
 

Abstract

 

This paper explores several approaches for articulated-
pose estimation, assuming that video-rate depth informa-
tion is available, from either stereo cameras or other sen-
sors. We use these depth measurements in the traditional
linear brightness constraint equation, as well as in a depth
constraint equation. To capture the joint constraints, we
combine the brightness and depth constraints with twist
mathematics. We address several important issues in the
formation of the constraint equations, including updating
the body rotation matrix without using a first-order matrix
approximation and removing the coupling between the
rotation and translation updates. The resulting constraint
equations are linear on a modified parameter set. After
solving these linear constraints, there is a single closed-
form non-linear transformation to return the updates to the
original pose parameters. We show results for tracking
body pose in oblique views of synthetic walking sequences
and in moving-camera views of synthetic jumping-jack
sequences. We also show results for tracking body pose in
side views of a real walking sequence.

 

1  Introduction

 

In this paper, we extend the head-pose tracking of Har-
ville et al. [1] to articulated-pose tracking. We assume that
we have video-rate depth images, from either stereo cam-
eras or from other sensors. The depth images allow us to
use depth-constancy constraint equations (ZCCE) that are
similar to the classic brightness-constancy constraint equa-
tions (BCCE). The depth images also give us 

 

linear

 

 con-
straints, even when we use a perspective-camera model.

In Section 3, we review these constraint equations and
use twist mathematics [2] to capture the motion constraints
imposed by the articulated joints. Our basic twist deriva-
tions are similar in spirit to the derivations of Bregler et al.
[3]. The primary differences trace back to the approxima-
tions made within the derivations: Bregler approximates
perspective constraints using scaled-orthographic con-
straints and he approximates the body-rotation matrix using
an extra first-order Taylor-series expansion. We avoid this
first-order approximation by solving our constraints on a
transformed parameter set and by remapping our results
into the original parameter set using a closed-form non-lin-
ear function (Section 3.5).

Throughout Section 3, we assume that we know which
limb each pixel corresponds to. To get this information, we

must create limb-assignment maps. We describe the pro-
cess that we use to do this in Section 4.

In Section 5, we re-derive BCCE and ZCCE using
shifted centers of expansion in their Taylor-series approxi-
mations. This extension allows us to use these constraints
on large motions without iteration. We also explicitly mod-
ify the formulation of our constraint matrices to decouple
the body rotation and the body translation updates (Section
6). Finally, in Section 7, we present quantitative analyses of
our results on synthetic sequences and qualitative results on
real sequences.

 

2  Previous Work in Articulated-Pose Estimation

 

There have been many proposed techniques for tracking
articulated-body motion [4][8][9][10][11][12]. Some
approaches use constraints from widely separated views to
disambiguate the partially occluded motions without com-
puting depth values [6][10]. The most robust of these tend
to fit the observed (dense) motion data to a parametric
model before assigning specific pointwise correspondences
between the images [3][5][6][7]. Typically, this approach
results in non-linear constraint equations which must be
solved using iterative gradient descent or relaxation meth-
ods [5][7].

Bregler et al. [3] and Yamamoto et al [6] provide nota-
ble exceptions to this general trend: both wind up with sys-
tems of linear constraint equations, created by combining
articulated-body models with dense optical flow.

Yamamoto maintains the constraints between limbs by
sequentially estimating the motion of each parent limb,
adjusting the hypothesized position of the child limb, then
estimating the further motion of the child limb. This is con-
ceptually simpler than the approach taken by Bregler, but
results in fewer constraints on the motion of the parent
limbs. In contrast, Bregler takes full advantage of the infor-
mation provided by child limbs to further constrain the esti-
mated motions of the parents.

Both Yamamoto and Bregler use a first-order Taylor
series approximation to the camera/body rotation matrix, to
reduce the number of parameters used to represent this
matrix. Furthermore, both use an articulated model to 

 

gen-
erate

 

 depth values that are needed to linearize the mapping
from 3D body motions to observed 2D camera-plane
motions.

This paper differs from this prior work on both of these
counts. We do not use a first-order Taylor series approxima-
tion to the camera/body rotation matrix. Nor do we use an
articulated figure model to generate depth values: instead,
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we assume that real-time depth images are available.

 

3  Articulated-Body Constraint Equations

 

In this section, we derive the basic articulated-body con-
straint equations.

