Carnegie Mellon University Computer Science technical report CMU-CS-91-140R

Dyad: A System for Using
Physically Secure Coprocessors

J. D. Tygar Bennet Yee

May 4, 1991
CMU-CS-91-140R

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Sponsored by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-
6543 under Contract F33615-90-C-1465, ARPA Order No. 7597. Additional support for
J. D. Tygar was provided in part under a Presidential Young Investigator Award, Contract
No. CCR-8858087.

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the US Government.



Abstract

The Dyad project at Carnegie Mellon University is using physically secure
coprocessors to achieve new protocols and systems addressing a number of
perplexing security problems. These coprocessors can be produced as boards
or integrated circuit chips and can be directly inserted in standard worksta-
tions or PC-style computers. This paper presents a set of security problems
and easily implementable solutions that exploit the power of physically secure
coprocessors: (1) protecting the integrity of publicly accessible workstations,
(2) tamper-proof accounting/audit trails, (3) copy protection, and (4) elec-
tronic currency without centralized servers. We outline the architectural
requirements for the use of secure coprocessors.



1 Introduction and Motivation

The Dyad project at Carnegie Mellon University is using physically secure
coprocessors to achieve new protocols and systems addressing a number of
perplexing security problems. These coprocessors can be produced as boards
or integrated circuit chips and can be directly inserted in standard worksta-
tions or PC-style computers. This paper presents a set of security problems
and easily implementable solutions that exploit the power of physically secure
COPTOCESSOTS.

Standard textbook treatments of computer security assert that physi-
cal security is a necessary precondition to achieving overall system security.
While meeting this condition may seem reasonable for yesterday’s computer
centers with their large mainframes, it is no longer so easy today. Many of to-
day’s computer facilities consist of workstations within offices or of personal
computers arranged in “public access” clusters, all of which are networked to
file-servers. In situations like these where computation is distributed, phys-
ical security is very difficult if not impossible to realize. Neither computer
clusters, nor offices, nor networks are secure against intruders. An even more
difficult problem is posed by a user who may wish to subvert his own ma-
chine; for example, a user who wishes to gain read access to an executable
program which is nominally copy protected by being denoted “execute only.”
By making the processing power of workstations widely and easily available,
we’ve also made the system hardware accessible to casual interlopers. How
do we remedy this?

Researchers have realized the vulnerability of network wires and have
brought the tools from cryptography to bear on the problem of non-secure
communication networks, and this has led to a variety of key exchange and
authentication protocols [36, 54, 48, 20,47, 39, 15, 16, 55] for use with end-to-
end encryption to provide privacy on network communications. Others have
noted the vulnerability of workstations and their disk storage to physical
attacks in the office workstation environments, and this has led to a variety of
secret sharing algorithms for protecting data from isolated attacks [24, 44, 50].
Also, tools from the field of consensus protocols can be applied as well[24].
These techniques, while powerful, still depend on some measure of physical
security.

Cryptography allows us to slightly relax our assumptions about physical
security; with cryptography we no longer need to assume that our network



is physically shielded. However, we still need to make strong assumptions
about the physical protection of hosts. We can not entirely eliminate the
need for physical security.

All security algorithms and protocols depend on physical security. Cryp-
tographic systems depend on the secrecy of keys, and authorization and
access control mechanisms crucially depend on the integrity of the access
control database. The use of physical security to provide privacy and in-
tegrity is the foundation upon which security mechanisms are built. With
the proliferation of workstations to the office and to open computation clus-
ters, the physical security assumption is no longer valid. The recent advent of
powerful lap-top machines only exacerbates this problem, since the machines
may be easily physically removed.

The gap between the reality of physically unprotected systems and this
assumption of physical security must be closed. With traditional mainframe
systems, the security firewall was between the users’ terminals and the com-
puter itself — the mainframe was the physically secure component in the
system.? With loosely administered, physically accessible workstations, the
security partition can no longer encompass the entire machine. Indeed, with
most commercially available workstations, the best that could be found is
a simple lock in the front panel which can be easily picked or bypassed —
there really is no physically secure component in these systems.

This paper discusses the use of physically secure processors to achieve
new, powerful solutions to system security problems. (Physically secure co-
processors were first introduced in [5].) A secure coprocessor embodies a
physically secure hardware module; it achieves this security by advanced
packaging technology[56]. We focus on systems and protocols that can ex-
ploit the physical shielding to achieve novel solutions to challenging problems.
There are many applications that need to use secure coprocessors:

1. Consider the problem of protecting the integrity of publicly accessible
workstations. For normal workstations or PCs, it is very easy to steal
or modify data and programs on the hard disks. Operating system
software could be modified to log keystrokes to extract encryption keys

!Even greater security would be achieved if the terminals were also secure, since oth-
erwise the users would have no assurances that their every keystroke aren’t being spied
upon.



that you may have used to protect data. There is no privacy nor in-
tegrity when the attacker may have had physical access to the machine,
even if we don’t allow the attacker to add Trojan horse hardware (e.g.,
a modified keyboard which logs keystrokes or a network interface board
which sends the system memory contents to the attacker).

. The problem of providing tamper-proof audit trails and accounting
logs is similar to that of workstation integrity, except that instead of
protecting largely static data (operating system kernels and system
programs) the goal is to make the generated logs unforgeable. For
normal workstations or PCs, nothing prevents attackers from modifying
system logs to erase evidence of intrusion. Similarly, secure system
accounting is impossible because nothing protects the integrity of the
accounting logs.

3. The problem of providing copy protection for proprietary programs is

also insoluble. Distributing software in encrypted form does not help,
since to run it the user’s machine must have the software decrypted
in its memory. Because we can not guarantee the integrity of the ma-
chine’s operating system, we have no assurances as to the privacy of
this in-memory copy of the software.

. Another difficult problem is that of providing electronic currency with-
out centralized control. Any electronic representation of currency is
subject to duplication — data stored in computers can always be
copied, regardless of how our software may chose to interpret them.
When electronic currency no longer remain on trusted, centralized
server machines, there is no way to guarantee against tampering.

Given that we can not trust the system software on our publicly ac-
cessible computers, any electronic currency on our machines might be
arbitrarily created, destroyed, or sent over a network to the attacker.
Alternatively, an untrustworthy user can record the state of his com-
puter prior to “spending” his electronic currency, after which he simply
resets the state of his computer to the saved state. Without a way to
securely manage currency, attackers may “print” money at will. Fur-
thermore, the attacker may take advantage of a partitioned network in
order to use the same electronic currency in transactions with machines



in different partitions. Since no communication is possible between
these machines, users (or computers acting as service-providers) have
no way to check for duplicity.

All of these problems are vulnerable to the same sort of physical attacks
which result in a loss of privacy and integrity. Any software protection system
crucially rely on the physical security of the underlying hardware and are
completely useless when the physical security assumption is violated.

We can, however, close the assumption /reality gap in computer security.
By adding physically secure coprocessors to computer systems, real, practi-
cal security systems can be built. Not only are secure coprocessors necessary
and sufficient for security systems to be built, placing the security partition
around a coprocessor is the natural model for providing security for worksta-
tions. Moreover, they are cost effective and can be made largely transparent
to the end user.

The rest of this paper presents an outline of the theory of secure copro-
cessors. Section 2 presents a model for physically secure coprocessors and
gives a number of platforms that use secure coprocessor technology. Section
3 discusses applications of secure coprocessors. Section 4 presents a hierarchy
of traditional and new approaches of physical security. Section 5 presents a
system architecture that allows secure coprocessors to be integrated in exist-
ing operating systems. Section 6 tackles the problem of authenticating the
presence of a secure coprocessor to users. Section 7 discusses previous work.

2 Secure Coprocessors

What do we mean by the term secure coprocessor? A secure coprocessor
is a hardware module containing (1) a CPU, (2) ROM, and (3) NVM (non-
volatile memory). This hardware module is physically shielded from penetra-
tion, and the I/0O interface to this module is the only means by which access
to the internal state of the module can be achieved. (Examples of packaging
technology are discussed later in this section.) Such a hardware module can
be used to store cryptographic keys without risk of release of those keys.
More generally, the CPU can perform arbitrary computations and thus the
hardware module, when added to a computer, becomes a true coprocessor.
Often, the secure coprocessor will contain special purpose hardware in addi-



tion to the CPU and memory; for example, high speed encryption/decryption
hardware may be used.

