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Two presentations today:Two presentations today:



Contours and Junctions in Natural 
Images

Jitendra Malik
University of California at BerkeleyUniversity of California at Berkeley

(with Jianbo Shi, Thomas Leung, Serge Belongie, Charless Fowlkes, David 
Martin, Xiaofeng Ren,  Michael Maire, Pablo Arbelaez)
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From Pixels to Perceptionp
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I stand at the window and see a house, trees, 
sky Theoretically I might say there were 327sky. Theoretically I might say there were 327 
brightnesses and nuances of colour. 

Do I have "327"? 

No. I have sky, house, and trees.No. I have sky, house, and trees.

---- Max Wertheimer, 1923Max Wertheimer, 1923

5



Perceptual Organization

Grouping Figure/GroundGrouping Figure/Ground
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Key Research Questions in Perceptual 
OrganizationOrganization 

• Predictive power
– Factors  for complex, natural stimuli ?
– How do they interact ?

• Functional significance
– Why should these be useful or confer some 

evolutionary advantage to a visual organism?evolutionary advantage to a visual organism?

• Brain mechanisms
How are these factors implemented given what we– How are these factors implemented given what we 
know about V1 and higher visual areas?
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Attneave’s Cat (1954)
Line drawings convey most of the g y

information
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Contours and junctions are fundamental…

• Key to recognition, inference of 3D scene 
properties, visually- guided manipulation and 
locomotion…

• This goes beyond local, V1-like,  edge-detection. 
Contours are the result of perceptual 
organization grouping and figure/groundorganization, grouping and figure/ground 
processing
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Some computer vision history…p y

• Local Edge Detection was much studied in the 
1970s and early 80s (Sobel, Rosenfeld, Binford-
Horn, Marr-Hildreth, Canny …)

• Edge linking exploiting curvilinear continuity 
was studied  as well  (Rosenfeld, Zucker, Horn, 
Ullman )Ullman …)

• In the 1980s, several authors argued for 
perceptual organization as a precursor toperceptual organization as a precursor to 
recognition (Binford, Witkin and Tennebaum, 
Lowe,  Jacobs …)
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However in the 90s …

1. We realized that there was more to images than edges
• Biologically inspired filtering approaches (Bergen & Adelson, 

Malik & Perona..)
• Pixel based representations for recognition (Turk & Pentland, 

√
Murase & Nayar, LeCun …)

2. We lost faith in the ability of bottom-up vision
• Do minimal bottom up processing e g tiled orientationDo minimal bottom up processing , e.g. tiled orientation 

histograms don’t even assume that linked contours or junctions 
can be extracted

• Matching with memory of previously seen objects then becomes

?
Matching with memory of previously seen objects then becomes 
the primary engine for parsing an image.
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At Berkeley, we took a contrary view…y y

1. Collect Data Set of Human segmented images
2. Learn Local Boundary Model for combining 

brightness, color and texture
3. Global framework to capture closure, continuity
4. Detect and localize junctions
5. Integrate low, mid and high-level information for 

grouping and figure-ground segmentation
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Berkeley Segmentation DataSet  [BSDS]

13
D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its 

Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV, 2001
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Contour detection ~1970
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Contour detection ~1990
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Contour detection ~2004
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Contour detection ~2008 (gray)
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Contour detection ~2008 (color)
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Outline

1. Collect Data Set of Human segmented images
2. Learn Local Boundary Model for combining 

brightness, color and texture
3. Global framework to capture closure, continuity
4. Detect and localize junctions
5. Integrate low, mid and high-level information for 

grouping and figure-ground segmentation
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Contours can be defined by any of a number of cues (P. Cavanagh)
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Cue-Invariant Representations
Gray level photographsGray level photographs

Objects from motion

Objects from luminance

Objects from disparity
Objects from texture Line drawings

22Grill-Spector et al. , Neuron 1998



Martin, Fowlkes, Malik PAMI 04
PImage

Boundary Cues
Pb

Brightness
Cue Combination

Model
Brightness

Color

Texture

Challenges:  texture cue, cue combination
G l l h i b bili f b dGoal: learn the posterior probability of a boundary 
Pb(x,y,) from local information only

23



Individual Features

• 1976 CIE L*a*b* colorspace
r

• Brightness Gradient BG(x,y,r,) 
– Difference of L* distributions 

r
(x,y)