 

 3.1  Brightness- and depth-constancy constraints

 

We start from the well known BCCE:

where  and  are the motions in  and , after projec-
tion onto the image plane.

Assuming that we have real-time depth images avail-
able to us, we can use a similar constraint equation on
depth [1]. Combining BCCE and ZCCE, we have:

 

(1) 

 

where  is the motion in world coordinate .
Equation (1) gives us 

 

 

 

equations in terms of 
unknowns ( , , and  for each point) where  is the
number of visible points on the articulated figure.

 

 3.2  Perspective-camera constraints

 

In order to translate image-plane velocities into world-
coordinate velocities, we need a camera model. Using a
perspective camera model and assuming that the origin of
the world coordinate system is at the camera and the z-axis
is along the viewing axis of the camera, so that

, and , we get

 

(2) 

 

where  and  are motions in world coordinates.
Equation (2) changes the 

 

 

 

unknown parameters in
our  constraint equations to new set of unknowns ( ,

, and  for each point).

 

 3.3  Rigid-limb constraints

 

We need to translate the velocities of the visible points
on the figure into rotations and translations of the figure and
its limbs relative to the world coordinates. To do this, we
use twist mathematics [2].

A twist, , is a 6-element vector with the
first 3 elements, , (indirectly) representing the translation
and the last three elements  representing the axis (and
sometimes the amount) of rotation. As a matter of conven-
tion, if the twist is used with an explicit scaling term ,
then ; otherwise, the magnitude of  is set accord-
ing to the amount of rotation. The twist can be used to form
a 4x4 matrix, through the operation of the “hat operator”: 

 where . When exponenti-

ated, this 4x4 matrix gives the rotation/translation matrix

 where  is the rotation and

 is the translation.
Using twists, the world coordinates ( ) of any point on

the body can be expressed as a function of time, of the
point’s limb number ( ), of the pose parameters (  and

), and of the point’s limb-centric coordinates ( ):

where 

 

K

 

 is the number of articulated limbs in the figure.
The mapping from limb-centric coordinates to world coor-
dinates is done by translation/rotation as dictated by a “ref-
erence configuration” for the  limb, ; by the
translations/rotations  introduced by the
joints along the articulated chain up to the  limb; and by
the translations/rotations  from the camera to the fig-
ure’s torso.

Each limb’s reference configuration gives the transla-
tion and rotation from that limb’s coordinate system to the
world coordinate system, when the body is positioned at

 and when all of the joint angles are zero. The extra
degrees of freedom given by the reference configuration
simplifies the task of describing the geometry of the articu-
lated joint locations. In Section 5, we also use these extra
degrees of freedom to decouple our body rotation and body
translation estimates. Given a specific pose, the transforma-
tion from the limb’s coordinate frame to the world coordi-
nate frame is:

(3) 

For the remainder of this paper, for notational simplicity,
we will refer to  simply as

.
This description of the world coordinates of each body

point in terms of the articulated-pose parameters relates the
world velocities to the rotations and translations of the 
coordinate frames that are tied to the  limbs of the figure.
Recalling that , note that  is independent of
time:

 

(4) 

 

The second line of the above identity is derived from the
inverse of the identity

 

 . 
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definition: .  is a 4x4 matrix describing the
motion of the kth limb’s coordinate frame relative to the
world coordinate frame, in terms of world coordinates.
Using , a 6x1 vector, to describe this coordinate trans-
formation makes use of the special structure of :
namely, that the first three rows and columns of  are
skew symmetric and the bottom row is all zeros [2].

 is the (homogenous) world coordi-
nates of the body point at time . More generally, , ,
and  are the coordinates of the point within a coordinate
system that is tied to the world coordinate system by some
known translation (and rotation). We will use these extra
degrees of freedom in Section 6 to improve the condition
number of our constraint matrix. Rewriting Equation (4),

(5) 

At this point, we have forced each limb to be internally
rigid. This reduces the number of unknown parameters in
our  constraint equations down to 6 parameters per limb
(the 6 elements of  for that limb).