The packaging technology protects the secure coprocessor — we assume
that the coprocessor is packaged in such a way that physical attempts to
gain access to the internal state of the coprocessor will result in resetting the
state of the secure coprocessor (i.e., erasure of the NVM contents and CPU
registers). An intruder may break into a secure coprocessor and look inside
to see how it’s constructed; the intruder can not, however, affect or learn the
internal state of the secure coprocessor except through normal 1/O channels
or by forcibly resetting the entire secure coprocessor. The guarantees about
the privacy and integrity of non-volatile memory provide the foundations
needed to build security systems.

2.1 Physical Assumptions for Security

Our basic assumption is private and tamper-proof processing in a coproces-
sor. Just as attackers can exhaustively search cryptographic key spaces, it
may be possible to falsify the physical security hypothesis by expending enor-
mous resources (possibly feasible for very large corporations or government
agencies), but we will assume the physical security of the system as an axiom.
This is a physical work-factor argument, similar in spirit to intractability as-
sumptions of cryptography. Our secure coprocessor model does not depend
on the particular technology used to satisfy the work-factor assumption. Just
as cryptographic schemes may be scaled to increase the resources required to
penetrate a cryptographic system, current security packaging techniques may
be scaled or different packaging techniques may be employed to increase the
work-factor necessary to successfully bypass the physical security measures.

In Section 3, we will see examples of how we can build secure subsys-
tems running partially on a secure coprocessor by leveraging off the physical
security of the coprocessor.

2.2 Limitations of Model

Even though confining all computation within secure coprocessors would ide-
ally suit our security needs, in reality we can not — and should not — convert
all of our processors into secure coprocessors. There are two main reasons:



the first is the inherent limitations of the physical security techniques in pack-
aging circuits, and the second is the need to keep the system maintainable.
Fortunately, as we shall see in Section 3, we do not need the entire computer
to be physically shielded. It suffices to have only a portion of the computer
be physically protected.

Current packaging technology limits us to approximately one printed cir-
cuit board in size due to heat dissipation and other concerns. Future develop-
ments may eventually relax this and allow us to make more of the solid-state
components of a multiprocessor workstation physically secure, perhaps an en-
tire card cage; the security problems of external mass storage and networks,
however, will in all likelihood remain a constant.

While it may be possible to securely package an entire multiprocessor in
a physically secure manner, it is likely to be impractical and is unnecessary
besides. If we can obtain similar functionalities by placing the security con-
cerns within a single coprocessor, we can avoid the cost of making all the
processors (in multiprocessors) secure.

Making a system easy to maintain means using a modular design. Once
a hardware module is encapsulated in a physically secure package, disassem-
bling the module to fix or replace some component will probably be very
difficult if not impossible. Moreover, packaging considerations as well as
the extra hardware development time required implies that the technology
used within a secure coprocessor may lag slightly behind the technology used
within the host system — perhaps by one generation. The right balance be-
tween physically shielded and unshielded components will depend on the class
of applications for which the system is intended. For many applications, only
a small portion of the system must be protected.

2.3 Potential Platforms

Several real instances of physically secure processing exist. This subsection
describes some of these platforms, giving the types of attacks which these
systems are prepared against, and the limitations placed on the system due
to the approaches taken to protect against physical intrusion.

The pABYSS [56] and Citadel [58] systems provide physically security
by employing board-level protection. The systems include an off-the-shelf
microprocessor, some non-volatile (battery backed) memory, as well as special
sensing circuitry which detects intrusion into a protective casing around the



circuit board. The security circuitry erases the non-volatile memory before
attackers can penetrate far enough to disable the sensors or to read the
memory contents from the memory chips. The Citadel system expands on
pABYSS, incorporating substantially greater processing power; the physical
security mechanisms remain identical.

Physical security mechanisms must protect against many types of physical
attacks. In the pABYSS and Citadel systems, it is assumed that in order
for intruders to penetrate the system, they must be able to probe through
a hole of one millimeter in diameter (probe pin voltages, destroy sensing
circuitry, etc). To prevent direct intrusion, these systems incorporate sensors
consisting of fine (40 gauge) nichrome wire, very low power sensing circuits,
and a long life-time battery. The wires are loosely wrapped in many layers
about the circuit board and the entire assembly is then dipped in a potting
material. By loosely wrapping the wires before embedding in epoxy, the
wire positions are dense and yet randomized, and the sensing electronics can
detect open circuits or short circuits in the wires and erase the non-volatile
memory. It is assumed that physical intrusion by mechanical means (e.g.,
drilling) can not penetrate the epoxy without breaking one of these wires.

Another physical attack is the use of solvents to dissolve the potting
material to expose the sensor wires. To block this attack, the potting material
is designed to be chemically “stronger” than the sensor wires. This implies
that solvents will destroy at least one of the wires — and thus create an open-
circuit condition — before the intruder can bypass the potting material and
access the circuit board.

The next physical attack is the low temperature attack. Semiconductor
memories retain state at very low temperatures even without power, so an
attacker could freeze the secure coprocessor to disable the battery and then
extract the memory contents at leisure. This attack is quite simply blocked,
however, by the addition of a temperature sensor which permits the physical
protection circuitry to erase secrets before the low temperature can disable
it. The system must have enough thermal mass to prevent quick freezing —
by being dipped into liquid nitrogen or helium, for example — so this places
some limitations on the minimum size of the system.

The next step in sophistication is the high powered laser attack. Here,
the idea is that by employing a high powered (UV) laser it may be possible
to cut through the protective potting material and selectively cut a run on
the circuit board or destroy the battery before the sensing circuitry has time



to react. To protect against this attack, alumina or silica is added to the
epoxy potting material which causes it to absorb UV — the generated heat
will cause mechanical stress, which will cause one or more of the sensing wires
to break.

Instead of the board level approach, physical security can be provided for
smaller, chip level packages. The NSA’s proposed DES replacement (Black
boxes [38]) is a special purpose encryption chip. The IC is designed in such a
way that key information (and perhaps other important encryption parame-
ters — the encryption algorithm is supposed to be secret as well) are destroyed
when attempts are made to open the IC chip packaging. The types of attacks
which this can withstand is unknown.

Another approach to physically secure processing can be seen in the
idea of using smart-cards.[31] A smart-card essentially consists of credit-size
micro-computer which can be carried in a wallet. While the processor is lim-
ited by size constraints and thus is not as powerful as that found in board-
level systems, no special sensing circuitry is necessary since physical security
is maintained by the virtue of its portability. Users may carry their smart-
cards with them at all times and can provide the necessary physical security.
Authentication techniques for smart-cards have been widely studied [31, 1].

These platforms and their implementation parameters together provide
the technology envelope within which secure coprocessor hardware will likely
reside and this envelope will provide constraints on what class of algorithms
are reasonable. As more computation power move into lap-top computers
and smart-cards and better physical protection mechanisms are devised, this
envelope will grow larger with time.

3 Applications

Because secure coprocessors can process secrets as well as store them, they
can do much more than just keep secrets secret. We can use the ability to
compute privately to perform many security related tasks, including (1) host
integrity verification, (2) tamper proof audit trails, (3) copy protection, and
(4) electronic currency. None of these are realistically possible on physically
exposed machines.



3.1 Host Integrity Check

The problem of Trojan horse programs date back to the 1960s if not earlier.
Fake login programs are the most common, though games and fake utili-
ties are popular for setting up back-doors as well. Worse, computer viruses
exacerbates the problem of host integrity — the system may easily be inad-
vertently corrupted during normal use.

The host integrity problem can be ameliorated partially by guaranteeing
that all programs have been inspected and approved by a trusted authority,
but this is at best an incomplete solution. With computers getting smaller
and workstations often physically accessible in public computer clusters, at-
tackers can easily bypass any logical safeguards to modify the disks. How
can you tell if even the operating system kernel is correct? The integrity
of the computer needs to be verified. The integrity of the kernel image and
system utilities stored on disk must be verified to be unaltered since the last
system release.?

