
Audio-visual Segmentation  and “The Cocktail Party Effect” 
Trevor Darrell1, John W. Fisher III, Paul Viola, MIT AI Lab       

William Freeman , Mitsubishi Electric Research Lab 

Abstract 
Audio-based interfaces usually suffer when noise or other acoustic 
sources are present in the environment. For robust audio recognition, a 
single source must first be isolated.  Existing solutions to this problem 
generally require special microphone configurations, and often assume 
prior knowledge of the spurious sources. We have developed new 
algorithms for segmenting streams of audio-visual information into 
their constituent sources by exploiting the mutual information present 
between audio and visual tracks.  Automatic face recognition and 
image motion analysis methods are used to generate visual features for 
a particular user; empirically these features have high mutual 
information with audio recorded from that user.  We show how 
utterances from several speakers recorded with a single microphone 
and video camera can be separated into constituent streams; we also 
show how the method can help reduce the effect of noise in automatic 
speech recognition.  

Introduction 
Interfaces to computer systems generally are tethered to users, e.g., via 
a keyboard and mouse in the case of personal computers, through a 
touchscreen when dealing with automatic tellers or kiosks, or with a 
headset microphone or telephone when using automatic speech 
recognition systems. In contrast, humans interact at a distance and are 
remarkably adept at understanding the utterance of remote speakers, 
even when other noise sources or speakers are present.  The “cocktail 
party effect”—the ability to focus in on a meaningful sub-stream of 
audio-visual information—is an important and poorly understood 
aspect of perception [1]. 

In this paper we show how multi-modal segmentation can be used to 
solve a version of the cocktail party problem, separating the speech of 
multiple speakers recorded with a single microphone and video camera.  
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Our technique is based on an analysis of joint audio-visual statistics, 
and can identify portions of the audio signal that correspond to a 
particular region of the video signal, and vice-versa.  Automatic face 
recognition is used to identify locations of speakers in the video, and 
mutual information analysis finds the portions of the audio signal that 
are likely to have come from that image region. We can thus attenuate 
the energy in the audio signal due to noise sources or other speakers, to 
aid automatic speech recognition and teleconferencing applications. 

Source Separation 
Most approaches to the problem of observing and listening to a speaker 
in a noisy and crowded room rely on active methods, either physically 
steering a narrow field microphone or adjusting the delay parameters of 
a beam-forming array [4,9,10]. 

These approaches are valuable, but require special sensors and 
sophisticated calibration techniques. We have developed passive 
methods that work on broadly tuned, monaural audio signals and which 
exploit time-synchronized video information. Our approach works 
using readily available PC teleconferencing camera and microphone 
components, as well as on video from broadcast and archival sources. 

We base our method on the statistical analysis of signals with multiple 
independent sources.  Prior statistical approaches to source separation 
often took audio-only approaches, and were successful when multiple 
microphones were available and the number of sources were known.  
The “blind source separation” problem has been studied extensively in 
the machine learning literature, and has been shown to be solvable 
using the Independent Components Analysis technique [2,11,13] and 
related methods.  However these methods required knowledge of the 
number of sources and microphones, and could not solve the general 
source separation problem with a single microphone (as humans do). 

Multi-modal Mutual Information 
Mutual Information Analysis is a powerful technique that has been 
shown to be able to accurately register signals despite a wide range of 
visual sensor types (e.g., intensity, range) [14].  Here we apply the 
technique to multi-modal data types, including both audio and visual 
channels, and show how it can identify pixels in a video sequence 
which are moving in synchrony with an audio source. 



Classically, the mutual information between two random vectors can be 
written as ),()()(),( YXHYHXHYXI −+=  where )(XH  is the 
entropy of vector X and ),( YXH  is the joint entropy of X  and Y . In 
the case where X  and Y  are normally distributed with mean Xu , Yu  
and covariance XΣ , YΣ  and jointly distributed with mean XYu  and 
covariance XYΣ , then this is simply 
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where nm, are the length of YX, . This formalism has been applied with 
a scalar but time-varying X representing the audio source, and a multi-
dimensional time-varying Y representing the video source [8]. 

The Gaussian assumption in unrealistic in many environments; a more 
general method is to use non-parametric density models.  In order to 
make the problem tractable high dimensional audio and video 
measurements are projected to low dimensional subspaces. The 
parameters of the sub-space are learned by maximizing the mutual 
information between the derived features [6] 

These methods have been used to identify which locations in a video 
signal correspond to a single audio source [6,8].  For example, Figure 
1(top) shows example joint video and audio signals. Figure 2(bottom) 
shows a frame from the video, the pixels identified as high variance 

Figure 1 Top: Video (left) and associated audio (right) signals. Bottom: Video
frame (left), pixel-wise standard deviation image (middle), and mutual
information image (right). 
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from video information alone, and the pixels identified as having high 
mutual information with the audio source.  One can see that analysis of 
image variance or motion alone fails to distinguish the pixels moving in 
synchrony with the audio source. Analyzing the joint mutual 
information over both video and audio signals approach easily 
identifies the pixels moving in the mouth region, corresponding to the 
speech sound source. 

Spectral Separation 
We are interested in the inverse problem: we wish to enhance or 
attenuate audio components given a corresponding video region.  
Unfortunately, an instantaneous scalar audio model makes it difficult to 
divide the audio signal into constituent sources.  To overcome this 
problem, we extend the model to use a multi-dimensional time-
frequency sound representation, which makes it easier to segment 
different audio sources. 