 3.4  Joint constraints
We can further constrain the problem by taking advan-

tage of the interconnections between limbs. To do this, we
describe  for the kth limb in terms of the articulated-
pose parameters:

(6) 

where  is the velocity due to the motion of the body rel-
ative to the world coordinates and  is the veloc-
ity due to the motion of the  joint along the articulated
chain to the kth limb. Using the identity , we
obtain

To simplify this further, we introduce the adjoint of a

rotation/translation matrix, . The adjoint is

 and  [2] where 

applies the hat operator to the vector contained within the
parentheses. Using this identity,

(7) 

 3.5  Body motion constraints and re-parameterization
The velocity vector of the figure relative to the world

coordinates must allow for unconstrained rotations and
translations. The easiest way to do this is to express these
motions in terms of the 4x4 transformation matrix, instead

of in terms of the twist coordinates. Let .

Then:

This constraint is linear in terms of the unknowns (
and ) but it is not as tightly constrained as we would like:

 has 9 unknowns, instead of the 3 unknowns that we
know can be used to describe a rotation or its derivative. We
correct this over-parameterization by noting that the first 3
rows/columns of  must be skew symmetric. To capture
this structure, we name the rotational component of the
frame velocity:  where  is
the inverse of the hat operator on the skew-symmetric
matrix contained within the parentheses.

Note that this is not a “small angle approximation” such
as is often used for mapping a rotation matrix down onto its
rotation axis [3]. The identity  is exact, due
to the special structure embedded in the derivative of an
orthonormal matrix, when that matrix is constrained to
remain orthonormal. Under this orthonormality constraint,
the derivative matrix times the transpose of the orthonormal
matrix is a skew-symmetric matrix [2].

Substituting  for and rearranging gives

(8) 

We now use our  linear constraint equations to solve
for , , and  through  (  unknowns) and
then remap  back into  according to

(9) 

 3.6  Discrete-time approximations to derivatives

Finally, we need discrete-time approximations to the
time derivatives, , , and  through . We use a
forward-difference approximation to the body-translation
and joint-angle derivatives:

 (10) 

We can not use a forward-difference approximation to
the body-rotation derivative  since using this approxima-
tion destroys the orthonormal structure of the rotation
matrix . Instead, we must use a central-difference
approximation:

Combining this central difference approximation with
Equation (9) and a linear-interpolation approximation for
the half-sample delay, we get
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ġsbgsb
1–

qs t( ) qX qY qZ 1
T

=
t qX qY

qZ

vX

vY

vZ

1 0 0 0 qZ   q– Y

0 1 0   q– Z 0 qX

0 0 1 qY   q– X 0

Vsb
s

=

2N
Vsb

s

Vsb
s

Vsb
s

Vs0
s

Ji 1– i,
s θi( )θ̇i

i 1=

k

∑+=

Vs0
s

Ji 1– i,
s θi( )θ̇i

i
th

V̂sb
s
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Ṙ0R0

T
( )

  ∨
= =   ( )  ∨

ωv0
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Ṙ0R0

T

Vs0
s I p̂0

0 I

ṗ0
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so that

(11) 

Combining equations (1), (2), (5), (6), (7), (8) and (10),
we have, as before,  linear constraint equations in terms
of  unknowns. The difference is that the unknowns are
now the updated parameters ( , , 
through ). We solve these constraints using
least squares. Once we have this solution, equation (11)
provides the non-linear mapping from  to .

4  Limb-assignment maps
Throughout the derivation of our constraint equations,

we assumed that we knew which pixels were on which limb
of the articulated figure and which pixels were not on the
articulated figure. We must create such a limb-assignment
map for each frame of our sequence. This section describes
that process.

 4.1  Creating the initial limb-assignment map
The creating the first limb-assignment map is easy since

we are given the initial pose. We create the first assignment
map by placing our articulated model in the given initial
pose. We “color” each limb of the articulated model with a
unique identifier (a “limb number”) and take a synthetic
picture of the articulated model. This gives us a limb-
assignment map for the model in the given initial pose.
Assuming our model is a fair approximation to the true
articulated figure being imaged, this assignment map will
be a good approximation to the true limb-assignment map.

However, there will be differences between our model’s
shape and the imaged figure’s shape. These differences will
result in some of the pixels in the assignment map being
incorrect. We need to identify these incorrectly labelled
pixels but we do not need to remap them to the correct
value. Instead, we remap them to “background” to remove
them from the set of constraints that we are solving. Since
we typically have many more constraints (2N) than
unknowns (K+5), using a smaller set of constraints is better
than including inaccurate constraints.