There are two main cases to examine. The first is that of stand-alone
workstations that are not connected to any networks, and the second is that of
a networked workstations with access to distributed services such as AFS[53]
or Athena[3]. While publicly accessible stand-alone workstations have fewer
avenues of attack, there are also fewer options for countering attacks as well.
We will examine both cases concurrently in the following discussion.

One model which solves the host integrity problem is that of using a secure
coprocessor to perform the necessary integrity checks. Because of the privacy
and integrity guarantees on secure coprocessor memory and processing, we
can use a secure coprocessor to check the integrity of the host’s state at boot-
up and have confidence in the results. At boot time, the secure coprocessor
is the first to gain control of the system and can decide whether to allow the

ZSufficiently sophisticated hardware emulation can fool both users and any integrity
checks. If an attacker replaced a disk controller with one which would provide the expected
data during system integrity verification but would return Trojan horse data (system pro-
grams) for execution, there would be no completely reliable way to detect this. Similarly,
it would be very difficult to detect if the CPU were substituted with one which fails to cor-
rectly run specific pieces of code in the OS protection system. One limited defense against
hardware modifications is to have the secure coprocessor do behavior and timing checks
at random intervals. There is no absolute defense against this form of attack, however,
and the best that we can do is to make such emulation difficult and force the hardware
hackers to more perfectly build Trojan horse hardware.



host CPU to continue by first checking the disk-resident bootstrap program,
operating system kernel, and all system utilities for evidence of tampering.

The cryptographic checksums of system images must be stored in the se-
cure coprocessor’s NVM and protected against modification, and, depending
on the cryptographic checksum algorithm chosen, exposure. Of course, tables
of cryptographic checksums can be paged out to host memory or disk after
first checksumming and encrypting them within the secure coprocessor; this
can be handled as an extension to normal virtual memory paging. Since the
integrity of the cryptographic checksums is guaranteed by the secure copro-
cessor, we can detect any modifications to the system objects and thus are
protected against attacks on the external storage.

One alternative model that some people have proposed is to just eliminate
external storage for networked workstations — use trusted file-servers and
access a remote, distributed file-system for all external storage. Any paging
needed to implement virtual memory also goes across the network to a trusted
server with disk storage.

What are the difficulties with this model? First, note that non-publicly
readable files and virtual memory pages must be encrypted before being
transferred over the network and so some hardware support is probably re-
quired anyway for performance reasons. Furthermore, the model suffers from
the problem that the workstation must be able to authenticate the identity
of these trusted file-servers (the host-to-host authentication problem). Since
the workstation can not keep secrets, we can not use shared secrets to encrypt
and authenticate data between the workstation and the file-servers. The best
that we can do is to have the file-servers use public key cryptography to cryp-
tographically sign the kernel image when we boot over the network, but we
must be able to store the public keys of the trusted file-servers somewhere.
With exposed workstations, there’s no safe place to store them. Attackers
can always modify the public keys (and network addresses) of the file-servers
so that the workstation would contact a false server. Obtaining public keys
from some external key server only pushes the problem one level deeper —
the workstation would need to authenticate the identity of the key server,
and attackers need only to modify the stored public key of the key server.

If we page virtual memory over the network (which we assume is not
secure), the problem becomes only worse. Nothing guarantees the privacy or
integrity of the virtual memory as it is transferred over the network. If the
data is transferred in the clear, an attacker can simply record network packets

10



to break privacy and modify/substitute network traffic to destroy integrity.
Without the ability to keep secrets, encryption is useless for protecting their
memory — attackers can obtain the encryption keys by physical means and
destroy privacy and integrity as before.

A second alternative model which is a partial solution to the host integrity
problem is to use a secure boot floppy containing system integrity verification
code to bring machines up. Let’s first look at the assumptions involved
here. First, note that we are assuming that the host hardware has not been
compromised. If the host hardware has been compromised, the “secure” boot
floppy can easily be ignored or even modified when used, whereas secure
coprocessors can not. The model of using a secure removable media for
booting assumes that untrusted users get a (new) copy of a master boot
floppy from the trusted operators each time a machine is rebooted from an
unknown state. Users must not have access to the master boot floppy since
it must not be altered.

What problems are there? Boot floppies can not keep secrets — encryp-
tion does not help, since the workstation must be able to decrypt them and
workstations can not keep secrets (encryption keys) either. The only way to
assure integrity without completely reloading the system software is to check
it by checking some kind of cryptographic checksum on the system images.

There are a variety of cryptographic checksum functions available, and
all obviously require that the integrity of the checksums for the “correct”
data be maintained: when we check the system images on the disk of a
suspect workstation, we must recompute new checksums and compare them
with the original ones. This is essentially the same procedure as that used
for secure coprocessors, except that instead of providing integrity within a
piece of secure hardware we use trusted operators instead. The problem then
becomes that of making sure that operators and users follow the proper se-
curity procedures. Requiring that users obtain a fresh copy of the integrity
check software and data each time they need to reboot a machine is cumber-
some. Furthermore, requiring a centralized database of all the software that
requires integrity checks for all versions of that software on the various ma-
chines will be another management nightmare and that centralized database
becomes a central point of attack. Destroying this database will deny service
to anybody who wishes to securely bootstrap their machine.

Beyond simplifying the procedural security involved in using special boot
floppies in host integrity verification, secure coprocessors also greatly sim-

11



plifies the problem of system upgrades. This is especially important when
there are large numbers of machines on a network: systems can be securely
upgraded remotely through the network. Furthermore, it’s easy to keep the
system images encrypted while being transferred over the network and while
resident on secondary storage. This provides us with the ability to keep
proprietary code protected against most attacks. As noted below in Section
3.3, we can run (portions of ) the proprietary software only within the secure
coprocessor, allowing vendors to have execute-only semantics — proprietary
software need never appear in the clear outside of a secure coprocessor.

Both secure coprocessors and secure boot floppies can be fooled by a suffi-
ciently faithful emulation of the system which simulates a “normal” disk dur-
ing integrity checks. Secure coprocessors allow us to employ more powerful
integrity check techniques to provide better security. Furthermore, careless
use (i.e., reuse) of boot floppies becomes another channel of attack — boot
floppies can easily be made into viral vectors.

Along with integrity secure coprocessors offer privacy; this property al-
lows the use of a wider class of cryptographic checksum functions. There
are many cryptographic checksum functions that might be used, including
Rivest’s MD5 [46], Merkle’s Snefru [32], IBM’s MDC [25, 26], chained DES,
and Karp and Rabin’s family of fingerprint functions[28]. All of these re-
quire integrity; the last three require privacy of keys. The strength of these
rely on the difficulty of finding collisions — two different inputs with the
same checksum. The intractability arguments for the first four of these are
based on conjectured numbers of bit operations required to find collisions,
and so are weak with respect to theoretical foundations. MDC, chained DES,
and the fingerprint functions also keep the identity of the particular check-
sum function used secret — with MDC and DES it corresponds to keeping
encryption keys (which select particular encryption functions) secret, and
with fingerprint functions it corresponds to keeping a irreducible polynomial
(which defines the fingerprint function) secret. DES, of course, is less well
understood than the Karp-Rabin functions.

The secrecy requirement of MDC, chained DES, and Karp-Rabin func-
tions is a stronger assumption which can be provided by a secure coprocessor
and it allows us to use cryptographic functions with better theoretical un-
derpinnings, thus improving the bounds on the security provided. Secrecy,
however, can not be provided by a boot floppy. The Karp-Rabin fingerprint
functions are superior to chained DES in that it is much faster and much

12



easier to implement (thus the implementation is less likely to contain bugs),
and there are no proven strong lower bounds on the difficulty of breaking
DES.

Section 5.1 discusses the details of host integrity check as it relates to
secure coprocessor architectural requirements, and Section 5.4 discusses how
system upgrades would be handled by a secure coprocessor. Also relevant
is the problem of how can the user know if a secure coprocessor is running
properly in a system; Section 6 discusses this.