• Color Gradient CG(x,y,r,)
– Difference of a*b* distributions

• Texture Gradient TG(x,y,r,)
– Difference of distributions of 

V1-like filter responses

24
These are combined using logistic regression



Various Cue 
CombinationsCombinations
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Outline

1. Collect Data Set of Human segmented images
2. Learn Local Boundary Model for combining 

brightness, color and texture
3. Global framework to capture closure, continuity
4. Detect and localize junctions
5. Integrate low, mid and high-level information for 

grouping and figure-ground segmentation
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Exploiting global constraints:
Image Segmentation as Graph Partitioning

Build a weighted graph G=(V,E) from image

V: image pixelsg p

E: connections between 
pairs of nearby pixelspairs of nearby pixels

Partition graph so that similarity within group is large and 
similarity between groups is small -- Normalized Cuts

27

y g p z
[Shi & Malik 97]



Wij  small when intervening contour strong, small when weak..

Cij =  max Pb(x,y) for  (x,y)  on line segment ij;     Wij = exp ( - Cij / �
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Eigenvectors carry contour informationg y
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We do not try to find regions from the eigenvectors, so 
we avoid the “broken sky” artifacts of Ncuts …
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Key idea – compute edges on ncut eigenvectors, 
fi t ksum over first k:

where is the output of a Gaussian derivative on the j th eigenvectorwhere                     is the output of a Gaussian derivative on the j-th eigenvector 
of
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The Benefits of Globalization
Maire, Arbelaez, Fowlkes, Malik, CVPR 08
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Comparison to other approaches
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Outline

1. Collect Data Set of Human segmented images
2. Learn Local Boundary Model for combining 

brightness, color and texture
3. Global framework to capture closure, continuity
4. Detect and localize junctions
5. Integrate low, mid and high-level information for 

grouping and figure-ground segmentation
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Detecting Junctions
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Benchmarking corner detection
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Better object recognition using previous version of Pb

• Ferrari, Fevrier, Jurie and Schmid (PAMI 08)

• Shotton, Blake and Cipolla (PAMI 08)
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Outline

1. Collect Data Set of Human segmented images
2. Learn Local Boundary Model for combining 

brightness, color and texture
3 Gl b l f k t t l ti it3. Global framework to capture closure, continuity
4. Detect and localize junctions
5 Integrate low mid and high level cues for5. Integrate low, mid and high-level cues for 

grouping and figure-ground segmentation
1. Ren, Fowlkes, Malik, IJCV ‘08, , ,
2. Fowlkes, Martin, Malik, JOV ‘07
3. Ren, Fowlkes, Malik, ECCV ‘06
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Power laws for contour lengthsg
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Convexity 
[Metzger 1953, Kanizsa and Gerbino 1976]

ConvG = percentage of straight lines 
that lie completely within region G

Convexity(p) = log(ConvF / ConvG)

that lie completely within region G

pG F
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Figural regions tend to be convex
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Lower Region
[Vecera, Vogel & Woodman 2002]

θ

p

L R i ( ) θ

45

LowerRegion(p) = θG
center of mass



Figural regions tend to lie below ground regions
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Ren, Fowlkes, Malik ECCV ‘06

Object and Scene 
Recognition

Grouping /
Segmentation

Figure/Ground
Organization

• Human subjects label groundtruth figure/ground assignments 
in natural images.

• Shapemes encode high-level knowledge in a generic way,   
capturing local figure/ground cues.

• A conditional random field incorporates junction cues and 
enforces global consistency.
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Forty years of contour detectiony y

Roberts Sobel Prewitt Marr Canny Perona Martin Maire

4848
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Forty years of contour detectiony y

???Roberts Sobel Prewitt Marr Canny Perona Martin Maire
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???
(2013)
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Curvilinear Groupingp g

• Boundaries are smooth in nature!Boundaries are smooth in nature!