We use the sensed depth map, along with the model’s
depth map, to identify mislabeled figure pixels. Whenever
the difference between these two depth maps is above a
threshold, we relabel that pixel as “background”, thereby
removing it from the set of constraints. 

 4.2  Constrained limb-based cross correlation
On all frames except for the first frame, we do not know

the current pose. Instead all we have is the pose in the pre-
vious frame. We will use constrained limb-based cross cor-
relation (described here) to coarsely update the estimated
pose, so that it more closely approximates the pose in the
current frame.

The constrained limb-based cross correlation uses the
cross correlation between the time-t and time-(t+1) bright-

ness and depth images. It is “limb-based” since we use the
time-t limb-assignment map to determine the image sup-
port of the cross correlation for each limb. It is “con-
strained” since we use the articulated model and the time-t
pose to select the candidate offsets and rotations within the
time-(t+1) images.

We start with the torso. For the torso motion, we con-
sider a small number of candidate translations in world
coordinates X, Y, and Z. We select the one that provides the
maximum cross correlation on the torso’s support.

For all other limbs, we estimate their best rotations/
translations using chains of limbs. We create separate
chains of limbs, starting from the torso. For our model we
have four chains (two legs and two arms) with two links
each (upper and lower arm/leg). We consider each chain
separately, anchoring each one at the previously estimated
torso offset.

We consider a small number of candidate articulation
angles for each limb in the chain. We create chains of can-
didate articulations by combining across limbs. For each
candidate articulation chain, we rotate and translate each
limb’s image segments according to the displacement of
that limb under the candidate articulation chain. To avoid
the overhead of image interpolation, we use zero-order hold
to provide non-zero rotations of the limbs. We select the
articulation chain that provides the maximum cross correla-
tion on the combined supports of all the limbs in the chain. 

This process allows us to coarsely update all the pose
parameters except for the torso’s rotation. We found that the
torso rotation was slow enough between frames that updat-
ing that estimate was not required for creating reasonably
accurate limb assignment map. 

 4.3  Creating subsequent limb-assignment maps
Throughout this paper, we assume that we start off

knowing the articulated pose of the figure in the first frame
of the sequence. Since we know the true pose in the first
image, creating an assignment map is easier than it will be
in subsequent images, where we only have (estimates) of
the articulated pose in the previous frame. Hence, creating
the first assignment map is simpler than creating subse-
quent assignment maps.

We use the ideas in Sections 4.1 and 4.2 to create the
limb-assignment maps for all the frames after the first
frame. To do this, we first create an updated limb-assign-
ment map for the previous frame, using the approach
described in Section 4.1. In most cases, this improves the
limb-assignment map for the previous frame, since it uses
the pose estimate given be the solution to our previous
frame’s constraint equations (instead of the coarsely
updated pose estimate that was previously generated). 

Once we have this assignment map for the previous
frame, we use constrained limb-based cross correlation
(Section 4.2) to coarsely estimate the current frame’s pose
from the previous frame’s pose.

Finally, we use this coarsely updated pose estimate with
the current frames in the approach described in Section 4.1.
This gives us our limb-assignment map for the current
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frame.

5  Discrete-shift extension to constraint equations
The quality of the constraints from Section 3 also

depends on the accuracy of the first-order Taylor-series
expansion used in the BCCE (and ZCCE). This first-order
approximation often fails on large motions. Classically,
authors compensate for this failure by estimating the
motion, warping the images according to that motion esti-
mate and repeating. This iterative estimation approach has
several drawbacks. It is computationally expensive, requir-
ing sample interpolation of the image being warped, re-
computation of its spatial derivatives, and multiple formu-
lations and solutions of the constraint equations at each
time step. It introduces interpolation errors, both in the
warped image values and in the spatial derivatives. Finally,
for large motions, the initial motion estimates may actually
point away from the true solution.