3.2 Anudit Trails

In order to properly perform system accounting and to provide data for trac-
ing and detecting intruders on the host system, audit trails must be kept in a
secure manner. First, note that the integrity of the auditing and accounting
logs can not be completely guaranteed (since the entire physically accessi-
ble machine, including the secure coprocessor, may be destroyed). The logs,
however, can be made tamper evident. This is quite important for intrusions
detection — forging system logs to eliminate evidence of penetration is one
of the first things that a system cracker will attempt to do. The privacy and
integrity of the system accounting logs and audit trails can be guaranteed
(modulo the destruction of the secure coprocessor) simply by holding them
inside the secure coprocessor. It is undesirable, however, to have to keep
everything inside the secure coprocessor since accounting and audit logs can
grow very large and resources within the secure coprocessor are likely to be
tight. Fortunately, it is also unnecessary.

To provide secure logging, we use the secure coprocessor to seal the data
against tampering with one of the cryptographic checksum functions dis-
cussed above and write the logging information out to the file-system. The
sealing operation must be performed within the secure coprocessor, since all
keys used in this operation must be kept secret. By later verifying these
cryptographic checksums we make the log data tamper evident, since the
probability that an attacker can forge logging data to match the old data’s
checksums is astronomically low. This technique reduces the secure copro-
cessor storage requirement from large logs to just the cryptographic keys
and checksums, typically several words per page of memory. If the space re-
quirement for the keys and checksums is still too large, they can be similarly
written out to secondary storage after being encrypted and checksummed by

13



master keys.

Additional cryptographic techniques can be used for the cryptographic
sealing, depending on the system requirements. Cryptographic checksums
can provide the basic tamper detection and is sufficient if only integrity of
the logs is needed. If the accounting and auditing logs may contain sensitive
information, privacy can be provided by using encryption. If redundancy is
required, techniques such as secure quorum consensus [24] and secret sharing
[50] may be used to distribute the data over the network to several machines
without greatly expanding the space requirements.

3.3 Copy Protection

A common way of charging for software is that of licensing the software on
a per CPU, per site, or per use basis. A typical requirement of software
licenses is the prohibition against making copies for use on other unlicensed
machines. Without a secure coprocessor, this injunction against copying is
unenforceable. If the user can execute the code on any physically accessi-
ble workstation, the user can also read that code. Even if we assume that
attackers can not read the workstation memory while it’s running, we are
implicitly assuming that the workstation was booted correctly — verifying
this property, as discussed above, requires the use of a secure coprocessor.
When secure coprocessors are added to a system, however, we can quite
easily protect executables from being copied and illegally utilized by attack-
ers. The proprietary code to be protected — or at least some critical portion
of it — can be distributed and stored in encrypted form, so copying it with-
out obtaining the code decryption key is useless.> Public key cryptography
may be used to encrypt the entire software package or a key for use with a
private key system such as DES. When a user pays for the use of a program,
a digitally signed certificate of the public key used by his secure coprocessor
is sent to the software vendor. This certificate is signed by a key management
center verifying that a given public key corresponds to a secure coprocessor,
and is prima facie evidence that the public key is valid. The corresponding

3Allowing the encrypted form of the code to be copied means that we can backup the
workstation against disk failures. Even giving attackers access to the backup tapes will not
release any of the proprietary code. Note that our encryption function should be resistant
to known plaintext attacks, since executable binaries typically have standardized formats.

14



private key is stored only within the NVM of the secure coprocessor; thus,
only the secure coprocessor will have full access to the proprietary software.

Because the protected code is decrypted only within the secure copro-
cessor, the secure coprocessor resident portion can exercise complete control
over whether running the remainder of the code will be useful. The secure
coprocessor resident code should not, of course, consist of just access control
but rather must also include critical proprietary code — it will be the cost
of replicating this code from specifications that will deter attackers.

If there is insufficient memory within the secure coprocessor to hold the
critical proprietary code and run-time data used by the software, simple
cryptographic paging may be employed where pages are encrypted before
being sent to secondary storage and decrypted as it is read back into secure
coprocessor memory. (Cryptographic hardware has progressed to the point
where it is possible to implement cryptographic paging without unacceptable
overheads.)

A simpler version of the copy protection application for secure coproces-
sors originally appeared in [57].

3.4 Electronic Currency

With the ability to keep licensed proprietary software encrypted and have
execute-only semantics, a natural application would be to allow pay-per-use
semantics. In addition to controlling access to the software according to the
terms of software licenses, some mechanism must be available to perform cost
accounting, whether it is just keeping track of the number of times a program
has run or keeping track of dollars in the users” account. More generally, this
accounting software provides an electronic currency abstraction. Correctly
implementing electronic currency requires that account data be protected
against tampering — if we can not guarantee integrity, attackers would be
able to create electronic money at will. Privacy, while perhaps less important
here, is a property that users expect to hold for their bank balance and wallet
contents; similarly, electronic money account balances should also be private.

There are several models that can be adopted for handling electronic fund.
The first is the cash analogy. Electronic funds are treated as cash and have
the same properties: (1) exchanges of cash can be effectively anonymous, (2)
cash can not be created or destroyed, (3) cash exchanges require no central
authority. (Note that these properties are not absolute even with cash —

15



serial numbers can be recorded to trace transactions, and the U. S. Treasury
regularly prints and destroys money.)

The second model is that of a credit cards/checks analogy. Electronic
funds are not transferred directly; rather, promises of payment — perhaps
cryptographically signed to prove authenticity — are transferred instead. A
straight forward implementation of this model fails to exhibit any of the
three properties above; by applying cryptographic techniques[9], anonymity
can be achieved, but the latter two requirements remain insurmountable.
Checks must be signed and validated at central authorities (banks), and
checks/credit payments en route “creates” temporary money. Furthermore,
the potential for reuse of cryptographic signed checks requires that the payee
must be able to validate the check with the central authority prior to com-
mitting in a transaction.

The third model is analogous to a rendezvous at the bank. This model
uses a centralized authority to authenticate all transactions and so is even
worse for large distributed applications. However, this scheme — and to
some extent the previous one — makes the problem of security less difficult.
The bank is the sole arbiter of the account balance and can easily implement
the access controls needed to ensure privacy and integrity of the data. This
is essentially the model used in Electronic Funds Transfer (EFT) services
provided by many banks — there are no access restrictions on deposits into
accounts, so only the depositor for the source account need to be authenti-
cated.

Let us examine these models one by one. What sort of properties must
electronic cash have? The ability to easily transfer money from one account
to another is an obvious one. Another is that electronic money must not
be allowed to be “created” or “destroyed” by any but for a very few trusted
users who regulate the electronic version of the Treasury.

With electronic currency, integrity of the accounts data is crucial. Using
the privacy assumption we can establish a secure communication channel
between two secure coprocessors by using a key exchange cryptographic pro-
tocol and thus maintain privacy when transferring funds. To ensure that
electronic money is conserved (neither created nor destroyed), the transfer of
funds should be failure atomic, i.e., the transaction must terminate in such
a way as to either fail completely or fully succeed — transfer transactions
can not terminate with the source balance decremented without having in-
cremented the destination balance or vice versa. By running a transaction

16



protocol such as two-phase commit [11, 7, 59] on top of the secure channel,
the secure coprocessors can transfer electronic funds from one account to an-
other in a safe manner, providing privacy as well as ensuring that money is
conserved throughout. With most transaction protocols, some “stable stor-
age” for transaction logging is needed to enable the system to be restored
to the state prior to the transaction when a transaction aborts. On large
transaction systems this typically has meant mirrored disks with uninter-
ruptible power supplies. With the simple transfer transactions here, the
per-transaction log typically is not that large, and the log can be truncated
once transactions commit. Because secure coprocessors need to handle only
a handful of users, large amounts of stable storage should not be needed —
because we have non-volatile memory in secure coprocessors, we only need
to reserve some of this memory for logging. The log, the accounts data, and
the controlling code are all protected by the secure coprocessor from modifi-
cation, so account data are safe from all but bugs and catastrophic failures.
Of course, the system should be designed so that users should have little or
no incentive to destroy secure coprocessors that they can access — which
should be natural when their own balances are stored on secure coprocessors
much as cash in wallets.