It has long been known that multidimensional representations of 
acoustic signals can be useful for recognition and segmentation.  Most 
typical is a representation which represents the signal in terms of 
frequency vs. time.  Many acoustic events can be segregated in terms of 
pitch, such as classical musical instruments and human vowel sounds.  

learned subspace
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Figure 2: Projection of audio and video vectors. 



While the cepstrum, spectrogram, and correlogram are all possible 
representations, we use a periodogram-based representation. 

In our implementation audio is sampled at 11.025 KHz, and then 
transformed into periodogram coefficients using hamming windows of 
5.4ms duration sampled at 30 Hz (commensurate with the video rate).  
At each point in time there are 513 periodogram coefficients. We use a 
non-parametric density estimation algorithm, applied to multi-
dimensional, time-varying audio and image features.  Specifically, let 
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mappings parameterized by the vectors vα  and aα , respectively. In our 
experiments vf and af  are single-layer perceptrons and 1== va MM . 
However, the adaptation method extends to any differentiable mapping 
and output dimensionality [5]. During adaptation the parameter vectors 

va αα , (the perceptron weights) are chosen such that 
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This process is illustrated in figure 2 in which video frames and 
sequences of periodogram coefficients are projected to scalar values. A 
clear advantage of learning a projection is that rather than requiring 
pixels of the video frames or spectral coefficients to be inspected 
individually the projection summarizes the entire set efficiently. 

In [7] demonstrate how this framework can be utilized to segment the 
audio information based on raw pixel data in a user specified window 
of a video sequence.  To create a fully automatic system for human-
computer interface applications, we need pre-processing steps which 
transform the pixel data into a more suitable representation. 

Automatic Face and Motion Detection 
We use face detection and motion estimation as preprocessing steps to 
the audio-visual mutual information analysis.  These provide an 
analysis of the video data to extract visual features that will correspond 
to the acoustic energy of an utterance in real-world conditions. A face 
detection module provides the location of pixels in a video stream 
which belong to an individual face.  We restrict the adaptation 
algorithm to only consider these pixels, and thus only find components 



of the audio stream which have high mutual information to that 
individual’s face.  Our implementation used the CMU facedetector 
library, which is based on a neural-network algorithm trained with both 
positive and negative examples of face images [12]. 

In addition to intensity information, image motion features are 
estimated and used as the video input term in the mutual information 
analysis.  Computing mutual information with optic flow rather than 
raw pixel intensity change alone can help in cases where there is 
contrast normalized motion, such as with random dot patterns. We used 
the well-known robust optic flow implementation detailed in [3], which 
combines outlier rejection, multi-resolution processing, segmentation, 
and regularization.  In practice we set the parameters of this algorithm 
to strongly regularize the motion estimates, since precise motion 
boundary localization was not important for our task. 

Results 
We first tested our system on an image sequence with two speakers 
recorded with a single microphone (the speakers were recorded with 
stereo microphones so as to obtain a reference, but the experiments 
used a single audio source). Figure 3(a) shows an example frame from 
the video sequence with detected faces.  

By selecting data from one of the two detected face regions we can 
enhance the voice of the speaker on the left or right. As the original 
data was collected with stereo microphones we can compare our result 
to an approximation to an ideal Wiener filter (neglecting cross channel 
leakage). Since the speakers are male and female, the signals have 
better spectral separation and the Wiener filter can separate them.  For 
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Figure 3: (a) Example image with detected face regions, (b) image of vα for

left speaker, (c) vα for right speaker. 



the male speaker the Wiener filter improves the SNR by 10.43 dB, 
while for the female speaker the improvement is 10.5 dB. Our 
technique achieves a 9.2 dB SNR gain for the male speaker, and a 5.6 
dB SNR gain for the female speaker. 

It is not clear why performance is not as good for the female speaker, 
but figures 3(b) and (c) are provided by way of partial explanation. 
Having recovered the audio in the user-assisted fashion described we 
used the recovered audio signal for video attribution (pixel-based) of 
the entire scene. Figures 3(b) and (c) are the images of the resulting vα  
when using the male (b) and female (c) recovered voice signals. The 
attribution of the male speaker (b) appears to be clearer than that of (c); 
this may be an indication that the video cues were not as detectable for 
the female speaker as they were for the male in this experiment.  

Our second test evaluated the ability of our method to improve 
accuracy in speech recognition where other noise sources were present.  
A single user spoke into a handheld video camera with built-in 
microphone, at a distance of approx. 4 feet.  A second noise source was 
synthetically added to the audio stream at varying SNR levels (8-13db).  
Recognition was performed using a commercially available 
transcription package; the system was trained as specified without 
added noise. 

Preliminary results from this test are encouraging; in recognition tests 
involving a combination of digits and spoken phrases, we obtained 
approximately a 33% reduction in error rate with our method.  At 
higher noise levels (8db), the observed error rate was 55% unfiltered, 
and 38% with our technique applied as a preprocessing step.  At lower 
noise levels (13db), the observed error rate was 33% unfiltered, and 
22% after our technique was applied.  Averaged over all SNR levels, 
the unfiltered error rate was 49% (106/216 words), while the filtered 
error rate was 30% (65/216).  Note that the absolute error rates are 
unnaturally high, since the system was not trained with the added noise 
source.  Nonetheless we believe the relative error rate improvement is a 
promising sign.  

We hope that this technique can aid in the eventual goal of enabling 
audio interface without an attached microphone for casual users. 
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