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University of California at Berkeley

{with Jianbo Shi, Thomas Leiung, Serge Balongie, Charless Fowlkas, Diavid
Martin, Xisofeng Fen, Michae] Maira Pablo Arbelaer)
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Contours and Junctions in Natural
Images

Jitendra Malik
University of California at Berkeley

(with Jianbo Shi, Thomas Leung, Serge Belongie, Charless Fowlkes, David
Martin, Xiaofeng Ren, Michael Maire, Pablo Arbelaez)




From Pixels to Perception




| stand at the window and see a house, trees,
sky. Theoretically | might say there were 327
brightnesses and nuances of colour.

Do | have "327"?

No. | have sky, house, and trees.

Max Wertheimer
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Key Research Questions in Perceptual
Organization

* Predictive power
— Factors for complex, natural stimuli ?
— How do they interact ?

* Functional significance

— Why should these be useful or confer some
evolutionary advantage to a visual organism?

e Brain mechanisms

— How are these factors implemented given what we
know about V1 and higher visual areas?




Attneave’s Cat (1954)
Line drawings convey most of the
information




Contours and junctions are fundamental...

« Key to recognition, inference of 3D scene
properties, visually- guided manipulation and
locomotion...

This goes beyond local, V1-like, edge-detection.
Contours are the result of perceptual
organization, grouping and figure/ground
processing




Some computer vision history...

Local Edge Detection was much studied 1n the
1970s and early 80s (Sobel, Rosenfeld, Binford-
Horn, Marr-Hildreth, Canny ...)

Edge linking exploiting curvilinear continuity
was studied as well (Rosenfeld, Zucker, Horn,
Ullman ...)

In the 1980s, several authors argued for
perceptual organization as a precursor to
recognition (Binford, Witkin and Tennebaum,
Lowe, Jacobs ...)




However in the 90s ...

1. Werealized that there was more to images than edges

« Biologically inspired filtering approaches (Bergen & Adelson,
Malik & Perona..)

«  Pixel based representations for recognition (Turk & Pentland,
Murase & Nayar, LeCun ...)
2.  We lost faith in the ability of bottom-up vision

* Do minimal bottom up processing , e.g. tiled orientation
histograms don’t even assume that linked contours or junctions
can be extracted

Matching with memory of previously seen objects then becomes
the primary engine for parsing an image.




At Berkeley, we took a contrary view...

Collect Data Set of Human segmented images

. Learn Local Boundary Model for combining
brightness, color and texture

Global framework to capture closure, continuity
4. Detect and localize junctions

Integrate low, mid and high-level information for
grouping and figure-ground segmentation




Berkeley Segmentation DataSet [BSDS]

D. Martin, C. Fowlkes, D. Tal, J. Malik. "A Database of Human Segmented Natural Images and its
Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics", ICCV, 20013







Contour detection ~1970

Precision

®  Human Consistency [F=0.79]
Prewitt (1970) [F=0.48]
*  Sobel (1968) [F=0.48]
Roberts (1965) [F=047]
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Contour detection ~1990

Precision

Human Consistency F=0.79]
Canny opt. threshold and hystheresis (1986) [F=058]
Perona, Malik {1990} [F=0.58]
Canny matlab {1986) [F=0.54]
Hildreth, karr (1980) [F=050]
Prewitt (1970) [F=0.48]
Sobel (1968) [F=048]
Roberts (1965) [F=047]
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Contour detection ~2004

Precision

Human Consistency

Martin, Fowlkes Malik gray (2004) [F=063]
Canny opt. threshold and hystheresis (1986) [F=058]
Perona, Malik {1990} [F=058]
Canny matlab {1986) [F=054]
Hildreth, Marr (1980) [F=0.50]
Prewitt (1970) [F=048]
Sobel (1968) [F=048]
Roberts (1965) [F=047]
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Human Caonsistency

Maire, Arbelasz, Fowlkes, Malilk gray (2008)
Martin, Fowlkes Malil gray (2004)

Canny opt. threshold and hystheresis (1986)
Perona, Malik (1290)

Canny matlab {1986)

Hildreth, harr (1980}

Prewitt (1970)

Sobel (1968)

Roberts {(1965)