• A number of associated visual phenomena

Good continuation Visual completion Illusory contours
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Computational PhotographyComputational Photography

Computer Vision
CSE 576, Spring 2008

Richard Szeliski
Microsoft Research



C t ti l Ph t hComputational Photography

photometric camera calibration• photometric camera calibration
• high-dynamic range imaging & tone mapping

fl h h t h• flash photography

Richard Szeliski Computational Photography 53



R diReadings
• Debevec and Malik Recovering High Dynamic Range• Debevec and Malik, Recovering High Dynamic Range 

Radiance Maps from Photographs. In SIGGRAPH 97.
• S. B. Kang et al. High dynamic range video.g g y g

SIGGRAPH 2003.
• D. Lischinski. Interactive local adjustment of tonal 

values SIGGRAPH 2006values. SIGGRAPH 2006.
• G. Petschnigg et al. Digital photography with flash and 

no-flash image pairs. SIGGRAPH 2004.g p
• P. Pérez et al. Poisson image editing. SIGGRAPH 2003

Richard Szeliski Computational Photography 54



SSources

Some of m slides are fromSome of my slides are from:

Bill Freeman and Frédo Durand
http://groups csail mit edu/graphics/classes/CompPhoto06/

Richard Szeliski Computational Photography 55

http://groups.csail.mit.edu/graphics/classes/CompPhoto06/



SSources

Some of m slides are fromSome of my slides are from:

Alexei (Alyosha) Efros
http://graphics cs cmu edu/courses/15 463/

Richard Szeliski Computational Photography 56

http://graphics.cs.cmu.edu/courses/15-463/



But firstBut first, …

… for something (a little) different …



P hPanography - http://www.flickr.com/search/?q=panography

Richard Szeliski Computational Photography 58



P hPanography - http://www.flickr.com/search/?q=panograph

Richard Szeliski Computational Photography 59



P hPanography

What kind of motion model?What kind of motion model?

Wh t ki d f iti ?What kind of compositing?

Can you do “global alignment”?

Richard Szeliski Computational Photography 60



High Dynamic Range Imaging 
(HDR)

slides borrowed from
15-463: Computational Photography

Alexei Efros, CMU, Fall 2007,
Paul Debevec, and my talksy



P bl D i RProblem: Dynamic Range

1 The real world is
high dynamic range

1500

25 000

high dynamic range.

25,000

400,000

2,000,000,000

Richard Szeliski Computational Photography 62



P bl D i RProblem: Dynamic Range

Typical cameras have limited dynamic range

What can we do?
Solution: merge multiple exposures

Richard Szeliski Computational Photography 63

Solution: merge multiple exposures



Varying ExposureVarying Exposure

Richard Szeliski Computational Photography 64



HDR i lti l i tHDR images — multiple inputs

Pixel count

Richard Szeliski Computational Photography 65

Radiance



HDR i dHDR images — merged

Pixel count

Richard Szeliski Computational Photography 66

Radiance



C i t h t t !Camera is not a photometer!

Limited dynamic rangeLimited dynamic range
Use multiple exposures?

Unknown nonlinear responseUnknown, nonlinear response 
 Not possible to convert pixel values to radiance

Solution:Solution:
• Recover response curve from multiple exposures, 

then reconstruct the radiance mapp

Richard Szeliski Computational Photography 67



Imaging system response functionImaging system response function

255

PixelPixel
valuevalue

0

l EE l (R di(R di ** t)t)log Exposure = Exposure = log (Radiance(Radiance * * t)t)
(CCD photon count)



C C lib tiCamera Calibration

Geometric
• How pixel coordinates relate to directions in theHow pixel coordinates relate to directions in the 

world

Photometric
• How pixel values relate to radiance amounts in the 

worldworld
• Per-pixel transfer and blur

Richard Szeliski Computational Photography 69



C i i liCamera sensing pipeline
Camera

Irradiance

Camera Body

Optics Aperture Shutter

  RAW

Sensor chip

Sensor
(CCD/CMOS) A / DGain

(ISO)

Demosaic (Sharpen)

DSP

White 
Balance Gamma/curve Compress

    JPEG

Richard Szeliski Computational Photography 70



C i i liCamera sensing pipeline

Camera Body

Camera
Irradiance Optics Aperture Shutter

Blur kern. & RD F-stop & Vignette Exposure T

  RAW

Sensor chip

Sensor
(CCD/CMOS) A / DGain

(ISO)

AA CFA Noise ISO Gain Q1

Demosaic (Sharpen)? ?