Note that this type of decentralized electronic currency is not appropri-
ate for smart cards unless they can be made physically secure from attacks
by their owners. Smart cards are only quasi-physically-secure in that their
privacy guarantees stem solely from their portability. Secrets may be stored
within smart cards because their users can provide the physical security nec-
essary. Malicious users, however, can easily violate smart card integrity and
insert false data.

If there is insufficient memory within the secure coprocessor to hold the
account data for all its users, the code and the accounts database may be
cryptographically paged to host memory or disk by first obtaining a crypto-
graphic checksum. For the accounts data, encryption may also be employed
since privacy is typically desired as well. The same considerations as those
for checksums of system images apply here as well.

This electronic currency transfer is analogous to the transfer of rights (not
to be confused with the copying of rights) in a capability based protection
system. Using the electronic money — e.g., expended when running a pay-
per-use program — is analogous to the revocation of a capability.

What about the other models of handling electronic funds? With the

17



credit card/check analog, the authenticity of the promise of payment must
be established. When the computer can not keep secrets for users, there can
be no authentication because nothing uniquely identifies users. Even when
we assume that users can enter their passwords into a workstation without
having the secrecy of their password be compromised, we are still faced with
the problem of providing privacy and integrity guarantees for network com-
munication. We have similar problems as in host-to-host authentication in
that cryptographic keys need to be exchanged somehow. If communications
is in the clear, attackers may simply record a transferral of a promise of pay-
ment and replay it to temporarily create cash. While security systems such
as Kerberos[54], if properly implemented, can help to authenticate entities
and create session keys, we’ve reverted again to the use of a centralized server
and we’ve done no better than the bank rendezvous model.

With the bank rendezvous model, the “bank” supervises the transfer of
funds. While it is easy to enforce the access controls on account data, this
suffers from problems with non-scalability, loss of anonymity, and easy denial
of service from excessive centralization.

Because every transaction must contact the bank server, access to the
bank service will be a performance bottleneck. The system does not scale
well to a large user base — when the bank system must move from run-
ning on a single computer to a several machines, distributed transaction
systems techniques must be brought to bear anyway, so this model has no
real advantages over the use of secure coprocessors in ease of implementa-
tion. Furthermore, denying access to the bank host, whether by crashing
it directly, by cutting network feeds to it, or just due to normal hardware
failures, means that nobody can make use of any bank transfers. This model
does not exhibit graceful degradation with system failures.

The secure coprocessor managed electronic currency model not only can
provide the properties of (1) anonymity, (2) conservation, and (3) decentral-
ization but it also degrades gracefully when secure coprocessors fail. Note
that secure coprocessors data may be mirrored on disk and backed up af-
ter being properly encrypted, and so even the immediately affected users
of a failed secure coprocessor should be able to recover their balance. The
security administrators who initialized the secure coprocessor software will
presumably have access to the decryption keys for this purpose — careful
procedural security must be required here. The amount of redundancy and
the frequency of backups depends on the reliability guarantees desired; in re-

18



liable systems secure coprocessors may continually run self-checks when idle
and warn of impending failures.

4 Security Partitions In Networked Hosts

Network hosts, regardless of whether they use cryptography, have a de facto
security partitioning that arises because different system components have
different vulnerabilities to various attacks. Some of these vulnerabilities di-
minish when cryptography is used; similarly, the use of a secure coprocessor
can be thought of as adding another layer with fewer vulnerabilities to the
partitioning. By bootstrapping our system using a secure coprocessor and
thus ensuring that the correct operating system is running, we can provide
privacy and integrity guarantees on memory that were not possible before.
In particular, public workstations can use secure coprocessors and cryptog-
raphy to guarantee the privacy of disk storage and provide integrity checks.
Let us see what we kind of privacy/integrity guarantees are already available
in the system and what new ones we can provide.

Subsystem Vulnerabilities
Integrity ‘ Privacy

Secure Coprocessor | None None

Host RAM On-line Physical | On-line Physical
Access Access

Secondary Store Off-line Physical | Off-line Physical
Access Access

Network On-line Remote | Off-line

(communication) Access Analysis

Table 1: Subsystem Vulnerabilities Without Cryptographic Techniques

Table 1 shows the vulnerabilities of various types of memory when no
cryptographic techniques are used. That memory within a secure coproces-
sor is protected against physical access is one of our axioms, and correctly
using that to provide privacy and integrity at the logical level is a matter of
using the appropriate software protection mechanisms. With the proper pro-
tection mechanisms within a secure coprocessor, data stored within a secure

19



coprocessor can neither be read or be tampered with. Since we assume that
we have a working secure coprocessor, we will also assume that the operating
system was booted correctly and thus host RAM is protected against unau-
thorized logical access.* It is not, however, well protected against physical
accesses — it is a simple matter to connect logic analyzers to the memory
bus to passively listen to memory traffic, and replacing the memory sub-
system with multi-ported memory and thus allowing remote unauthorized
memory accesses is not an implausible attack. While the effort required to
do this in a way that is invisible to users may make it impractical, this line
of attack can certainly not be entirely ruled out. Secondary storage may be
more easily attacked than RAM since the data can be modified off-line; to
do this, however, an attacker must gain physical access to the disk. Network
communication is completely vulnerable to on-line eavesdropping and off-line
analysis, as well as on-line message tampering. Since networks are inherently
used for remote communication, it is clear that these may be remote attacks.

What protection guarantees can we provide when we use encryption? By
using encryption when appropriate, we can guarantee privacy. Integrity of
the data, however, is not guaranteed. The same vulnerabilities which allowed
data modifications still exist as before; tampering, however, can be detected
by using cryptographic checksums as long as the checksum values are stored
in tamper-proof memory. Note also that the privacy that can be provided
is relative to the data usage. If data in host RAM is to be processed by
the host CPU, encrypting it within the secure coprocessor is useless — the
data must remain vulnerable to on-line physical attacks on the host since it
must appear in cleartext form to the host CPU. If the host RAM data is
simply serving as backing store for secure coprocessor data pages, however,
encryption is appropriate. Similarly, encrypting secondary store via the host
CPU protects that data against off-line privacy loss but not on-line attacks,
whereas encrypting that data within the secure coprocessor protects that
data against on-line privacy attacks as well, as long as that data need not
ever appear in cleartext form in the host memory.

“We can assume that the operating system provides protected address spaces. Paging
is assumed to be performed on either a local disk which is immune to all but physical
attacks or a remote disk via encrypted network communication (see Section 5.2). If we
wish to protect against physical attacks for the former case, we may need to encrypt the
data anyway or ensure that we can erase the paging data from the disk prior to shutting
down.

20



Subsystem Vulnerabilities

Integrity ‘ Privacy
Secure Coprocessor | None None
Host RAM On-line Physical Host Processor
Access Data

Secondary Store Off-line Physical None
Access (detectable)
Network On-line Remote None
(communication) Access (detectable)

Table 2: Subsystem Vulnerabilities With Cryptographic Techniques

For example, if we wish to send and read secure electronic mail, the
encryption and decryption can be performed in the host processor since the
data must reside within both hosts for the sender to compose it and for
the receiver to read it. The exchange of the encryption key used for the
message, however, requires secure coprocessor computation: the encryption
for the key exchange needs to use secrets that must remain within the secure
coprocessor, regardless of whether the key exchange uses a shared secret key

or a public key scheme.?

5 System Architecture

This section discusses one possible architecture for a secure coprocessor soft-
ware system. We will start off with a discussion of the constraints placed
upon a secure coprocessor by the operational requirements of a security sys-
tem — during system initialization and during normal, steady state operation.
We will next refine these constraints, examining various security functions
and what their assumptions imply about trade-offs in a secure coprocessor.
Following this, we will discuss the structure of the software in a secure co-
processor, ranging from a secure coprocessor kernel and its interactions with

5The public key encryption requires no secrets and may be performed in the host;
signing the message, however, requires the use of secret values and thus must be performed
within the secure coprocessor.