We can improve the accuracy of BCCE (and ZCCE)
without iteration, without interpolation, and without recom-
puting spatial derivatives. We do this by allowing the focus
of expansion (FOE) of each pixel to shift “independently”
by some integer amount, . Shifting the FOE by

, the BCCE and ZCCE become:

(12) 

Equation (12) treats each constraint equation as if the t+1th

frame translates rigidly by . As long as  is
integer valued, we do not have to interpolate the image.
Since our equations assume rigid translation, we do not
need to recompute the spatial derivatives of the tth frame (as
we would have to do, if we were warping the t+1th frame).
The important thing to realize is that, even though each
individual constraint derived from equation (12) acts as
though the frame was rigidly translated, the set of con-
straints across the visible image does not have to share

 values. Instead, at each pixel, we can select a new
, according to what we expect will be a good shift

for that pixel.
We now have the freedom of choosing a distinct value

for each visible point on the figure. We could do
this within the traditional iterative motion estimation
framework, using the (rounded) initial or previous motion
estimates as the FOE for the next iteration.

In this paper, we instead use constrained limb-based
cross correlations (Section 4.2) between times  and 

of the brightness and depth images to select the FOE. The
constrained limb-based cross correlation takes the previous
pose estimate and the previous support map along with the
previous and current depth and color images and returns a
(coarsely) updated pose estimate.

We derive an in-plane rotation and translation for each
limb from this updated pose and the previous pose. We
project the axis of each limb onto the image plane under the
two poses. We then use the translation and rotation that best
aligns the two axis projections for each limb.

Having selected a nominal translation/rotation for a
limb, we use, for the FOE for each pixel on the limb, the
integer-valued offset for  and  nearest to the offset dic-
tated by the selected translation/rotation. We force  and

 to be integer valued in order to reduce the computation
and to avoid interpolation errors.

Equation (12), with equations (2), (5), (6), (7), (8) and
(10), provides us with  BCCE and  ZCCE constraints,
which we can solve with least squares, on  unknowns
( , , and  through ).
Once we have that solution, equation (11) provides the non-
linear mapping from  to . In Section 7, we
refer to these as “shifted” constraint equations.

6  Selecting Coordinate Systems
We must use camera-centric coordinates in the con-

straint equation (2). However, we can use any coordinate
system that is offset by a known rotation/translation from
the camera coordinate system for the coordinates

 in equation (5). To improve the conditioning of
the constraint equation, we choose the centroid of the visi-
ble figure as the origin of  [1]. For the “jump”
sequence (described in Section 7), this coordinate transla-
tion reduces the condition number of the constraint matrix
from 250 to 15.

We can also use any orientation/translation as our refer-
ence configuration  in equation (3). The remainder of
this section discusses how best to use this freedom to avoid
estimation errors due to cross coupling between the body
position and the body rotation estimates.

Equation (8) includes cross coupling between the esti-
mates for  and  according to the size of . Previous

derivations do not account for this coupling in their deriva-

tion: their estimation equations do not include . This

coupling term is needed to correctly track a figure whose
orientation relative to the camera changes. Yet, this cou-
pling term also introduces a bias in our tracking estimates.
In our simulations, when  was non-zero and the figure

was rotating relative to the camera, this resulted in a bias in
the estimates of . For example, for the “jump” sequence,

this bias accumulates over the sequence, increasing the
location error by 4.5 times compared to the location error
for the explicitly decoupled estimator, described here. The
error increases linearly over time, so its effects become
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more detrimental as the sequence gets longer.
We avoid this bias by re-parameterizing our twists, at

each time step, so that . We can do this without
affecting the coordinate-system origin for  by
adjusting , the reference configurations for the limbs
(see equation (3)). This allows us to improve the condition-
ing of our constraints (as previously described) while still
avoiding coupling.

To remove this coupling without altering the articulated
figure’s geometry, we need to subtract 

from each internal joint  ( ).1 This main-

tains the original geometry since, if 

then

so that

When we use these transformations to remove the
cross-coupling between  and , we also need to trans-
form  back to the original coordinate system. We do this
by setting .

7  Results

 7.1  Tracking results on synthetic sequences
Synthetic image sequences provide ground truth that

allow us to quantitatively analyze our techniques. We gen-
erated four synthetic sequences. The two “jump”
sequences, one “slow” and one “fast”, are 200 frames long
and show the figure jumping by spreading his upper legs
(thighs) and bending his lower legs (calves) up behind him
while also raising his upper arms and bending his lower
arms forward. During the “jump” sequences, the camera
rotates around the figure, starting near 60º to his left and
ending near 60º to his right. In the “slow jump” sequence,
the camera and each joint move about 0.6 degrees between
frames; in the “fast jump” sequence, the motion is about 3
degrees between frames. The two “walk” sequences, one
“slow” and one “fast”, are 120 frames long. The “slow
walk” sequence shows one full walk cycle; the “fast walk”
shows five full walk cycles. Both have the camera at 60º to
the figure’s right. In all four sequences, the figure is created
from 10 ellipsoidal cylinders with three twist axes between
each cylinder (allowing full 3-DOF rotation between
limbs). In all four sequences, the camera is two body
lengths from the figure, resulting in noticeable perspective
effects. For the brightness images, a plaid pattern was tex-
ture mapped onto each of the cylinders. The depth maps
show the smooth ellipsoidal cylinders.