DSP

White 
Balance Gamma/curve Compress

    JPEG

RGB Gain Q2

Richard Szeliski Computational Photography 71

RGB Gain Q2



Recovering High Dynamic Range
Radiance Maps from Photographs

Paul DebevecPaul Debevec
Jitendra Malik

Computer Science Division
University of California at Berkeley

SIGGRAPH’97, August 1997



W tWays to vary exposure

Sh tter Speed (*) Shutter Speed (*)

 F/stop (aperture iris) F/stop (aperture, iris)

 Neutral Density (ND) Filters Neutral Density (ND) Filters

Richard Szeliski Computational Photography 73



Sh tt S dShutter Speed

Ranges Canon D30 30 to 1/4 000 secRanges: Canon D30: 30 to 1/4,000 sec.
(1997) Sony VX2000: ¼ to 1/10,000 sec.

PPros:
Directly varies the exposure
Usually accurate and repeatable

Issues:
Noise in long exposures

Richard Szeliski Computational Photography 74



Sh tt S dShutter Speed

Note sh tter times s all obe a po er seriesNote: shutter times usually obey a power series –
each “stop” is a factor of 2

¼, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Usually really is:

¼, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Richard Szeliski Computational Photography 75



Th Al ithThe Algorithm
•••• •••• ••
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33

1 sec1 sec1/16 sec1/16 sec 4 sec4 sec1/64 sec1/64 sec 1/4 sec1/4 sec

Pixel Value Z = f(Exposure)
Exposure = Radiance  t

log Exposure = log Radiance  log t
Richard Szeliski Computational Photography 76
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R CResponse Curve
Assuming unit radiance After adjusting radiances toAssuming unit radiance

for each pixel
After adjusting radiances to 

obtain a smooth response 
curve
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Th M thThe Math

Let g(z) be the discrete inverse response function
For each pixel site i in each image j, want:

S l th d t i d li t

ln Radiancei lnt j  g(Zij )

Solve the over-determined linear system:

ln Radiancei  lntj g(Zij ) 2
P


N

  g (z)2
Zmax



fi i h

ln Radiancei  lntj g(Zij ) 
j1


i1
  g (z)

zZmin



Richard Szeliski Computational Photography 78

fitting term smoothness term



M tL b dMatLab code
function [g,lE]=gsolve(Z,B,l,w)

n = 256;
A = zeros(size(Z,1)*size(Z,2)+n+1,n+size(Z,1));
b = zeros(size(A,1),1);

k = 1; %% Include the data-fitting equationsk  1;                %% Include the data fitting equations
for i=1:size(Z,1)

for j=1:size(Z,2)
wij = w(Z(i,j)+1);
A(k,Z(i,j)+1) = wij; A(k,n+i) = -wij; b(k,1) = wij * B(i,j);
k=k+1;

end
end

A(k,129) = 1;         %% Fix the curve by setting its middle value to 
0
k k+1k=k+1;

for i=1:n-2           %% Include the smoothness equations
A(k,i)=l*w(i+1); A(k,i+1)=-2*l*w(i+1); A(k,i+2)=l*w(i+1);
k=k+1;

end

Richard Szeliski Computational Photography 79

end

x = A\b;              %% Solve the system using SVD

g = x(1:n);
lE = x(n+1:size(x,1));



R lt di it lResults: digital camera
Recovered responseRecovered responseKodak DCS460 Recovered response Recovered response 

curvecurve1/30 to 30 sec
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e
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R t t d R di MReconstructed Radiance Map

Richard Szeliski Computational Photography 81



R lt C l FilResults: Color Film

Kodak Gold ASA 100 PhotoCDKodak Gold ASA 100, PhotoCD

Richard Szeliski Computational Photography 82



Recovered Response Curvesp

Red Green

RGBBlue

Richard Szeliski Computational Photography 83



Th R di MThe Radiance Map

Richard Szeliski Computational Photography 84



Th R di MThe Radiance Map

Linearly scaled toLinearly scaled to
display devicedisplay device

Richard Szeliski Computational Photography 85



P t bl Fl tM ( f )Portable FloatMap (.pfm)
12 bytes per pixel 4 for each channel12 bytes per pixel, 4 for each channel

i t tisign exponent mantissa

Text header similar to Jeff Poskanzer’s .ppm
PF
768 512
1
<bi i d t >Floating Point TIFF similar

image format:

Richard Szeliski Computational Photography 86

<binary image data>Floating Point TIFF similar



R di F t ( i hd )Radiance Format (.pic, .hdr)

32 bits / pixel

Red               Green               Blue             Exponent

(145, 215, 87, 149)  =

(145, 215, 87) * 2^(149-128)  =

(145, 215, 87, 103)  =

(145, 215, 87) * 2^(103-128)  =

(1190000, 1760000, 713000) (0.00000432, 0.00000641, 0.00000259)

Ward, Greg. "Real Pixels," in Graphics Gems IV, edited by James Arvo, Academic Press, 1994

Richard Szeliski Computational Photography 87

Ward, Greg. Real Pixels,  in Graphics Gems IV, edited by James Arvo, Academic Press, 1994



ILM’ O EXR ( )ILM’s OpenEXR (.exr)
6 bytes per pixel 2 for each channel compressed6 bytes per pixel, 2 for each channel, compressed

i t tisign exponent mantissa

• Several lossless compression options, 2:1 typical
Compatible with the “half” datatype in NVidia's Cg• Compatible with the “half” datatype in NVidia s Cg

• Supported natively on GeForce FX and Quadro FX
• Available at http://www.openexr.net/

Richard Szeliski Computational Photography 88



High Dynamic Range Video

Sing Bing Kang, Matt Uyttendaele, 
Simon Winder, Rick Szeliski

[SIGGRAPH’2003]



HDR i dHDR images — merged

Pixel count

Richard Szeliski Computational Photography 90
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Wh t b t ti ?What about scene motion?

Inputs Tonemapped outputInputs Tonemapped output
(no compensation or 
consistency check)

Richard Szeliski Computational Photography 91

co s ste cy c ec )



With ti tiWith motion compensation

Inputs Tonemapped outputInputs Tonemapped output
(global+local compensation)

Richard Szeliski Computational Photography 92



R i t ti ( l b l)Registration (global)

After global registration

Richard Szeliski Computational Photography 93



R i t ti (l l)Registration (local)

After local 
registration

Richard Szeliski Computational Photography 94



N Wh t?Now What?

Richard Szeliski Computational Photography 95



Tone MappingTone Mapping



T M iTone Mapping

Ho can e do this?

10 6 106Hi h d i

How can we do this?
Linear scaling?, thresholding?  Suggestions?

10-6 106
Real World
Ray Traced 
World (Radiance)

High dynamic range

10 6 106

World (Radiance)

10-6 106
Display/
Printer

Richard Szeliski Computational Photography 97
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Si l Gl b l O tSimple Global Operator
Compression curve needs toCompression curve needs to

• Bring everything within range
• Leave dark areas alone

In other wordsIn other words

• Asymptote at 255
• Derivative of 1 at 0

Richard Szeliski Computational Photography 98



Gl b l O t (R i h t t l)Global Operator (Reinhart et al)

ld

world
display L

LL



1 worldL1
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Gl b l O t R ltGlobal Operator Results

Richard Szeliski Computational Photography 100



Richard Szeliski Computational Photography 101
Darkest 0.1% scaledDarkest 0.1% scaled
to display deviceto display device

Reinhart OperatorReinhart Operator



Wh t d ?What do we see?

Vs.

Richard Szeliski Computational Photography 102



Wh t d th ?What does the eye sees?

The eye has a huge dynamic range

Richard Szeliski Computational Photography 103

Do we see a true radiance map?



M tMetamores

Richard Szeliski Computational Photography 104

Can we use this for range compression?



Fast bilateral filtering for the 
display of high-dynamic-rangedisplay of high-dynamic-range 
images

Frédo Durand and Julie Dorsey 
SIGGRAPH 2002.



N ï G iNaïve: Gamma compression
X  Xcolors are washed-out Why?X  X colors are washed-out.  Why?

Input Gamma

Richard Szeliski Computational Photography 106



G i i t itGamma compression on intensity
Colors are OK details are blurredColors are OK, details are blurred

Gamma on intensityIntensity

Color

Richard Szeliski Computational Photography 107



O h i 1968 Chi t l 1993Oppenheim 1968, Chiu et al. 1993
Reduce contrast of low frequencies keep highReduce contrast of low-frequencies, keep high

Reduce low frequencyLow-freq.

i h fHigh-freq.