[F=050]
[F=0.48]
[F=048]
[F=047]
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Human Consistency

Maire, Arbelasz, Fowlkes, Malilk color (2008)  [F=0.70]
Maire, Arbelaez, Fowlkes, Malilk gray (2008)  [F=068]
Martin, Fowlkes Malik gray (2004) [F=063]
Canny opt. threshold and hystheresis (1986)  [F=0.58]
Perona, Malik {1990} [F=058]
Canny matlab (1986) [F=054]
Hildreth, Marr (1980) [F=0.50]
Prewitt (1970) [F=048]
Sobel {(1068) [F=048]

Roberts {1965) [F=047]
| | |
0.1 02 _ _ 05
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Outline

Collect Data Set of Human segmented images

Learn Local Boundary Model for combining
brightness, color and texture

Global framework to capture closure, continuity

Detect and localize junctions

Integrate low, mid and high-level information for
grouping and figure-ground segmentation




Contours can be defined by any of a number of cues (P. Cavanagh)

Luminance

Motion

Derived
attributes

Binocular
disparity

1 =4 o= Ff O

Shading

occlusion

surfaces
etc.
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Cue-Invariant Representations

Gray level photographs

Objects from texture
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Grill-Spector et al. , Neuron 1998



Martin, Fowlkes, Malik PAMI 04

Boundary Cues

Cue Combination

Brightness
Color =) )
Texture

Challenges: texture cue, cue combination

Goal: learn the posterior probability of a boundary
P, (x,y,0) from local information only




Individual Features

1976 CIE L*a*b* colorspace
Brightness Gradient BG(X,y,r,0)

— Difference of L* distributions

Color Gradient CG(x,y,r,0)

— Difference of a*b* distributions

Texture Gradient TG(X,y,r,0)

— Difference of distributions of
V1-like filter responses

These are combined using logistic regression
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Outline

Collect Data Set of Human segmented images

. Learn Local Boundary Model for combining

brightness, color and texture

Global framework to capture closure, continuity

4. Detect and localize junctions

Integrate low, mid and high-level information for
grouping and figure-ground segmentation




Exploiting global constraints:
Image Segmentation as Graph Partitioning

V: 1image pixels

E: connections between
pairs of nearby pixels

Partition graph so that similarity within group 1s large and

similarity between groups is small -- Normalized Cuts
[Shi & Malik 97]




Wi small when intervening contour strong, small when weak..




Eigenvectors carry contour information




We do not try to find regions from the eigenvectors, so
we avoid the “broken sky” artifacts of Ncuts ...




Key idea — compute edges on ncut eigenvectors,
sum over first K: [y

C¥AI is the output of a Gaussian derivative on the j-th eigenvector

M (D WW)v = \Dv

Figure 1. Top: Original image and first four generalized eigenvectors. Bottom: Maximum response over orientations & of sPb(z, y, 8),
and of sPby,(z,y, #) for each eigenvector v;.




The Benetits of Globalization
Maire, Arbelaez, Fowlkes, Malik, CVPR 08
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*  Human Consistency [F=0.79]
Global Ph [F=0.70]
Spectral Pb [F=088]
Multiscale Ph [F=08T7]
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Comparison to other approaches
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®  Human Consistency
MWaire, Arbelasz, Fowlkes, Malik color (2008)  [F=0.70]
— Arhelaez (2006) [F=067]
Daollar, £ Tu, and 5. Belongie (2008) [F=066]
Felzenszwalb, McAllester (2006) [F=06%]
MWartin, Fowlkes Malik color (2004) [F=065]
Zhu, Song, Shi (2007) [F=084]
Ren, Fowlkes, Malik (2005) [F=064]
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Figure 3. When compared with the local detector Pb, our detector g Pb reduces clutter and completes contours. From left to right:
Original image, thresholded F’b, thresholded g b, and g Pb. The thresholds shown correspond to the points of maximal F-measure on the
curves in Figure 2.



