is infinitely powerful (i.e., it can do any computation in one step) and focus instead on the
number of queries it must make tof . All queries to f occur in superposition; that is, a single query on∑x αx|x〉|0〉
yields the output∑x αx|x〉| f (x)〉.

Theorem 10.1: In the black box model, any quantum algorithm for determining whether there exist x1, . . . ,xn such
that f (x1, . . . ,xn) = 1 must make Ω(

√
N) queries to f .

Proof:

Consider any quantum algorithmA for solving this search problem. First do a test run ofA on the functionf ≡ 0. Let
T be the number of queries thatA makes tof , and letαx,t be the amplitude with whichA queriesx at timet (that is, the
query at timet is ∑x αx,t |x〉). Now, define the query magnitude ofx to be∑t |αx,t |2. The expectation value of the query
magnitude ofx is Ex

(

∑t |αx,t |2
)

= T/N. Thus minx
(

∑t |αx,t |2
)

≤ T/N. Let z be the input at which this minimum
occurs; then by the Cauchy-Schwarz inequality,∑t |αz,t | ≤ T/

√
N. 1

Let |φt〉 be the states ofA f after thet-th step. Now run the algorithmA on the functiong such thatg(z) = 1 and for
all y 6= z, g(y) = 0. Suppose the final state ofAg is |ψT 〉. By the claim that follows,|φT 〉− |ψT 〉 = |E0〉+ . . .+ |ET−1〉
where|||Et〉|| ≤

√
2|αz,t |. Using the triangle inequality and the inequality proved above, we have|||φT 〉− |ψT 〉|| ≤

∑t |||Et〉|| ≤
√

2∑t |αz,t | ≤ T
√

2/N. This implies that the two states can be distinguished with probability at most
O(T/

√
N) by any measurement. Thus any quantum algorithm that distinguishesf from g with constant probability of

success must makeΩ(
√

N) queries.

|ψT 〉 = |φT 〉+ |E0〉+ |E1〉+ . . .+ |ET−1〉, where|||Et〉|| ≤
√

2|αz,t |.

Proof:

Consider two runs of the algorithmA, which differ only on thet-th step. The first run queries the functionf on the
first t steps and queriesg for the remainingT − t steps; the second run queriesf on the firstt −1 steps andg for
the remainingT − t + 1 steps. After the firstt −1 steps, both runs are in state|φt 〉. On thet-th step, one run queries
f and the other queriesg. The outputs of these queries differ only on the amplitude ofthe two basis vectors|z〉|0〉
and|z〉|1〉, so overall the output vectors differ by at most

√
2|αz,t |. Thus, at the end of thet-th step, the state of the

first run is |φt〉, whereas the state of the second run is|φt〉+ |Ft〉, where|||Ft〉|| ≤
√

2|αz,t |. Now if U is the unitary
transform describing the remainingT − t steps (of both runs), then the final state afterT steps for the two runs are
U |φt〉 andU(|φt〉+ |Ft〉), respectively. The latter state can be written asU |φt〉+ |Et〉, where|Et〉=U |Ft〉. Since unitary
transformations preserve length, we know that|||Et〉|| ≤

√
2|αz,t |. Thus, the effect of switching the queried function

only on thet-th step can be described by an “error”|Et〉 in the final state of the algorithm, where|||Et〉|| ≤
√

2|αz,t |.

We can transform the runA f to Ag by a succession ofT changes of the kind described above. Overall, the difference

between the final states ofA f andAg is |E0〉+ |E1〉+ . . .+ |ET−1〉, where‖|Et〉‖ ≤
√

2|αz,t |.

Finally, it is useful to consider where this factor of
√

N comes from. In the worst case, we queryz with amplitude
1/

√
N at each time step. The vectors that indicate the differencesat each step could all be orthogonal, in which case

the total distance is the sum of the squares of each vector’s length, which is aboutN. However, if all vectors are in
the same direction, the total distance is the sum of the length of each vector, which is approximately

√
N. Grover’s

1The Cauchy-Schwarz inequality says that for two vectorsa andb of lengthT , (∑t atbt)
2 ≤

(

∑t a2
t

)(

∑t b2
t

)

. If we let bt = 1 for all t, then we

have(∑t at)
2 ≤ T ∑t a2

t . Thus, if∑t |αz,t |2 ≤ T/N, then
(

∑t |αz,t |
)2 ≤ T 2/N.

CS 294-2, Fall 2004, Lecture 10 0-2

|a〉

|ψ0〉 = 1√
N ∑N

x=1 |x〉

|e〉

2θ

θ
φ

θ +φ

|v〉

|v′〉

Figure 0.1: To rotate|v〉 by 2θ to |v′〉, we reflect around|e〉 and then reflect around|ψ0〉.

algorithm, which we will describe next, demonstrates that it is possible to align all of these vectors and achieve the
factor of

√
N.

0.0.4 Grover’s algorithm

Grover’s algorithm findsa in O(
√

N) steps. Consider the two dimensional subspace that consistsof two states:|a〉
and|ψ0〉 = ∑x

1√
N
|x〉. Let θ be the angle between|ψ0〉 and|e〉, where|e〉 is the vector that is orthogonal to|a〉 in the

direction of|ψ0〉 in this subspace. See Figure?? for an illustration of these vectors.

|a〉 is the target, so we want to increaseθ . But how?

One way to rotate a vector is to make two reflections. In particular, we can rotate a vector|v〉 by 2θ by reflecting about
|e〉 and then reflecting about|ψ0〉. This transformation is also illustrated in Figure??.

Each step of our algorithm is a rotation by 2θ (we discuss the implementation below). This means that we need π/2
2θ

iterations for the algorithm to complete. Now, what’sθ?

〈ψ0|a〉 = cos(π/2−θ) = sin(θ) =
1√
N

Since sinθ ≈ θ , we know thatθ ≈ 1√
N

. Thus, we needO(
√

N) iterations for the algorithm to complete. In the end,

we get very close to|a〉, and then with high probability, a measurement of the state yieldsa.

How do you implement the two reflections?

1. Reflection about|e〉 is easy. All we need to do is flip the phase of the component in the direction of|a〉; to
accomplish this, we just use the second implementation off that we showed earlier.

CS 294-2, Fall 2004, Lecture 10 0-3

2. For the reflection about|ψ0〉, we use the Diffusion operatorD (assumeN = 2n), which works as follows. First,
apply H2n , which maps|ψ0〉 7→ |00. . .0〉. Then reflect around|00. . .0〉. Finally, applyH2n to return to the
original basis. (Note that this is simply a reflection aroundthe zero vector in the Hadamard basis.)

CS 294-2, Fall 2004, Lecture 10 0-4