Color

Richard Szeliski Computational Photography 108



H lHalos
Strong edges contain high frequencyStrong edges contain high frequency

Reduce low frequencyLow-freq.

i h fHigh-freq.

Color

Richard Szeliski Computational Photography 109



O hOur approach
Do not blur across edges: non linear filteringDo not blur across edges: non-linear filtering

OutputLarge-scale

ilDetail

Color

Richard Szeliski Computational Photography 110



Bil t l filtBilateral filter

Tomasi and Mand ci 1998Tomasi and Manduci 1998
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Related toRelated to 
• SUSAN filter [Smith and Brady 95] 

http://citeseer.ist.psu.edu/smith95susan.html
• Digital-TV [Chan, Osher and Chen 2001]

http://citeseer.ist.psu.edu/chan01digital.html
i filt• sigma filter 

http://www.geogr.ku.dk/CHIPS/Manual/f187.htm

Richard Szeliski Computational Photography 111



St t ith G i filt iStart with Gaussian filtering

O tp t is bl rredOutput is blurred

J f IJ

Richard Szeliski Computational Photography 112
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Bil t l filt i i liBilateral filtering is non-linear

The eights are different for each o tp t pi elThe weights are different for each output pixel

)(xJ ),( xf ))()(( xIIg  )(I)(
1
xk )(xk

x x
i
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Oth iOther view

The bilateral filter ses the 3D distanceThe bilateral filter uses the 3D distance

Richard Szeliski Computational Photography 114



Contrast reduction
OutputInput HDR image

Intensity Large scale Large scaleIntensity Large scale
Reduce
contrast

Large scale

DetailFast
Bilateral 

Detail
Preserve!

Color

Filter

Color

Richard Szeliski Computational Photography 115



D i d tiDynamic range reduction

To red ce contrast of base la er• To reduce contrast of base layer
• scale in the log domain   exponent in linear

• Set a target range: log (5)• Set a target range: log10 (5)
• Compute range in the log layer: (max-min)

D d i di i i• Deduce  using division
• Normalize so that the biggest value in the 

(linear) base is 1 (0 in log):(linear) base is 1 (0 in log):
• offset the compressed based by its max

Richard Szeliski Computational Photography 116



S f hSummary of approach
Do not blur base/gain layer: non linear filteringDo not blur base/gain layer: non-linear filtering

OutputLarge-scale

ilDetail

Color

Richard Szeliski Computational Photography 117



Gradient domain high dynamic 
range compression

Raanan Fattal, Dani Lischinski, and 
Michael Werman
SIGGRAPH 2002.



G di t T M iGradient Tone Mapping

Richard Szeliski Computational Photography 119

Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.) 



G di t tt tiGradient attenuation

Richard Szeliski Computational Photography 120

From Fattal et al.



Interactive Local Adjustment    
of Tonal Values

Dani Lischinski
Zeev Farbman

Matt Uyttendaele
Rick Szeliski

The Hebrew University Microsoft Research

SIGGRAPH 2006



T l M i l tiTonal Manipulation
•brightness•brightness
•exposure
•contrastcontrast
•saturation
•color temperature
•…

Richard Szeliski Computational Photography 122



Interpretation 1:Interpretation 1:

Richard Szeliski Computational Photography 123



Interpretation 2:Interpretation 2:
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Interpretation 3:Interpretation 3:

Richard Szeliski Computational Photography 125



Thi W k i Ab tThis Work is About:

Ne tool for interacti e tonal manip lationNew tool for interactive tonal manipulation: 
developing negatives in the digital darkroom.

Target material:
• HDR images: the ultimate digital negative• HDR images: the ultimate digital negative.
• Camera RAW images: the most common digital 

negative.g
• Ordinary snapshots.

Richard Szeliski Computational Photography 126



E i ti T lExisting Tools

A tomatic tone mapping algorithmsAutomatic tone mapping algorithms
• Why do we need yet another tone mapping 

approach?approach?
• Why interactive rather than automatic?

Image manipulation and editing packages, e.g., 
Adobe Photoshop.