Outline

Collect Data Set of Human segmented images

. Learn Local Boundary Model for combining

brightness, color and texture

Global framework to capture closure, continuity

4. Detect and localize junctions

Integrate low, mid and high-level information for
grouping and figure-ground segmentation




Detecting Junctions

1. Estimate the optimal junction location L = (zr,yr) 2. Update the weight w; of each contour C; in order to se-
by minimizing its weighted distance from the contours lect only those contours passing close to the junction:

{Cg_} e Iy
w; = |Ci| - exp(—d(Ci, L)*/€?) 8)

L = argmin ., er1. w;d(C;, (x, 7 ,
gmii@y) el le (G (@y) @ where |C;| = ), yeo, Pb(z,y) is the total contrast







Benchmarking corner detection

Pjon gPb [F=0.41]
Pjon Pb [F =0.38]
Pj on Ganny [F =0.35]
Harris on Pb [F =0.34]
Harris [F = 0.28]
Human agreement [F = 0.47]
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G/ ;%

igure 9. Junction restoration by extension of existing contours to detected junction locations. The magnified view of each boxed area
shows contours before and after junction restoration. Extended contours are shown in red, with brightness corresponding to their estimated
streneth.




Better object recognition using previous version of Pb

e Ferrari, Fevrier, Jurie and Schmid (PAMI 08)

The main reason for preferring the Berkeley detector over the traditional Canny detector, 1s
the inclusion of texture and color sepmentation cues, in addition o brightness. Moreover, it
treats edge detection as a pixel classification problem and trains a classifier from natural images
with human-annotated boundaries. This results in less clutter -.'":: els inside textured areas, and

longer, smoother boundarics around textured objects {e.g. . Using this getector instcad

 Shotton Blake and Cipolla (PAMI 08

| Classification | Detection
| ROC AUC | RP AUC
Canny [ 09127 | 0.8498 |
Berkeley [38] || 0.9275 0.8871
BEL [18] Natural 0.9029 0.8354
BEL [18] Horse 0.9518 0.8976

The Berkeley detector performs considerably bet-
ter than Canny, especially for detection. While the




Outline

Collect Data Set of Human segmented images

Learn Local Boundary Model for combining
brightness, color and texture

Global framework to capture closure, continuity
Detect and localize junctions

Integrate low, mid and high-level cues for
grouping and figure-ground segmentation
1. Ren, Fowlkes, Malik, IJCV ‘08

2. Fowlkes, Martin, Malik, JOV ‘07

3. Ren, Fowlkes, Malik, ECCV ‘06




Power laws for contour lengths

Fig. 2 We take cach boundary contour C and break it up at local cur
vature maxima (corners). Shown are a few examples of this decompo
sition. The contour segment length |L| is large for large-scale features

number of oocurrences

i =
10 10
segmant lenglh

la)

Fig. 3 Empirical distributions of approximately straight contour seg
ment length [L|. (a) The marginal distribution of |L| on a log-log scale.
It closely follows a power law with o = 2.40, in direct contradiction

such as the back of an animal, and is small in the vicinity of fine-scale
details such as the head

of cocurrences

number

100 150
sagment langth

(b

with the Markov model that predicts an exponential distribution. {b) As
a comparison, the same distribution on a semi-log scale and an expo
nential fit. The power law fits the data much better than the exponential




Convexity

Convg = percentage of straight lines
that lie completely within region G

Convexity(p) = log(Convg / Convy)




Figural regions tend to be convex
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Convexity(p) = log(covexity, / covexity,)




Lower Region

[Vecera, Vogel & Woodman 2002]

LowerRegion(p) = 6

center of mass




Figural regions tend to lie below ground regions
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LowerRegion(p) = cos(9,,)




Ren, Fowlkes, Malik ECCV ‘06

Object and Scene
Recognition

Grouping /
Segmentation

Figure/Ground

> N
Organization

« Human subjects label groundtruth figure/ground assignments
in natural images.

« Shapemes encode high-level knowledge 1n a generic way,
capturing local figure/ground cues.

* A conditional random field incorporates junction cues and
enforces global consistency.