We use these four sequences to evaluate the robustness
of BCCE using estimated depth (“BCCE-only”), of BCCE
using true depth (“BCCE+depth”), of ZCCE alone
(“ZCCE-only”), and of BCCE and ZCCE together
(“BCCE+ZCCE”). We also examine the performance
improvements gotten by shifting the FOE, as described in
Section 5. All of our tracking results are shown in movies
on our web site: http://web.interval.com/papers/1999-122/.

Our implementation of tracking with BCCE-only is
similar to [3], with the addition of the machinery of Section
5. True depth values are not used in the BCCE-only case;
instead, as in [3], depth values are estimated by positioning
the articulated figure according to the current pose estimate
and computing the corresponding depths. Our simulations
show that BCCE-only, without true depth, tends to fail after
extended periods of tracking. In the “slow jump” sequence,
between the 20th and 60th frames, the estimated pose
slowly quickly rotates around its vertical axis until it is fac-
ing backwards (Figure 1). In the “slow walk” sequence, the
estimated pose completely loses track of the figure by the
17th frame (Figure 2).

In contrast, when we added the true depth images, the
body tracking behavior stabilized on the “slow jump” and
“slow walk” sequences, even using BCCE without the
ZCCE (see Figures 3 and 4). With BCCE+depth, the track-
ing mistakes tend to be in terms of depth. The most obvious
example is the left (rear) arm of the “walk” sequence (the
BCCE+depth estimate for the arm “floats” away from the
camera). With ZCCE-only, the tracking errors tend to con-
centrate more in the image plane. Finally, combining

1.  We also implicitly add an offset of  to the last col-
umn of ; however, since  never appears in our 
final constraint equations, this offset is more conceptual 
than computational.
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BCCE and ZCCE drastically reduces the errors seen in the
separate estimation sequences.

We used our “fast” sequences to examine the perfor-
mance of the unshifted and shifted BCCE+depth, ZCCE-
only, and BCCE+ZCCE, under more demanding circum-
stances than those provided by the “slow” sequences. We
did not include the BCCE-only solutions in this more strin-
gent test, since BCCE-only already fails rapidly on the sim-
pler “slow” sequences. On the “fast” sequences, both
shifted and unshifted constraint equations track the body
translation and rotation, with varying levels of accuracy but
none of our unshifted constraint equations can track the
limb motions. When we shift the FOE, the tracking is more
robust. The improved tracking behavior is apparent from
Figures 7 and 8.

As shown in Figures 7 and 8, adding shifted-FOE track-
ing is obviously better. However, even with the shifted-
FOE, the tracking error is increasing over the course of the
sequence. This is due to the fact that our pose estimation
process is purely differential, so that tracking errors tend to
accumulate from one frame to the next. Even with this
shortcoming, our tracking behavior is quite good.

 7.2  Tracking on a real data sequence
We tracked the motion of a person walking parallel to

the image plane through a 21-frame sequence. The depth
data came from a calibrated stereo camera pair, mounted at
ceiling level. The disparities were estimated using the
approach outlined by Woodfill [13]. We filled in small holes
created by inconsistent depth measures using simple mor-
phological operations.

We used the full-color video images (as well as the
depth images) to form the limb-assignment maps but, for
simplicity of coding, we used only the grayscale values in

the BCCE itself. For this real-data sequence, we solved our
linear constraint equations under the constraint that the
weighted L∞ of the solution vector be less than or equal to
preset limits. We limited the motion in the 1/30 second
between frames to: 0.1 m torso motion in X, Y, or Z; 3º, 12º,
and 1º of torso tilt around the torso’s X, Y, and Z axes; 17º,
0º, and 6º of rotation around the upper legs’ X, Y, and Z
axes; and 29º, 0º, and 6º of rotation about the lower legs’
X,Y, and Z axes.

