Combining Generative and Discriminative Approaches for Visual Object Class Detection

Mario Fritz

Overview Lecture on 3rd March

- Motivation from last lecture
 local vs. global problem
- Recovering global consistency
 - global silhouette verification
- Adding discriminance to the model
 - generative/discriminative model

Complexity of Recognition: Local vs. Global

star model

Complexity of Recognition: Local Voting vs. Global Cosistency

Complexity of Recognition: Local Voting vs. Global Cosistency

Global Silhouette Verification [Leibe@CVPR05]

- Initial hypotheses from local features
 - Implicit Shape Model

 Top-down segmentation for each hypothesis

- Verification using segmentations and global silhouettes
 - Chamfer verification
 - Shape constraints for articulated objects

Effect of the Verification Stage

Detections at EER [Leibe@CVPR'05]

Single-frame detection - no temporal continuity used!

Tracking individual people... [Seemann,Fritz@CVPR'07]

Combining Generative ISM detector with discriminant SVM

[Fritz'05]

Modeling Paradigms: Generative vs. Discriminative

10

Generative/Discriminative Training [Fritz@ICCV05]

S

detector

(hybrid)

training ISM [Leibe04]

- Ideas:
 - good generalization of generative detector + precision of discriminant classifier

true/false positive

(discriminative)

train/validation

(generative)

- simplifying learning problem of classifier (localization, scale, background)
- sampling structures that get confused

Local Kernel SVM

kernel to match sets of local features [Wallraven03, Caputo04]

- greedy approximation of maximum/matching
- non-mercer kernel
- but in setting used in practice, kernel matrix is positive definite [Boughorbel04]

Local Kernel SVM (2)

- we evaluated directly on codebook representation *position constraint*
 - across instance learning
- strong shape model
- constraints extends also to relative scale

Local Kernel SVM (2)

- we evaluated directly on codebook representation *position constraint*
 - across instance learning
- strong shape model
- constraints extends also to relative scale

Results of Motorbike Detector

Edinl

Edinl

high precision and recall for sideviews

5.2: detection: test1: bicycles

1 _П

Edinburg

6.2: detection: test2: bicycles

Motorbike Detection/Segmentation on Pascal05

test 2

- SVM adds desired precision to ISM
- high precision and recall for sideviews

Car Detection/Segmentation on Pascal05

test 2

Improving Pedestrian Detection by Generative/ Discriminant Training

- single shot/no groundplane
- improved precision
- first false positives at 65% recall