F measure

Forty years of contour detection

Roberts
(1965)

Sobel
(1968)

Prewitt
(1970)

Marr
Hildreth
(1980)

Canny
(1986)

Perona
Malik
(1990)

Martin Maire
Fowlkes Arbelaez
Malik Fowlkes
(2004) Malik
(2008)




F measure

Forty years of contour detection

Roberts
(1965)

Sobel
(1968)

Prewitt
(1970)

Marr
Hildreth
(1980)

Canny
(1986)

Perona
Malik
(1990)

Martin Maire
Fowlkes Arbelaez
Malik Fowlkes
(2004) Malik
(2008)




Curvilinear Grouping

 Boundaries are smooth in nature!

e A number of associated visual phenomena







Computational Photography

Computer Vision
CSE 576, Spring 2008

Richard Szeliski
Microsoft Research



Computational Photography

* photometric camera calibration
 high-dynamic range imaging & tone mapping
« flash photography

Richard Szeliski Computational Photography

53



Readings

« Debevec and Malik, Recovering High Dynamic Range
Radiance Maps from Photographs. In SIGGRAPH 97.

« S. B. Kang et al. High dynamic range video.
SIGGRAPH 2003.

 D. Lischinski. Interactive local adjustment of tonal
values. SIGGRAPH 2006.

« (. Petschnigg et al. Digital photography with flash and
no-flash image pairs. SIGGRAPH 2004.

P. Pérez et al. Poisson image editing. SIGGRAPH 2003

Richard Szeliski Computational Photography 54



Sources

Some of my slides are from:

6.098 Digital and Computational Photography
6.882 Advanced Computational Photography

Spring 2006

home | syllabus | problem sets and solutions | handouts | inks

Bill Freeman and Frédo Durand
http://groups.csail.mit.edu/graphics/classes/CompPhoto06/

Richard Szeliski Computational Photography
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Sources

Some of my slides are from:
15-463 (15-862): Computational Photography

Computer Science Department
Carnegie Mellon University

INSTRUCTOR: Alexei (Alyosha) Efros (Office hours: Thursdays 2:30-3:30, MSH 4207)
TA: Jim McCann (Office hours: Tuesdays 5-6, NSH 4228)

UMIVERSITY UNITS: 12

SEMESTER: Fall 2007

NEWSGROUP: cru.cs class c5463 (read this for important infarmation!)

WEB PAGE: http-//graphics.cs.cmu edu/courses/15-463/

LOCATION: WeH 5312

TIME: TR 12:00--1:20 PM

COURSE OVERVIEWY:

Computational Photography is an emerging new field created by the convergence of computer
graphics, computer vision and photography. lts role is to overcome the limitations of the traditional
camera by using computational techniques to produce a richer, more vivid, perhaps more
perceptually meaningful representation of our visual world.

Alexei (Alyosha) Efros
http://graphics.cs.cmu.edu/courses/15-463/

Richard Szeliski Computational Photography
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But first, ...

... for something (a little) different ...



P a n Og ra p h y = http://www.flickr.com/search/?g=panography

flickr’

ou arentsigned in - Signin  Help

Home The Tour Sign Up Explore

one's photostream | Search

0 We found 1,762 results matching panography.

View: Most relevant = Most recent = Most interesting Show: Details * Thumbnails

London Monument, A Panography

Uploaded on & August 2006

. By willster
& His photostream, or profile.
-

|j city, deletemed, deletemes, panorama ..

Richard Szeliski Computational Photography

SeaTCh Photos Groups Feople
|pan0graphy SEARCH |
@ Full text O Tags on

Advanced Search
Search by Camera

View as slideshow (&)
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P a n Og ra p h y = http://www.flickr.com/search/?g=panograph

Tokyo Skyline Panograph

Uploaded on 30 July 2006

By Chalky Lives

o’ Chalky Lives' photostream, or profile.
('] tower, skyline, tokyo, photo ...

Times Square Panograph

ploaded on 2 August 2006

& By Chalky Lives
| Chalky Lives' photostream, or profile.

(] ny, newyork, advertising, construction ...

Sleeping Beauty Castle (Panograph
#7)

Uploaded on 25 December 2006

Fedll Gy targeteer2k
L His photostream, or profile.

(7] christmas, xmas, sleeping, people ...

Richard Szeliski Computational Photography
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Panography

What kind of motion model?

What kind of compositing?

Can you do “global alignment™?

Richard Szeliski Computational Photography
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High Dynamic Range Imaging
(HDR)

slides borrowed from
15-463: Computational Photography
Alexel Efros, CMU, Fall 2007,
Paul Debevec, and my talks



Problem: Dynamic Range

The real world is
high dynamic range.