21



the host system to user-level applications.

5.1 Operational Requirements

We will start by examining how a secure coprocessor must interact with the
host hardware and software during the bootstrap process and then proceed
with the kinds of system services that a secure coprocessor should provide to
the host OS and user software.

The first issue to consider is how to fit a secure coprocessor into a system.
This will guide us in the specification of the secure coprocessor software.

To be sure that a system is bootstrapped securely, secure hardware must
be involved in the bootstrap process. Depending on the host hardware —
whether a secure coprocessor could halt the boot process if it detects an
anomaly — we may need to assume that the bootstrap ROM is secure (the
system’s address space either could be configured such that the boot vec-
tor and the boot code are provided by a secure coprocessor directly or we
may simply assume that the boot ROM itself is a piece of secure hardware).
Regardless, a secure coprocessor verifies the system software (OS kernel, sys-
tem related user-level software) by checking the software’s signature against
known values. We need to convince ourselves that the version of the soft-
ware present in external, non-secure, non-volatile store (disk) is the same as
that installed by a trusted party. Note that this interaction has the same
problems faced by two hosts communicating via a non-secure network: if an
attacker can completely emulate the interaction that the secure coprocessor
would have had with a normal host system, it is impossible for the secure co-
processor to detect this. With network communication, we can assume that
both hosts can keep secrets and build protocols based upon those secrets.
With secure coprocessor/host interaction, we can make very few assump-
tions about the host — the best that we can do is to assume that the cost
of completely emulating the host at boot time is prohibitively expensive.

At boot time, the primary duty of a secure coprocessor is to make sure
that the system boots up securely; after booting, a secure coprocessor’s role
is to aid the host OS by providing security functions not otherwise available.
A secure coprocessor does not enforce the system’s security policy — that is
the job of the host OS; since we know from the secure boot procedure that the
correct OS is running, we may rely on the host to enforce policy. When the
system is up and running, a secure coprocessor provides the following security

22



services to the host OS: the host may use the secure coprocessor to verity the
integrity of any data in the same manner that the secure coprocessor checks
the integrity of system software; it may use the secure coprocessor to encrypt
data to boost the natural security of storage media (see Section 4); and it
may use the secure coprocessor to establish secure, encrypted connections
with remote hosts (key exchange, authentication, private key encryption,
etc).

5.2 Secure Coprocessor Architecture

The bootstrapping procedure described above made assumptions about the
functionality provided by a secure coprocessor. Let us refine what require-
ments we have on the secure coprocessor software and hardware.

When a secure coprocessor verifies that the system software is the correct
version, we are assuming that a secure coprocessor has secure, tamper-proof
memory which remembers a description of the correct version of the system
software. If we assume that proposed functions such as MD5[46], multi-round
Snefru[32], or IBM’s MDC[25] are one-way hash functions, then the only re-
quirement is that the memory is protected from writing by unauthorized
individuals. Otherwise, we must use cryptographic checksums such as Karp
and Rabin’s technique of fingerprinting, which uses a family of hash func-
tions with good error detection capabilities. This technique requires that the
memory be protected against read access as well, since both the hash value
as well as the index selecting the particular hash function must be secret.
In a similar manner, cryptographic operations such as authentication, key
exchange, and secret key encryption all require secrets be kept, thus a secure
coprocessor must have memory that is inaccessible by everybody except the
secure coprocessor — enough private NVM to store the secrets, plus pos-
sibly volatile private memory for intermediate calculations in running the
protocols.

There are a number of architectural tradeoffs for a secure coprocessor, the
crucial dimensions being processor speed and memory size. They together
determine the class of cryptographic algorithms that are practical.

6Presumably the remote hosts will also contain a secure coprocessor, though everything
will work fine as long as the remote hosts follow the appropriate protocols. The final design
must take into consideration the possibility of remote hosts without secure coprocessors.

23



The speed of the secure coprocessor may be traded off for memory in the
implementation of the cryptographic algorithms. We observed in [55] that
Karp-Rabin fingerprinting may be sped up by about 25% with a 256 fold
table size increase. Intermediate size tables may be used to yield intermediate
speedups at a slightly higher increase in code size. Similar tradeoffs can be
found for software implementations of the DES.

The amount of real memory required may be traded off for speed by em-
ploying cryptographic techniques: we need only enough private memory for
an encryption key and for a data cache, plus enough memory for perform-
ing the encryption if no encryption hardware is present. Depending on the
throughput requirements, hardware assist for encryption may be included
— where software is used to implement encryption, private memory must
be provided for intermediate calculations. A secure coprocessor can securely
page its private memory to either the host’s physical memory (and perhaps
eventually to an external disk) by first encrypting it to ensure privacy. Cryp-
tographic checksums can provide error detection, and any error correcting
encoding should be done after the encryption. This cryptographic paging is
analogous with paging of physical pages to virtual memory on disk modulo
very different cost coefficients, and similar analysis techniques can be used to
tune such a system. The difference in costs will likely lead to vastly different
tradeoffs: cryptographic checksums are easier to calculate than encryption
(and therefore faster modulo hardware support), so providing integrity alone
is less expensive than providing privacy as well. On the other hand, if the
computation can reside entirely on a secure coprocessor, both privacy and
integrity can be provided for free.

5.3 Secure Coprocessor Software

With partitioned applications that must have parts loaded into a secure
coprocessor to run and perhaps paging of secure coprocessor tasks, a small,
simple security kernel is needed for the secure coprocessor. What makes this
kernel different from other security kernels is due to the partitioned system
structure.

Like normal workstation (host) kernels, the secure coprocessor kernel
must provide separate address space if vendor and user code is to be loaded
into the secure coprocessor — even if we implicitly trust vendor and user code,
providing separate address spaces helps to isolate the effects of programming

24



errors. Unlike the host’s kernel, many services are not required: terminal,
network, disk, and other device drivers need not be part of the secure co-
processor. Indeed, since both the network and disk drives are susceptible to
tampering, requiring their drivers to reside in the secure coprocessor’s kernel
is overkill — network and file-system services from secure coprocessor tasks
can simply be forwarded to the host kernel for processing. Normal OS ser-
vices such as printer service, electronic mail, etc are entirely inappropriate
in a secure coprocessor — these system daemons can be eliminated entirely.

The only services that are crucial to the operation of the secure coproces-
sor are (1) secure coprocessor resource management, (2) communications, (3)
key management, and (4) encryption services. Within resource management
we include task allocation and scheduling, VM allocation and paging, and
allocation of communication ports. Under communications we include both
communication among secure coprocessor tasks as well as communication to
host tasks; it is by communicating with host system tasks that proxy services
are obtained. Under key management we include the management of secrets
for authentication protocols, cryptographic keys for protecting data as well
as execute-only software, and system fingerprints for verifying the integrity
of system software. With the limited number of services needed, we can
easily envision using a micro-kernel such as Mach 3.0[22]: we need to add
a communications server and include a key management service to manage
non-volatile key memory. The kernel must be small for us to trust it; we
have more confidence that it can be debugged and verified.

5.4 Key Management

A core portion of the secure coprocessor software is code to manage keys.
Authentication, key management, fingerprints, and encryption crucially pro-
tect the integrity of the secure coprocessor software and the secrecy of private
data, including the secure coprocessor kernel itself. A permanent part of a
bootstrap loader, in ROM or in NVM, controls the bootstrap process of the
secure coprocessor itself. Like bootstrapping the host processor, this loader
verifies the secure coprocessor kernel before transferring control to it.

The system fingerprints needed for checking system integrity must reside
entirely in NVM or be protected by encryption while being stored on an
external storage device — the key for which must reside solely in the secure

25



NVM. If the latter approach is chosen, new keys must be selected” to pre-
vent replay attacks where old, potentially buggy secure coprocessor software
are reintroduced into the system. Depending on cryptographic assumptions
made in the algorithm, the storage of the fingerprint information may require
just integrity or both integrity and secrecy. For the cases of MD4, MDC, and
Snefru, integrity of the integrity check information is sufficient; for the case
of the Karp-Rabin fingerprint, both integrity and secrecy are required.