Figure 5 shows example frames from our tracking
experiments. Movies showing our results are on http://
web.interval.com/papers/1999-122/.

Again, the BCCE-only approach provided the least sta-
ble tracking results. To a large extent this is due to mis-
assignment of limb and background pixels. BCCE-only
does not have the depth map available to help it distinguish
the background pixels from the leg pixels or the front leg
from the back leg pixels. As a result, the leg motions are not
tracked. The torso’s forward motion is well tracked, but the
torso’s vertical motion is grossly misestimated, with the
model sliding down to rest on the legs. This misestimation
is probably due to the simultaneous, coupled solution for
the torso and leg motions: the errors in the leg-motion con-
straints affect the torso-motion estimates. Since the estima-
tion technique is purely differential, this torso-motion error
accumulates over the length of the sequence.

The other three tracking approaches track the leg
motions well. The largest tracking errors occur when the
back leg is occluded. Again, with the accumulation of error
due to our differential approach, none of the tracking meth-

Figure 1: Body translation error on the “slow jump” sequence.
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Figure 2: Body translation error on the “slow walk” sequence.
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Figure 3: BCCE+ZCCE tracking error for the “fast jump” right 
wrist. Errors were computed after having removed the body-
position error.
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Figure 4: BCCE+ZCCE tracking error for the “fast walk” right 
wrist. Errors were computed after having removed the body-
position error.
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ods fully recover from the error, especially in tracking the
back upper leg. However, all of them continue to track the
back lower leg, even when the articulated model is only
partially above the back leg. This robustness comes from
the depth map: we have removed many pixel assignments
that would otherwise be incorrect using the depth-mis-
match thresholds.

8  Conclusions
We have combined BCCE and ZCCE with twist mathe-

matics to create over-constrained systems of equations for
estimating the position, rotation and joint angles of an artic-
ulated figure. As long as depth images are available, these
constraints are linear and can be solved simply and effi-
ciently using least squares. The only non-linear relation
(equation (11)) acts as an auxiliary equation and is used at
each time step but only after the linear least-squares solu-
tion has been found. By including this non-linear auxiliary
equation, we avoid having to introduce a first-order Taylor-
series approximation to the body rotation matrix.

Our simulation results argue strongly for video-rate
depth information, from either stereo cameras or other sen-
sors. Without the true depth information, the tracking
behavior became unstable and failed catastrophically
within sixty frames of our test sequences.

In contrast, we obtained good tracking results on our
sequences using true depth data. The results for the com-
bined BCCE and ZCCE are better than the results for either
set of equations alone. The accuracy improves when BCCE
is added since our brightness images have higher spatial
frequencies than do our depth images, thereby providing
tighter constraints on the figure’s X/Y motions. The accu-
racy improves when ZCCE is added since it is a tighter con-
straint on the figure’s Z motions than we can otherwise
infer from brightness-image perspective effects. Also, the
ZCCE is much less sensitive than the BCCE to illumination
and reflectance changes.

On our “slow” sequences, as long as we used the true
depth values, we did not need to shift our FOE to get good
tracking results. However, on our “fast” sequences, we did
need the shifted FOE. Without the shift, the pose estimates
lose track of the different limbs and can not recover the cor-
rect alignment. Unlike previously proposed iterative esti-
mates, our proposed method for shifting the FOE does not
require iteration or image interpolation. Currently we select
the FOEs based on the correlation peak between the two
images. We only consider a small number of potential rota-

tions/translations, so the computational requirements for
this correlation are not high.

One area that needs to be investigated further is how to
avoid error accumulation in our pose estimates. Our current
constraints are purely differential and therefore are only
marginally stable. We need to interleave this differential
method with a non-differential technique (such as “gener-
ate-and-test”). Without having a non-differential technique,
the error will grow until the tracking fails catastrophically.
Our differential method can improve the local accuracy and
sensitivity of a non-differential technique while the non-
differential technique will make our differential approach
unconditionally stable. 
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Figure 5: Real tracking results. The overlay shows the outline of the articulated-model limbs in the pose estimated for each frame. The 
images shown here have been cropped to show only the walking figure. The 11th and 15th frames from the sequence are shown.
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