2,000,000,000

Richard Szeliski Computational Photography 62



Problem: Dynamic Range

Typical cameras have limited dynamic range

— -
=
-
-— -
—
- -
— -

What can we do?
Solution: merge multiple exposures

Richard Szeliski Computational Photography
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Varying Exposure
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HDR images — multiple inputs

A

»
»

Radiance
Richard Szeliski Computational Photography 65



HDR images — merged

Pixel count

A

»
»

Radiance
Richard Szeliski Computational Photography 66



Camera is not a photometer!

Limited dynamic range
—=Use multiple exposures?

Unknown, nonlinear response
= Not possible to convert pixel values to radiance

Solution:

* Recover response curve from multiple exposures,
then reconstruct the radiance map

Richard Szeliski Computational Photography 67



Imaging system response function

255

Pixel
value

log Exposure = log (Radiance * At)
(CCD photon count)



Camera Calibration

Geometric

 How pixel coordinates relate to directions in the
world

Photometric

« How pixel values relate to radiance amounts in the
world

* Per-pixel transfer and blur

Richard Szeliski Computational Photography 69



Camera sensing pipeline

Camera > Optics —» Aperture —{ Shutter
Irradiance
Camera Body
o|  Sensor Gain A/D RAW
(CCD/CMOS) ' (ISO) ’
Sensor chip
» Demosaic |—— (Sharpen)
L White JPEG
—»| Gamma/curve (> Compress
Balance
DSP

Richard Szeliski

Computational Photography

70



Camera sensing pipeline

Camera
. *
Irradiance
Blur kern. & RD F-stop & Vignette Exposure T
RAW

g i iV pna

AA CFA  Noise ISO Gain Ql
—>] ? —>

Richard Szeliski

_.?—>

-

JPEG

It

RGB Gain

?
Q2

Computational Photography

It
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Recovering High Dynamic Range
Radiance Maps from Photographs

(/‘ Paul Debevec (/‘
*w Jitendra Malik *w

Computer Science Division
University of California at Berkeley

SIGGRAPH97, August 1997



Ways to vary exposure

5 5
&) &)
* *

= Shutter Speed (*)

= F/stop (aperture, iris)

» Neutral Density (ND) Filters

Richard Szeliski Computational Photography 73



Shutter Speed

Ranges: Canon D30: 30 to 1/4,000 sec.
(1997) Sony VX2000: %2 to 1/10,000 sec.
Pros:
Directly varies the exposure
Usually accurate and repeatable
Issues:
Noise in long exposures

Richard Szeliski Computational Photography
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Shutter Speed

Note: shutter times usually obey a power series —
each “stop” is a factor of 2

va, 1/8, 1/15, 1/30, 1/60, 1/125, 1/250, 1/500, 1/1000 sec

Usually really is:

va, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256, 1/512, 1/1024 sec

Richard Szeliski Computational Photography 75



The Algorithm

At = At = At = At =
1/64 sec 1/16 sec 1/4 sec 1 sec 4 sec

Pixel Value Z = f(Exposure)
Exposure = Radiance x At

log Exposure = log Radiance + log At

Richard Szeliski Computational Photography 76



Pixel value

Response Curve

Assuming unit radiance  After adjusting radiances to
for each pixel obtain a smooth response
curve

Pixel value '

log Exposure log Exposure
Richard Szeliski Computational Photography 77



The Math

Let g(z) be the discrete inverse response function
For each pixel site | in each image j, want:

In Radiance +In At; = g(Z;)

Solve the over-determined linear system:

max

ZZ[ln Radiance+InAt, —g(Z, )T +1 Zg"(z)

=l j=l
N J \ J
Y Y
fitting term smoothness term

Richard Szeliski Computational Photography 78




MatLab code

function [g,l1E]=gsolve(Z,B,I,w)

n = 256;