Other protected data held within the secure coprocessor’s NVM include
administrative authentication information that are needed to update the se-
cure coprocessor software. We assume that a security administrator is autho-
rized to upgrade secure coprocessor software, and that only the administrator
may authenticate his identity properly to the secure coprocessor. The au-
thentication data for this operation can be updated along with the rest of
the secure coprocessor system software; in either case, the upgrade must ap-
pear transactional, that is, it must have the properties of permanence, where
results of completed transactions are never lost; serializability, where there is
a sequential, non-overlapping view of the transactions; and failure atomicity,
where transactions either complete or fail such that any partial results are
undone. The non-volatility of the memory gives us permanence automati-
cally, if we assume that only catastrophic failures (or intentional sabotage)
can destroy the NVM; serializability, while important for multi-threaded ap-
plications, can be easily enforced if we permit a single upgrade operation to
be in progress at a time (this is an infrequent operation and does not require
parallelism); and the failure atomicity guarantee can be provided easily as
long as the non-volatile memory subsystem provides an atomic store opera-
tion. Update transactions need not be distributed nor nested; this simplifies
the implementation immensely.

6 Machine-User Authentication

With secure coprocessors, we can perform all the necessary security functions
to verify the integrity of the host system. The secure coprocessor may believe
that the host system is clean, but how is the user to be convinced of this?

“One way is to use a cryptographically secure random number generator the state of
which resides entirely in NVM

26



After all, the secure coprocessor within the computer may have been replaced
with a Trojan horse unit.

6.1 Smart-Cards

One solution to this is through the use of smart-cards. Users can use ad-
vanced smart-cards to run an authentication procedure to verify the secure
coprocessor’s identity. Since secure coprocessors’ identity-proofs can be based
on a zero-knowledge protocol, no secret information needs be stored in smart-
cards unless smart-cards are to also aid users in authenticating themselves
to systems, in which case the only secrets would be those belonging to the
users. By the virtue of their portability, users can carry smart-cards at all
times and thus provide the physical security needed.

6.2 Remote Services

Another way to verify that a secure coprocessor is present is to ask a third-
party entity — such as a physically sealed third-party computer — to check
for the user. Often, this service could also be provided by normal network
servers machines such as file-servers. The remote services must be difficult
to emulate by attackers. Users may rely on noticing the absence of these
services to detect that something is amiss with the secure coprocessor. This
necessarily implies that these remote services must be available before the
users authenticate to the system.

Unlike authentication protocols reliant on accessing central authentica-
tion servers, this authentication happens once, at boot time. The identity
being proven is that of the secure coprocessor — users may be confident that
the workstation contains an authentic secure coprocessor if access to any nor-
mal remote service can be obtained. This is because in order to successfully
authenticate to obtain the service, attackers must either break the authen-
tication protocol, break the physical security in the secure coprocessor, or
bypass the physical security around the remote server. As long as the re-
mote service is sufficiently complex, attackers will not be able to emulate
it.

27



7 Relationship With Previous Work

Partitioning security is not new. The method of embodying physical security
in a secure coprocessor, however, is new, and it has been made possible only
recently due to advances in packaging technology [56]. Certainly, the need for
physical security is widely described in standard textbooks — for example,
one book states “physical security controls (locked rooms, guards, and the
like) are an integral part of the security solution for a central computing
facility.”[18]

We can trace several analog to this approach of partitioning security in
previous work. The logical partitioning of security in the literature [13] of di-
viding the system into a “Trusted Computing Base” (TCB) and applications
in some sense heralds this idea — the security partition was firmly drawn
between the user and the machine; it not only included the logical security
of the operating system (OS) part of the TCB, but also the physical security
of the TCB hardware installation (machine rooms, etc).

Systems such as Kerberos [54] move that security partition for distributed
systems toward including just one trusted server behind locked doors. This
approach, however, still has serious security problems: client machines are
often physically exposed and users are provided with no real assurances of
their logical integrity, and the centralized server approach offers attackers
a central point of attack — the system catastrophically fails when the cen-
tral server is compromised[4]. Certainly, it does not offer much in terms of
providing fault tolerance with distributed computing.

More recently, the partitioning in Strongbox [55] more clearly points the
way toward minimizing the number of assumptions about trusted compo-
nents in a secure system and clearly defining the security partition bound-
aries and security assumptions. In that system, the base security system
was divided into trusted servers which, assuming protected address spaces,
allowed security to be bootstrapped to application servers and clients. Un-
fortunately, while the system has better degradation properties, it could de-
liver system integrity assurances only by assuming trusted-operator-assisted
bootstrapping. Table 3 shows the various types of systems and their basic
assumptions as well as typical cryptographic assumptions.

The secure coprocessor approach minimizes the basic assumptions and
can address all of the problems with the approaches cited above. By im-
plementing cryptographic protocols within a secure coprocessor, we can be

28



System Type Basic Assumptions Cryptographic
Assumptions

Conventional Physical Security DES can not

Non-distributed of Central Mainframe | be inverted

e.g., Unix password

Conventional Physical Security of DES can not

Distributed Authentication Server | be inverted

e.g., Kerberos

Self-Securing Physical Security of DES can not

Distributed a Quorum of White be inverted,

e.g. Strongbox Pages Servers factoring is hard

Secure Coprocessors | Physics DES can not

e.g. Dyad (Tampering destroys | be inverted,
cryptographic data) factoring is hard

Table 3: Basic Assumptions of Security Systems

assured that they will execute correctly and that the secrets required by the
various protocols are indeed kept secret. By using the secure coprocessor
to verify the integrity of the rest of the system, we can give users greater
assurance that the system has not been compromised and that the system
has securely bootstrapped.

In addition to the work mentioned above, there are many other works on
security related issues that are relevant: [57, 38] discusses issues in the design
and implementation of physically secure system components. Research on
cryptosystems and cryptographic protocols which are important tools for
secure network communication can be found in [47, 21, 36, 35, 39, 15, 2, 44,
16, 19, 49, 17, 50, 51, 6, 30, 54, 4, 24, 20, 10]. More general information on
some of the number theoretic tools behind many of these protocols may be
found in [34, 42, 37, 52]. The tools for checking data integrity are described
in [27, 40, 43, 28].

Research on protection systems and general distributed system security
may be found in [45, 41, 48].

[8] provides a logic for analyzing authentication protocols, and [23] ex-
tends the formalism.

29



General security/cryptography information can be found in [12] and the
government standards “Orange book” [13] and “Red book” [14]. General
information on cryptography can be found in [33, 29].

30



References

(1]

2]

(7]

M. Abadi, M. Burrows, C. Kaufman, and B. Lampson. Authentication
and delegation with smart-cards. Technical Report 67, DEC Systems
Research Center, October 1990.

W. Alexi, B. Chor, O. Goldreich, and C. P. Schnorr. RSA and Rabin
functions: Certain parts are as hard as the whole. SIAM Journal on

Computing, 17(2):194-209, April 1988.

E. Balkovich, S. R. Lerman, and R. P. Parmelee. Computing in higher
education: The Athena experience. Communications of the ACM,

28(11):1214-1224, November 1985.

S. M. Bellovin and M. Merritt. Limitations of the Kerberos authentica-
tion system. Submitted to Computer Communication Review, 1990.

Robert M. Best. Preventing software piracy with crypto-
microprocessors. In Proceedings of IEEKE Spring COMPCON 80, page
466, February 1980.

Manuel Blum and Silvio Micali. How to generate cryptographically
strong sequences of pseudo-random bits. SIAM Journal on Computing,

13(4):850-864, November 1984.

Andrea J. Borr. Transaction monitoring in Encompass (TM): Reliable
distributed transaction processing. In Proceedings of the Very Large
Database Conference, pages 155-165, September 1981.

Michael Burrows, Martin Abadi, and Roger Needham. A logic of authen-
tication. In Proceedings of the Twelfth ACM Symposium on Operation
Systems Principles, 1989.