Richard Szeliski Computational Photography 127



T R d ti O tTone Reproduction Operators

Bilateral Filtering Gradient Domain Photographic

Richard Szeliski Computational Photography 128
Durand & Dorsey 2002 Fattal et al. 2002 Reinhard et al. 2002



A t ti I t tiAutomatic vs. Interactive

Bilateral Filtering Interactive Tone Photographic

Richard Szeliski Computational Photography 129
Durand & Dorsey 2002 Mapping Reinhard et al. 2002



A t ti I t tiAutomatic vs. Interactive

E isting a tomatic TM operators areExisting automatic TM operators are
“black boxes”
• No direct control over the outcome• No direct control over the outcome
• No local adjustment
• Not suitable for creative/artistic work
• Results do not always look “photographic”
• Most operators not really automatic
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B t Wh t Ab t Ph t h ?But What About Photoshop?

Yo can do j st abo t e er thingYou can do just about everything …
Adjustment Layers
L M kLayer Masks

• Select regions
• Paint blending weights• Paint blending weights

but you need a lot of experience patience… but you need a lot of experience, patience, 
and time!
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E l
Our approach

Example
15 minutes in Photoshop: 3 minutes:Our approach15 minutes in Photoshop: 3 minutes:

Richard Szeliski Computational Photography 132



A hApproach

User indicates regions sing scribblesUser indicates regions using scribbles.
User adjusts tonal values using sliders.

Scribbles + tonal values are interpreted as soft 
t i tconstraints.

Optimization framework “propagates” the 
constraints to the entire imageconstraints to the entire image.
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U i t fUser interface
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I t t i tInput: constraints
+0 5 f t+0 5 f t+0.5 f-stops+0.5 f-stops

-1 0 f-stops-1 0 f-stops-1.0 f-stops-1.0 f-stops

+2.0 f-stops+2.0 f-stops

+1.2 f-stops+1.2 f-stops
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R lt dj t tResult: adjustment map
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C t i t P ti
Approximate constraints with a function whose

Constraint Propagation
Approximate constraints with a function whose 

smoothness is determined by underlying image:

data term
smoothness 

term

Our smoothness term:

data term term
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I fl F tiInfluence Functions
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I fl F tiInfluence Functions
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A t ti I iti li tiAutomatic Initialization

Inspired b Ansel Adams’ “Zone S stem”Inspired by Ansel Adams’ “Zone System”.
• Segment image (very crudely) into brightness 

“zones”zones
• Determine the desired exposure for each 

zonezone
• Let the image-guided optimization produce a 

piecewise smooth exposure mappiecewise smooth exposure map
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R lt A t ti dResults – Automatic mode
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R lt A t ti M dResults – Automatic Mode

Richard Szeliski Computational Photography 142



R lt A t ti dResults – Automatic mode
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S h t E h tSnapshot Enhancement
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S h t E h tSnapshot Enhancement
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S ti ll V i t Whit B lSpatially Variant White Balance
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C i f tComparison of tone mappers

D rand and Dorse Fast bilateral filtering for theDurand and Dorsey. Fast bilateral filtering for the 
display of high-dynamic-range images. 
SIGGRAPH 2002SIGGRAPH 2002.

Fattal, Lischinski, and Werman. Gradient domain 
high dynamic range compression. SIGGRAPHhigh dynamic range compression. SIGGRAPH 
2002.

Li, Sharan, and Adelson. Compressing and , , p g
Companding High Dynamic Range Images with 
Subband Architectures.  SIGGRAPH 2005.
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Fattal et al. 2002Li et al. 2005

Lischinski et al. 2006

Reinhard et al. 2002 Durand & Dorsey 2002
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Merging flash and
non-flash images

Georg Petschnigg, Maneesh Agrawala, 
Hugues Hoppe, Rick Szeliski, 

Mi h l C h K t TMichael Cohen, Kentaro Toyama
[SIGGRAPH’2004]



Flash + non-flash imagesFlash  non flash images

Flash photos ha e less noise more detailFlash photos have less noise, more detail
Non-flash photos have better color
Id th t thIdea:  merge them together

• But how?

+ =
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Flash + non-flash imagesFlash  non flash images

Smooth non flash photo sing flash photo’sSmooth non-flash photo using flash photo’s 
edge information

Add high frequency details from flash imageAdd high-frequency details from flash image

+ =
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J i t bil t l filtJoint bilateral filter
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Bil t l d t il filtBilateral detail filter
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Final resultFinal result

flashnon-flashmerged
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