A = zeros(size(Z,1)*size(Z,2)+n+1l,n+size(Z,1));

b = zeros(size(A,1),1);

k = 1; %% Include the data-fitting equations
for 1=1:size(Z,1)

for j=1:si1ze(Z,2)
wij = w(z(i,j)+1);
Ak,Z(i,)+1D) = wij; Ak,n+i) = -wij; b(k,1) = wij * B(i,j);

k=k+1;
end
end
A(k,129) = 1; %% Fix the curve by setting i1ts middle value to
0
k=k+1;
for 1=1:n-2 %% Include the smoothness equations

Ak, D=1*w(i+1); Ak, i+D)=-2*1*w(i+1); A(k,i+2)=1*w(i+1);
k=k+1;
end

X = A\b; %% Solve the system using SVD

x(1:n);

g
IE = x(n+l:size(x,1));

79



Results: digital camera

Kodak DCS460 Recovered response
1/30 to 30 sec curve

Pixel value

Richard Szeliski Computational Photography log EXpO Surc 80



Reconstructed Radiance Map

Richard Szeliski Computational Photography
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Results: Color Film

Kodak Gold ASA 100, PhotoCD

Richard Szeliski Computational Photography
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Recovered Response Curves

Richard Szeliski Computational Photography
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The Radiance Map

Richard Szeliski Computational Photography 84



The Radiance Map

Linearly scaled to
display device

Richard Szeliski Computational Photography 85



Portable FloatMap (.pfm)

12 bytes per pixel, 4 for each channel

sign exponent mantissa

Text header similar to Jeff Poskanzer’s .ppm

Image format: PF

768 512

1

<binary image data>

Floating Point TIFF similar

Richard Szeliski Computational Photography 86



Radiance Format (.pic, .hdr)

32 bits / pixel
[TTTTTTT] [TTTTTTT]
Red Green Blue Exponent
(145,215, 87, 149) = (145,215, 87,103) =
(145,215, 87) * 2°(149-128) = (145,215, 87) * 2°(103-128) =
(1190000, , 713000) (0.00000432, , 0.00000259)

Ward, Greg. "Real Pixels," in Graphics Gems 1V, edited by James Arvo, Academic Press, 1994

Richard Szeliski Computational Photography 87



ILM’s OpenEXR (.exr)

6 bytes per pixel, 2 for each channel, compressed

sign exponent mantissa

e Several lossless compression options, 2:1 typical

e Compatible with the “half” datatype in NVidia's Cg
e Supported natively on GeForce FX and Quadro FX
e Available at http://www.openexr.net/

Richard Szeliski Computational Photography



High Dynamic Range Video

Sing Bing Kang, Matt Uyttendaele,
Simon Winder, Rick Szeliski

22

[SIGGRAPH2003]




HDR images — merged

Pixel count

A

»
»

Radiance
Richard Szeliski Computational Photography 90



What about scene motion?

I =i
4 |
(811 B

[ [ vl
[ !'r_ f

!: 5 ff:l :;_‘ # \‘

Inputs © f ug Tonemapped output
.| l (no compensation or
consistency check)

“f‘l\ A

Richard Szeliski Computational Photography 91



With motion compensation

k- <y §

AR

i _ m o A\ ;
1 ‘.

Inputs /f  ug Tonemapped output
( - (global+local compensation)

e LN L
S
& L] (R L.
g B S0 W
! i) RS N L
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Reaqistration (global)

After global registration

Richard Szeliski Computational Photography 93



Registration (local)

After local
registration

Richard Szeliski Computational Photography 94



Now \What?

Richard Szeliski

Computational Photography

95



Tone Mapping



Tone Mapping

How can we do this?
Linear scaling?, thresholding? Suggestions?

-6 . . 1 6
Real World 10 | | | H|1gh| dy|nan|nc |1‘an|g€ | |O
Ray Traced
World (Radiance) e
Display/ | | | | | | | | | |
Printer i
0 to 255

Richard Szeliski Computational Photography
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Simple Global Operator

Compression curve needs to

* Bring everything within range
 |Leave dark areas alone

In other words

« Asymptote at 255
* Derivative of 1 at0

Richard Szeliski Computational Photography
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Global Operator (Reinhart et al)

L _ world
display
1 T I—world

1
)
C
2
=

0 1 2 3 4

Lworld

Richard Szeliski Computational Photography
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Global Operator Results
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Reinhart Operator Darkest 0.1% scaled

Richard Szeliski Computational Photogra{)hy 101
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What do we see?