David Chaum. Security without identification: Transaction systems to
make big brother obsolete. Communications of the ACM, 28(10):1030—
1044, October 1985.

Ben-Zion Chor. Two Issues in Public Key Cryptography: RSA Bit Secu-
rity and a New Knapsack Type System. ACM Distiguished Dissertations.
MIT Press, 1986.

31



[11] C.J. Date. An Introduction to Database Systems Volume 2. The System
Programming Series. Addison-Wesley, Reading, MA, 1983.

[12] Dorothy Denning. Cryptography and Data Security. Addison-Wesley,
1982.

[13] Computer Security Center Department of Defense. Department of De-
fense trusted computer system evaluation criteria, December 1985.

[14] Computer Security Center Department of Defense. Trusted network
interpretation, July 1987.

[15] W. Diffie and M. E. Hellman. New directions in cryptography. [EEE
Transactions on Information Theory, I'T-26(6):644-654, November 1976.

[16] Uriel Feige, Amos Fiat, and Adi Shamir. Zero knowledge proofs of iden-
tity. In Proceedings of the 19th ACM Symp. on Theory of Computing,
pages 210-217, May 1987.

[17] U. Fiege and A. Shamir. Witness indistinguishable and witness hid-
ing protocols. In Proceedings of the 22nd ACM Symp. on Theory of
Computing, pages 416-426, May 1990.

[18] Morrie Gasser. Building a Secure Computer System. Van Nostrand
Reinhold Co, New York, 1988.

[19] S. Goldwasser and M. Sipser. Arthur Merlin games versus zero interac-
tive proof systems. In Proceedings of the 17th ACM Symp. on Theory
of Computing, pages 59-68, May 1985.

[20] Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In Proceedings

of the Fourteenth Annual ACM Symposium on Theory of Computing,
1982.

[21] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. In Proceedings of the Seven-
teenth Annual ACM Symposium on Theory of Computing, May 1985.

32



[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

31]

32]

33]
[34]

David Golub, Randall Dean, Alessandro Forin, and Richard Rashid.
Unix as an Application Program. In Proceedings of the Summer 1990
USENIX Conference, pages 87-95, June 1990.

Nevin Heintze and J. D. Tygar. A critique of Burrows’, Abadi’s, and
Needham’s a logic of authentication. To Appear.

Maurice P. Herlihy and J. D. Tygar. How to make replicated data secure.
In Advances in Cryptology, CRYPTO-87. Springer-Verlag, August 1987.
To appear in Journal of Cryptology.

IBM Corporation. Common Cryptographic Architecture: Cryptographic
Application Programming Interface Reference, sc40-1675-1 edition.

R. R. Jueneman. Message authentication codes. IEEE Communications

Magazein, 23(9):29-40, Sep 1985.

Richard M. Karp. 1985 turing award lecture: Combinatorics, complex-
ity, and randomness. Communications of the ACM, 29(2):98-109, Febru-
ary 1986.

Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-
matching algorithms. Technical Report TR-31-81, Aiken Laboratory,
Harvard University, December 1981.

A. G. Konheim. Cryptography: A Primer. Wiley, 1981.

Michael Luby and Charles Rackoff. Pseudo-random permutation gener-
ators and cryptographic composition. In Proceedings of the 18th ACM
Symp. on Theory of Computing, pages 356-363, May 1986.

J. McCrindle. Smart Cards. Springer Verlag, 1990.

R. Merkle. A software one way function. Technical report, Xerox PARC,
March 1990.

C. Meyer and S. Matyas. Cryptography. Wiley, 1982.

G. L. Miller. Riemann’s hypothesis and a test for primality. Journal of
Computing and Systems Science, 13:300-317, 1976.

33



[35]

[36]

[38]

[39]

[40]

[41]

R. M. Needham. Using cryptography for authentication. In Sape Mullen-
der, editor, Distributed Systems. ACM Press and Addison-Wesley Pub-
lishing Company, New York, New York, 1989.

Roger M. Needham and Michael D. Schroeder. Using encryption for
authentication in large networks of computers. Communications of the
ACM, 21(12):993-999, December 1978. Also Xerox Research Report,
CSL-78-4, Xerox Research Center, Palo Alto, CA.

[. Niven and H. S. Zuckerman. An Introduction to the Theory of Num-
bers. Wiley, 1960.

R. G. Andersen. The destiny of DES. Datamation, 33(5), March 1987.

Michael Rabin. Digitalized signatures and public-key functions as in-
tractable as factorization. Technical Report MIT/LCS/TR-212, Lab-
oratory for Computer Science, Massachusetts Institute of Technology,
January 1979.

Michael Rabin. Fingerprinting by random polynomials. Technical Re-
port TR-81-15, Center for Research in Computing Technology, Aiken
Laboratory, Harvard University, May 1981.

Michael Rabin and J. D. Tygar. An integrated toolkit for operating
system security (revised version). Technical Report TR-05-87R, Cen-
ter for Research in Computing Technology, Aiken Laboratory, Harvard
University, August 1988.

Michael O. Rabin. Probabilistic algorithm for testing primality. Journal
of Number Theory, 12:128-138, 1980.

Michael O. Rabin. Probabilistic algorithms in finite fields. STAM Journal
on Computing, 9:273-280, 1980.

Michael O. Rabin. Efficient dispersal of information for security and
fault tolerance. Technical Report TR-02-87, Aiken Laboratory, Harvard
Univerisity, April 1987.

B. Randell and J. Dobson. Reliability and security issues in distributed
computing systems. In Proceedings of the Fifth IEEE Symposium on

34



[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Reliability in Distributed Software and Database Systems, pages 113—
118, January 1985.

R. Rivest and S. Dusse. The MD5 message-digest algorithm.
Manuscript, July 1991.

R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, February 1978.

M. Satyanarayanan. Integrating security in a large distributed environ-
ment. ACM Transactions on Computer Systems, 7(3):247-280, August
1989.

A. W. Schrift and A. Shamir. The discrete log is very discreet. In
Proceedings of the 22nd ACM Symp. on Theory of Computing, pages
405-415, May 1990.

A. Shamir. How to share a secret. Communications of the ACM,

22(11):612-614, November 1979.

Adi Shamir and Eli Biham. Differential cryptanalysis of DES-like cryp-
tosystems. In Advances in Cryptology, CRYPTO-90. Springer-Verlag,
August 1990.

R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. STAM
Journal on Computing, 6:84-85, March 1977.

Alfred 7. Spector and Michael L. Kazar. Wide area file service and the
AFS experimental system. Uniz Review, 7(3), March 1989.

J. G. Steiner, C. Neuman, and J. I. Schiller. Kerberos: An authentication
service for open network systems. In Useniz Conference Proceedings,

pages 191-200, Winter 1988.

J. D. Tygar and Bennet S. Yee. Strongbox: A system for self securing
programs. In CMU Computer Science: 25th Anniversary Commemora-

tive. ACM, Addison-Wesley, 1991.

35



[56]

[57]

[58]

Steve H. Weingart. Physical security for the pABYSS system. In Pro-
ceedings of the IKEE Computer Society Conference on Security and Pri-
vacy, pages 52-5H8, 1987.

Steve R. White and Liam Comerford. ABYSS: A trusted architecture
for software protection. In Proceedings of the IEEE Computer Society
Conference on Security and Privacy, pages 38-51, 1987.

Steve R. White, Steve H. Weingart, William C. Arnold, and Elaine R.
Palmer. Introduction to the Citadel Architecture: Security in Physically
Exposed Environments. Technical report, Distributed Security Systems
Group, IBM Thomas J. Watson Research Center, March 1991. Version
1.3.

Jeannette Wing, Maurice Herlihy, Stewart Clamen, David Detlefs,
Karen Kietzke, Richard Lerner, and Su-Yuen Ling. The Avalon lan-
guage: A tutorial introduction. In Jeffery L. Eppinger, Lily B. Mum-
mert, and Alfred Z. Spector, editors, Camelot and Avalon: A Distributed
Transaction Facility. Morgan Kaufmann, 1991.

36