7.
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Richard Szeliski

Vs.

Computational Photography
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What does the eye sees?

Luminance ) | - | | | | |

(log cd/m?) | | | | |

starlight moonlight indoor lighting sunlight

Range of

[llumination scotopic mesopic photopic
Visual no color vision good color vision
function poor acuity good acuity

Figure 1: The range of luminances in the natural environ-
ment and associated visual parameters. After Hood (1986).

The eye has a huge dynamic range
Do we see a true radiance map?

Richard Szeliski Computational Photography
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Metamores

Craik-0’'Brien Cornsweet Effect

+ I

& emal Luminance Profile Perceived Luminance Profile

Can we use this for range compression?
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Fast bilateral filtering for the
display of high-dynamic-range
Images

Fredo Durand and Julie Dorsey
SIGGRAPH 2002.



Naive: Gamma compression

X —> X! colors are washed-out. Why?

Input ! ; ' Gamma

\
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Gamma compression on intensity

Colors are OK, details are blurred

Intensity

Gamma on intensity




Oppenheim 1968, Chiu et al. 1993

Reduce contrast of low-frequencies, keep high

Low-freq. Reduce low frequency




Halos

Strong edges contain high frequency

Low-freq. Reduce low frequency




Our approach

Do not blur across edges: non-linear filtering
Large-scale Output




Bilateral filter

Tomasi and Manduci 1998
http://www.cse.ucsc.edu/~manduchi/Papers/ICCV98.pdf

Related to

« SUSAN filter [Smith and Brady 95]
http://citeseer.ist.psu.edu/smith95susan.html

 Digital-TV [Chan, Osher and Chen 2001]
http://citeseer.ist.psu.edu/chan01digital.html

 sigma filter
http://www.geoqgr.ku.dk/CHIPS/Manual/f187.htm
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Start with Gaussian filtering

Output is blurred

output =

Richard Szeliski Computational Photography



Bilateral filtering is non-linear

The weights are different for each output pixel

J(X) =

e X f0ed) g1@-100) 1)

—
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Other view

The bilateral filter uses the 3D distance
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Contrast reduction

Input HDR image

Intensity Large scale

Fast i
Bilateral [ S
Filter | -

Computational Photography

Reduce
contrast




Dynamic range reduction

To reduce contrast of base layer
« scale in the log domain = y exponent in linear

Set a target range: log,, (5)

Compute range in the log layer: (max-min)
Deduce y using division

Normalize so that the biggest value in the
(linear) base is 1 (0 in log):

 offset the compressed based by its max
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Summary of approach

Do not blur base/gain layer: non-linear filtering
Large-scale Output




Gradient domain high dynamic
range compression

Raanan Fattal, Dani Lischinski, and
Michael Werman
SIGGRAPH 2002.



Gradient Tone Mapping

By A (1] ey WWW

2500:1

Sjenuspe

/.51

oy ) e

Slide from Siggraph 2005 by Raskar (Graphs by Fattal et al.)
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Gradient attenuation

log(Luminance) Gradient magnitude Attenuation map

From Fattal et al.
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Interactive Local Adjustment
of Tonal Values

Dani Lischinski Matt Uyttendaele
Zeev Farbman Rick Szeliski
The Hebrew University Microsoft Research

SIGGRAPH 2006



Tonal Manipulation

*brightness
sexposure
econtrast
esaturation

color temperature
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Interpretation 1:
v




Interpretation 2:




Interpretation 3:
- ._ ~ '




This Work is About:

New tool for interactive tonal manipulation:
developing negatives in the digital darkroom.

Target material:
 HDR images: the ultimate digital negative.

« Camera RAW images: the most common digital
negative.

* Ordinary snapshots.
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Existing Tools

Automatic tone mapping algorithms

 Why do we need yet another tone mapping
approach?

* Why interactive rather than automatic?

Image manipulation and editing packages, e.g.,
Adobe Photoshop.
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Tone Reproduction Operators

% > j |

o, Zfi"l

Bilateral Filtering Gradient Domain Photographic
Durand & Dorsey 2002 Fattal et al. 2002 Reinhard et al. 2002
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Automatic vs. Interactive

SR
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Bilateral Filtering Interactive Tone

Mappin
Durand & Dorsey 2002 PPINg
Richard Szeliski Computational Photography
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Automatic vs. Interactive

Existing automatic TM operators are
“black boxes”
* No direct control over the outcome
No local adjustment
Not suitable for creative/artistic work
Results do not always look “photographic”
Most operators not really automatic
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But What About Photoshop?

You can do just about everything ...
Adjustment Layers
Layer Masks

« Select regions
« Paint blending weights

... but you need a lot of experience, patience,
and time!
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Example

15 minutes In Photoshop' 3 mlnutes

T illl--g]

s
, P

Richard Szeliski Computational Photography
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Approach

User indicates regions using scribbles.
User adjusts tonal values using sliders.

Scribbles + tonal values are interpreted as soft
constraints.

Optimization framework “propagates” the
constraints to the entire image.
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User interface

Eile Edit Help

Brush

Brush Size -—]—

Context Size -—]—

Channels -

BExposure .
k|

Saturation o |
J

Contrast 0o |
o =)
K|
- =
£ |

De-/Focus 0

- J

~Misc y

Global Exposure
| |
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Input: constraints
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Result: adjustment map
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Constraint Propagation

Approximate constraints with a function whose
smoothness is determined by underlying image:

f = argmin {)x:“’(") (F(x) — g(x)2 A Y A(VS, VL)}

f X smoothness
data term term

|fx|2 |fy|2
|Lx|®+ |LY‘a T €

h(Vf,VL) =
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Influence Functions

SR gl |
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Influence Functions

Computational Photography




Automatic Initialization

LN 11

Inspired by Ansel Adams’ “Zone System”.

« Segment image (very crudely) into brightness
‘zones”

« Determine the desired exposure for each
zone

* Let the image-guided optimization produce a
pilecewise smooth exposure map
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Results — Automatic mode
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Results — Automatic mode

N
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Snanshot Enhancement




Snanshot Enhancement







Comparison of tone mappers

Durand and Dorsey. Fast bilateral filtering for the
display of high-dynamic-range images.
SIGGRAPH 2002.

Fattal, Lischinski, and Werman. Gradient domain

high dynamic range compression. SIGGRAPH
2002.

Li, Sharan, and Adelson. Compressing and
Companding High Dynamic Range Images with
Subband Architectures. SIGGRAPH 2005.
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Li et al. 2005 Fattal et al. 2002
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Merging flash and
non-flash images

Georg Petschnigg, Maneesh Agrawala,
Hugues Hoppe, Rick Szeliski,
Michael Cohen, Kentaro Toyama

[SIGGRAPH’2004]



Flash + non-flash images

Flash photos have less noise, more detalil
Non-flash photos have better color

ldea: merge them together
* But how?

non-flash flash merged
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Flash + non-flash images

Smooth non-flash photo using flash photo’s
edge information

Add high-frequency details from flash image

non-flash flash merged
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Joint bilateral filter

A F
No-Flash -{  Flash
Image Image . .
Bilateral Joint Bilateral Shadow &
Filter Bilateral Filter Specularity
Filter Detection
FBase
ABase ANR FDemH Mask M
Denoisi /T\ Artifact
enaoising Detail Transfer detection
| |

AFEnaf — (I_M)A;\"Rﬁ-vﬂe':‘aii + MAB:J.\':S

Figure 3: Overview of our algorithms for denoising, detail transfer, and
flash artifact detection.
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Bilateral detail filter

Gaussian Bilateral
Filtered Signal
i O
Detail Laver
Filtered/Signal
R halo detail

Figure 5: (left) A Gaussian low-pass filter blurs across all edges and will
therefore create strong peaks and valleys in the detail image that cause
halos. (right) The bilateral filter does not smooth across strong edges and
thereby reduces halos, while still capturing detail.

Richard Szeliski Computational Photography 156



Final result
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Image Formation
Color
Filters

Pyramids

_ocal Features
Texture
Alignment
Flow

Stereo
SFM

Coda Recognition Intro.
Topic Models
Recognition Kernels
Voting and Parts
Context

Articulated Recognition
Photometric Stereo
Tracking

MREFS

Segmentation
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